Polynomials

Definition 0.1. A polynomial function of degree n is a function of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{2} x^{2}+a_{1} x+a_{0}
$$

where n is a nonnegative integer and the coefficients $a_{n}, a_{n-1}, \ldots a_{2}, a_{1}, a_{0}$ are real numbers with $a_{n} \neq 0$. The term $a_{n} x^{n}$ is called the leading term, the number a_{n} is called the leading coefficient, and a_{0} is the constant term.

1. For each of the expressions below, determine if it is a polynomial, and if it is, determine the degree:

expression	polynomial? (yes/no)	leading term (if applicable)	degree (if applicable)
$117 x^{4}+6 x^{12}+x$			
$2^{x}-5 x^{2}$			
$\sqrt{5} x^{2}-\pi$			
$7 x^{8}-4.56 x^{4}-7 x^{8}+x^{2}$			
3			
0			

2. Which of the following could a polynomial?

3. For each graph above that could be a polynomial, determine what degree it could have.

Definition 0.2. A number c is called a zero of a function p if $p(c)=0$. This number is also called a root or an x-intercept.
4. Given the graph belowis of a polynomial of degree four, find the algebraic rule.

Definition 0.3. A rational function r is a function of the form $r(x)=\frac{f(x)}{g(x)}$ where f and g are polynomials with g not equal to the zero function.
5. Perform the division: $\frac{2 x^{4}+x^{3}-16 x^{2}+18}{x+2}$

Note the above is example 1 on page 144 so you can check your work!

