Rational Functions

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

A rational function r is a function of the form $r(x) = \frac{f(x)}{g(x)}$ where f and g are polynomials with $g(x) \neq 0$

1. Identify which if the following are rational functions:

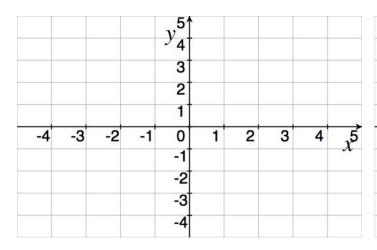
$$f(x) = \frac{1}{x} - 1$$

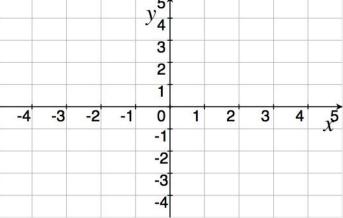
$$g(x) = \sqrt[4]{x^2 + 4}$$

$$h(x) = \frac{x^2 - 4}{x - 2}$$

2. Identify which of the above are functions and then determine the domain.

The line x=a is called a *vertical asymptote* of the graph of a function f if $f(x) \to \infty$ as $x \to a^+$ or as $x \to a^-$ or if $f(x) \to -\infty$ as $x \to a^+$ or as $x \to a^-$.


The line y = k is a horizontal asymptote of the graph of a function f if $f(x) \to k$ as $x \to \infty$ or if $f(x) \to k$ as $x \to -\infty$.


If $f(x) = \frac{N(x)}{D(x)}$ is a rational function where N(x) and D(x) do not have a common factor and c is a real zero of D(x), then the line x = c is a vertical asymptote.

3. Graph

$$\frac{2}{x-1}$$

$$\frac{-3x-4}{x+2}$$

