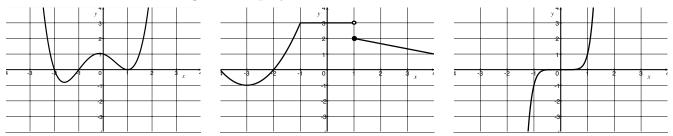
Polynomials

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

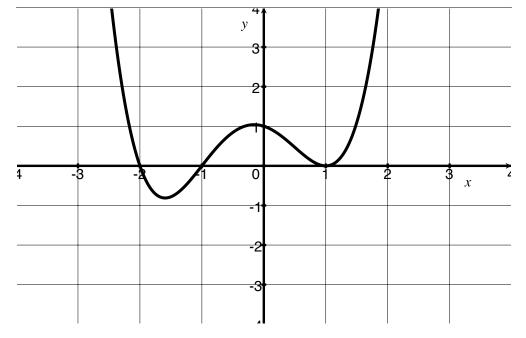
Definition 0.1. A polynomial function of degree n is a function of the form

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots a_2 x^2 + a_1 x + a_0$


where n is a nonnegative integer and the coefficients a_n , a_{n-1} , $...a_2$, a_1 , a_0 are real numbers with $a_n \neq 0$. The term $a_n x^n$ is called the *leading term*, the number a_n is called the *leading* coefficient, and a_0 is the constant term.

1. For each of the expressions below, determine if it is a polynomial and *if it is*, determine the degree:

expression	polynomial? (yes/no)	leading term (if applicable)	degree (if applicable)
$-117x^4 + 6x^{12} + x$			
$2^x - 5x^2$			
$\sqrt{5}x^2 - \pi$			
$7x^8 - 4.56x^4 - 7x^8 + x^2$			
3			
0			


Note that we have already spent a few days on first degree and second degree polynomials (i.e. lines & parabolas). We now turn to higher order polynomials.

2. Which of the following could a polynomial?

3. For each graph above that could be a polynomial, determine what degree it could have.

Definition 0.2. A number c is called a zero of a function p if p(c) = 0. This number is also called a *root* or an x-intercept.

4. Given the graph below of a polynomial of degree four, find the algebraic rule.

Definition 0.3. A rational function r is a function of the form $r(x) = \frac{f(x)}{g(x)}$ where f and g are polynomials with g not equal to the zero function.

5. Perform the division: $\frac{2x^4 + x^3 - 16x^2 + 18}{x+2}$