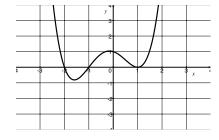
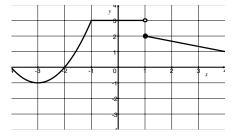
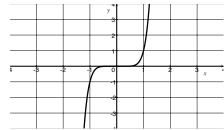
Polynomials

Definition 0.1. A polynomial function of degree n is a function of the form

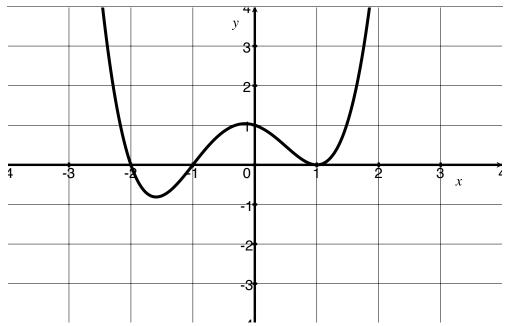

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$


where n is a nonnegative integer and the coefficients a_n , a_{n-1} , ... a_2 , a_1 , a_0 are real numbers with $a_n \neq 0$. The term $a_n x^n$ is called the *leading term*, the number a_n is called the *leading coefficient*, and a_0 is the *constant term*.


1. For each of the expressions below, determine if it is a polynomial, and if it is, determine the degree:

expression	polynomial? (ves/no)	leading term (if applicable)	degree (if applicable)
		(111 111 1)	
$117x^4 + 6x^{12} + x$			
$2^x - 5x^2$			
$\sqrt{5}x^2 - \pi$			
$7x^8 - 4.56x^4 - 7x^8 + x^2$			
3			
0			

2. Which of the following could a polynomial?



3. For each graph above that could be a polynomial, determine what degree it could have.

1

Definition 0.2. A number c is called a zero of a function p if p(c) = 0. This number is also called a root or an x-intercept.

4. Given the graph belowis of a polynomial of degree four, find the algebraic rule.

Definition 0.3. A rational function r is a function of the form $r(x) = \frac{f(x)}{g(x)}$ where f and g are polynomials with g not equal to the zero function.

5. Perform the division: $\frac{2x^4 + x^3 - 16x^2 + 18}{x+2}$

Note the above is example 1 on page 144 so you can check your work!