Graphs of Functions \& Their Inverses

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. Given a tube partway filled with liquid will have a height dependent on the temperature. That is, we have height h (in cm) as a function of Temperature T (in F).
(a) What does $h(32)=1$ mean in physical terms?
(b) What does $h(212)=10$ mean in physical terms?
(c) Describe the inverse function h^{-1}. What are the inputs? Outputs? Is there a device that we have that performs this in real life?
2. Let m be the function completely defined bv the table:

\star	$q(\star)$	\star	$q^{-1}(\star)$
$\frac{3}{2}$	2	$\sqrt{2}$	
π	$\sqrt{2}$	2	

(a) Complete the table above to define q^{-1}.
(b) Plot the graph of q on the set of axes provided.

				$y_{4}^{5 \uparrow}$					
				3					
				2					
				1					
-4	-3	-2	-1	0	1	2	3	4	5
				-1					
				-2					
				-3					
				-4					

(c) Use a different mark (or color) to graph q^{-1} on the same set of axes.
(d) Notice the point $\left(\frac{3}{2}, 2\right)$ is on the graph of q and $\left(2, \frac{3}{2}\right)$ is on the graph of q^{-1}.
(e) Find the domain of q and range of q^{-1}. Are there any similarities?

The observations you made in (e) \& (f) are true in general, that is:
if f is the inverse of g then: Domain of $f=$ Range of $g \quad$ Range of $f=$ Domain of g
3. Let n be the function defined by the following graph:
(a) Will n have an inverse? Why?
(b) Use the observations from $\# 2$ d to graph n^{-1}.

4. Let p be the function defined by $p(x)=x^{2}-1$.
(a) Draw the graph of p.
(b) Will p have an inverse? Why?

(c) What might we do to try and build something "kind of like an inverse"?

