Trig Practice

- 1. Let $\pi < \theta < \frac{3\pi}{2}$ and $\cos \theta = \frac{-8}{17}$.
 - (a) There are at least two ways you can find the exact value of $\sin \theta$. Employ one of these methods to find $\sin \theta$.

- (b) Find one other method you could have used to answer (a). Explain each, step by step below. (Consider asking another group since they might have employed one a method different from yours.)
- (c) Find the exact value of $\sin(\theta + \theta)$.
- (d) Find the exact value of $\cos(2\theta)$.
- 2. Let $\frac{\pi}{2} < \theta < \pi$ and $\frac{-\pi}{2} < \phi < 0$. Given that $\sin \theta = \frac{3}{4}$ and that $\cos \phi = \frac{1}{5}$, find $\cos(\theta + \phi)$.

- 3. The triangle below is a right triangle with one of the angles specified.
 - (a) Find $\cos 49^{\circ}$.
 - (b) Find $\tan 49^{\circ}$.

- 4. Find the exact values of each expression below:
 - (a) $\arcsin\frac{1}{\sqrt{2}}$.
 - (b) $\sin^{-1} \frac{-1}{\sqrt{2}}$.
 - (c) $\cos^{-1}\frac{1}{2}$.
 - (d) $\cos(\sin^{-1}\frac{4}{7})$

Note, that the last one can be completed in two different ways. Both are written up in their entirety in Example 3 on page 552 of your text. (I like the second method better.)

