Logarithmic Properties

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

Let $b>0, b \neq 0$ and let v and w be positive real numbers. Let k be a real number.
0. $\log _{b}\left(b^{x}\right)=x$

$$
b^{\log _{b}(x)}=x
$$

1. $\log _{b}(v w)=\log _{b}(v)+\log _{b}(w)$
2. $\log _{b}\left(\frac{v}{w}\right)=\log _{b}(v)-\log _{b}(w)$
3. $\log _{b}\left(v^{k}\right)=k \log _{b}(v)$
4. $\log _{b}(x)=\frac{\log (x)}{\log (b)} \quad \log _{b}(x)=\frac{\ln (x)}{\ln (b)}$
5. Write the expressions as a single logarithm:

$$
\ln (x)-\ln (y)+3 \ln (z) \quad \frac{1}{3} \log (2 x+1)-2 \log \left(x^{4}-x^{2}-1\right)
$$

2. Expand the expressions:

$$
\log _{2}\left(2 x y^{3}\right)
$$

$$
\log \left(\frac{a \sqrt{c}}{b^{4}}\right)
$$

3. Given $\ln (x)=5$ and $\ln (y)=7.5$, find $\ln \left(\frac{x^{2}}{y}\right)$.
