Transforming Functions

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

Let $f(x) = x^2$ for the *entirety* of this worksheet.

- 1. (a) Find f(2) and plot the point (2, f(2)) on the graph below.
 - (b) Fill out the following table & use it to sketch a graph of the function f(x).

x	$\int f(x)$		<u> </u>		
			У		
9			4.		
$\frac{-3}{2}$					
			0		
1			3	 	
-1					
			2.		
$\frac{-1}{2}$				 	
2			 	 	
			1		
0					
		2		 	<u> </u>
0			 10		<u>x</u>
2					
			4		

This graph of a quadratic polynomial is called a *parabola*.

- (c) What is the domain of f in interval notation? The range?
- 2. Define a new function g to be g(x) = f(x) + 1. Since f was defined above, we know $f(x) = x^2$, so we can write the rule of g more explicitly as $g(x) = x^2 + 1$.
 - (a) Fill out the following table & use it to sketch a graph of the function g(x).

		9		01	<i>J</i> ()	
x	g(x)			5	 	
x	g(x)			у	 	
-3				4	 	
$\frac{-3}{2}$						
4					 	
-1					 	
-1						
-1						
$\frac{-1}{2}$						
				4		
				I		
0					 	
0					 	
					 	<u> </u>
		в -2	-	1 0	 	<u>x</u>
2					 	л
4						

(b) Finish the following sentence: The graph of g looks like that of f from # 1. but shifted... 3. Define a new function k to be k(x) = f(x) + 2. Without plotting points like we did for Problems 1 and 2, can you say what the graph of k will look like? Either explain what it will look like or draw it on the above graph.

4. Suppose f is a function and a > 0. Define functions g and h by

g(x) = f(x) + a and h(x) = f(x) - a.

Complete the following sentences:

the set of axes.

- The graph of g is obtained by shifting the graph of f ...
- The graph of h is obtained by shifting the graph of f...
- 5. The graph of a piece-wise defined function labeled g is below. To be explicit, all the pieces of the dotted graph below make up the graph of q. Note that although the graph of g is disconnected, g passes the vertical line test so it is a function.

					4					
					y 7					
(a) Find the domain of g .					3					
(\cdot)					_					
					2	<u> </u>	>			
(b) Find the range of q .										
					1				••••••	,
(c) For what $value(s)$	-4	-3	-2	-1	0	1	2	3	4	_x 5
of x does $g(x) = -1$?						•				л
g(x) = g(x)				••••	- - *					
			.	****	-2					
(d) Use your answer										
from Number 4 and										
draw the graphs of										
m(x) = g(x) + 2 and										
n(x) = g(x) - 1 on										