Show all your work (numerically, algebraically, or geometrically) for the following problems. Supporting work is needed to earn credit.

1. Let $f(x)=\frac{5-2 x}{x-2}$.

The graph of $g$ is given on the right. Estimate:
(a) [1] (LimitActivity\#1) $f(-1)$.
(b) [2] (Quiz1\#1) $g(-1)+\lim _{x \rightarrow-1} g(x)$

(c) [2] (WebHW4\#10) $\lim _{x \rightarrow \infty} f(x)$
(d) $[3](\S 2.3 \# 2) \lim _{x \rightarrow 1}(f(x) g(x))$
(e) [1] (§2.5 \#20) Where $f$ is not continuous.
(f) $[2]\left(\right.$ Quiz2\#1) $g^{\prime}(-3)$
2. [5] (Quiz1\#2) Draw one graph for a function $\alpha(x)$, that satisfies all of the following:
(a) $\lim _{x \rightarrow 3} \alpha(x)=-\infty$,
(b) $\alpha$ is not continuous when $x=1$,
(c) $\alpha(-2)=1$, and
(d) $\lim _{x \rightarrow 2^{+}} \alpha(x)=-3$.
$\left.\begin{array}{|l|l|l|l|r|l|l|l|l|l|}\hline & & & & y_{4}^{5} & & & & & \\ \hline\end{array}\right)$
3. [4] (Practice Exam\#8) Let $f(x)=x^{2}-5$. Find the limit (either numerically, graphically, or algebraically), if it exists, of $\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
4. [3] (WebHW4\#9) Let $f(x)=x^{2}\left(1-\cos \left(\frac{1}{x}\right)\right)$. Find the limit (either numerically, graphically, or algebraically), if it exists, of $\lim _{x \rightarrow 0} f(x)$
5. [3] (§2.7 \#28) If the tangent line to $y=f(x)$ at $(1,3)$ passes through the point $(5,2)$ find the following.
(a) $f(1)$
(b) $f^{\prime}(1)$
6. [5] (WebHW5\#8) Draw one graph for a function $\beta(x)$, that satisfies all of the following:
(a) $\lim _{x \rightarrow \infty} \beta(x)=2$,
(b) $\beta$ is continuous
on the interval $[-4,4]$,
(c) $\beta^{\prime}(0)$ does not exist, and
(d) $\left.\frac{d}{d x} \beta\right|_{3}=1$.

7. Consider $f(x)=-e^{x}+5 x$ graphed to the right.
(a) [3] (WebHW7\#9) Find $\frac{d f}{d x}$

(b) [1] (DerivativeActivity\#5) Estimate when $f^{\prime}(x)=0$
(c) [4] (ExpActivity\#4) Find the equation of the line tangent to $f$ that is parallel to the line $y=4 x+7$
8. (StoryProblems \#6) A rock thrown upwards on planet Mars with velocity $15 \frac{\mathrm{~m}}{\mathrm{~s}}$ has a height
$h(t)=15 t-1.86 t^{2}$ meters $t$ seconds later.
(a) [2] Find a velocity function that describes the velocity of the rock at $t$ seconds.
(b) [2] Recall gravity is the constant acceleration experienced by an object from the planet. Find the gravity on Mars.
(c) [2] When does the rock reach its maximum height? Provide evidence.

