Rational Functions

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

A rational function r is a function of the form $r(x)=\frac{f(x)}{g(x)}$ where f and g are polynomials with $g(x) \neq 0$

1. Identify which if the following are rational functions:

$$
f(x)=\frac{1}{x}-1 \quad g(x)=\sqrt[4]{x^{2}+4} \quad h(x)=\frac{x^{2}-4}{x-2}
$$

2. Identify which of the above are functions and then determine the domain.

The line $x=a$ is called a vertical asymptote of the graph of a function f if $f(x) \rightarrow \infty$ as $x \rightarrow a^{+}$or as $x \rightarrow a^{-}$or
if $f(x) \rightarrow-\infty$ as $x \rightarrow a^{+}$or as $x \rightarrow a^{-}$.

The line $y=k$ is a horizontal asymptote of the graph of a function f if $f(x) \rightarrow k$ as $x \rightarrow \infty$ or if $f(x) \rightarrow k$ as $x \rightarrow-\infty$.

If $f(x)=\frac{N(x)}{D(x)}$ is a rational function where $N(x)$ and $D(x)$ do not have a common factor and c is a real zero of $D(x)$, then the line $x=c$ is a vertical asymptote.
3. Graph

$$
\frac{2}{x-1} \quad \frac{-3 x-4}{x+2}
$$

