Graphs of Functions & Their Inverses

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.
- 1. Given a tube partway filled with liquid will have a height dependent on the temperature. That is, we have height h (in cm) as a function of Temperature T (in F).
 - (a) What does h(32) = 1 mean in physical terms?
 - (b) What does h(212) = 10 mean in physical terms?
 - (c) Describe the inverse function h^{-1} . What are the inputs? Outputs? Is there a device that we have that performs this in real life?
- 2. Let m be the function completely defined by the table:

*	$q(\star)$	*	$q^{-1}(\star)$					y_{4}^{5}					
$\frac{3}{2}$	2	$\sqrt{2}$						3					
π	$\sqrt{2}$	2						2					
				-4	-3	-2	-1	0	1	2	3	4	,5
(a)	a) Complete the table above to define q^{-1} .							-1 -2					A
(b)) Plot the graph of q on the set of axes provided.							-3 -4					
(c)	Use a differe	ent m	ark (or color)	to gra	$aph q^{-}$	⁻¹ on	the s	ame s	et of a	axes.			

- (d) Notice the point $(\frac{3}{2}, 2)$ is on the graph of q and $(2, \frac{3}{2})$ is on the graph of q^{-1} .
- (e) Find the domain of q and range of q^{-1} . Are there any similarities?

The observations you made in (e) & (f) are true in general, that is: if f is the inverse of g then: Domain of f=Range of g Range of f=Domain of g 3. Let n be the function defined by the following graph:

(a)	Will n have an inverse? Why?					y 3	•		•		
(b)	Use the observations from	5 -	4 -	3 -	2 -	1 0 -1	-	1 2	2 3	3 4	
	#2d to graph n^{-1} .					-2					

- 4. Let p be the function defined by $p(x) = x^2 1$.
 - (a) Draw the graph of p.
 - (b) Will *p* have an inverse? Why?

				^y 4				
				3				
				2				
				1				
-4	-3	-2	-1	0	1	2	3	4
				-1				
				-2				
				-3				
				-4				

(c) What might we do to try and build something "kind of like an inverse"?