Functions

Definition 0.1. A function f is a rule that assigns to each element x in a set A (called the *domain*) exactly one element, called f(x) in a set B (called the *range*).

Convention 0.1 (Domain). Then the domain is not explicit we use the domain convention: the domain of the function is the set of all possible inputs that the rule returns a real number.

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.
- 1. Let C be the function that takes percentages, x, and returns course marks:

$$C(x) = \begin{cases} 0 & \text{if } 0 \le x < 57\\ .1x - 5 & \text{if } 57 \le x \le 90\\ 4.0 & \text{if } 90 < x \le 100 \end{cases}$$

(a) Find C(75).

- (b) Find the percentage(s), x so that C(x) = 4.0.
- (c) Given that C is a function, what is the domain of C?
- 2. Let f be a function defined algebraically by: f(x) = 1/(1-x²)
 (a) Find f(2.2).
 - (b) Find f(a+h).
 - (c) Given that f is a function, use the domain convention to find the domain of f?

The cartesian plane uniquely identifies all the points on a plane with two coordinates called an ordered pair.

For example, the point (-2.5,4) corresponds to the point 2.5 units to the left of the *y*-axis, and 4 units above the *x*-axis.

Write down the ordered pair for the following points:

- (a) A
- (b) B
- (c) C

- $\begin{array}{c} Graphs \\ \hline (-2.5,4) \\ \bullet \\ B \\ 2 \\ 0,3) \\ \bullet \\ 0,3) \\ (3,2) \\$
- 3. Identify the ordered pair (2, -4) on the axes above.
- 4. The cartesian plane divides the plane into four quadrants. The first quadrant is the upper right, where both the x and y coordinates are positive. On the cartesian plane above, identify the 2nd and 4th quadrants.

Definition 0.2. The graph of a function f is the set of ordered pairs (x, y) where y = f(x).

5. Consider the function defined below:

x	f(x)
-4	16
-2	4
2	4

Most of the graph of f is graphed on the right. Look at the definition of a graph and finish graphing the function f.

Convention 0.2 (Vertical Line). A curve in the coordinate plane is the graph of a function if and only if no vertical line intersects the curve more than once.