Inverses

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. Given a tube partway filled with liquid will have a height dependent on the temperature. That is, we have height, h, as a function of Temperature, T.
(a) What does $h(32)=1$ mean in physical terms?
(b) Describe the inverse function h^{-1} by identifying the inputs, outputs, and what it measures.
2. Let m be the function completely defined by the table:

\star	$m(\star)$	\star	$m^{-1}(\star)$
1	-3	-3	
$\frac{3}{2}$	2	2	
π	$\sqrt{2}$	$\sqrt{2}$	

(a) Complete the table above to define m^{-1}.
(b) Plot the graph of m on the set of axes provided.
(c) Use a different mark (or color) to graph m^{-1} on the same set of axes.
(d) Find the domain of m and range of m^{-1}. Are there any similarities?

The observations you made in (e) is true in general, and more:
if f is the inverse of g then: Domain of $f=$ Range of $g \quad$ Range of $f=$ Domain of g
3. Let n be the function defined by the following graph:
(a) Will n have an inverse? Why?
(b) Use the observations from $\# 1$ d to graph n^{-1}.

