EXAM 1 TMath 124

Spring 2024

Х

Show *all* your work (numerically, algebraically, or geometrically) for the following problems. Supporting work is needed to earn credit.

- 1. Let $f(x) = \frac{5-2x}{x-2}$. The graph of g is given on the right. Estimate: (a) [1] (LimitActivity#1) f(-1). (b) [2] (Quiz1#1) $g(-1) + \lim_{x \to -1} g(x)$ (c) [2] (WebHW4#10) $\lim_{x \to \infty} f(x)$
 - (d) [3] (§2.3#2) $\lim_{x \to 1} (f(x)g(x))$
 - (e) [1] ($\S2.5 \#20$) Where f is not continuous.
 - (f) [2] (Quiz2#1) g'(-3)
- y⁵¹ 2. [5] (Quiz1#2) Draw one graph for a function $\alpha(x)$, that 3 satisfies all of the following: 2 (a) $\lim_{x \to 3} \alpha(x) = -\infty$, 1 x⁵ 0 (b) α is not continuous -4 -3 -2 -1 1 2 3 4 when x = 1, -1 (c) $\alpha(-2) = 1$, and -2 (d) $\lim_{x \to 2^+} \alpha(x) = -3.$ -3 -4

3. [4] (Practice Exam#8) Let $f(x) = x^2 - 5$. Find the limit (either numerically, graphically, or algebraically), if it exists, of $\lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$

4. [3] (WebHW4#9) Let $f(x) = x^2 \left(1 - \cos\left(\frac{1}{x}\right)\right)$. Find the limit (either numerically, graphically, or algebraically), if it exists, of $\lim_{x \to 0} f(x)$

- 5. [3] (§2.7 #28) If the tangent line to y = f(x) at (1,3) passes through the point (5,2) find the following.
 - (a) f(1)
 - (b) f'(1)

- 6. [5] (WebHW5#8) Draw one graph for a function $\beta(x)$, that satisfies all of the following:
 - (a) $\lim_{x \to \infty} \beta(x) = 2$,
 - (b) β is continuous on the interval [-4, 4],
 - (c) $\beta'(0)$ does not exist, and
 - (d) $\frac{d}{dx}\beta|_3 = 1.$
- 7. Consider $f(x) = -e^x + 5x$ graphed to the right.
 - (a) [3] (WebHW7#9) Find $\frac{df}{dx}$

- (b) [1] (DerivativeActivity#5) Estimate when f'(x) = 0
- (c) [4] (ExpActivity#4) Find the equation of the line tangent to f that is parallel to the line y = 4x + 7

- 8. (StoryProblems #6) A rock thrown upwards on planet Mars with velocity $15\frac{\text{m}}{\text{s}}$ has a height $h(t) = 15t 1.86t^2$ meters t seconds later.
 - (a) [2] Find a velocity function that describes the velocity of the rock at t seconds.
 - (b) [2] Recall gravity is the constant acceleration experienced by an object from the planet. Find the gravity on Mars.
 - (c) [2] When does the rock reach its maximum height? Provide evidence.