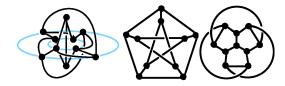
Topological Symmetry Groups Meet the Petersen Graph

Ruth Vanderpool Ph. D.

School of Interdisciplinary Arts and Sciences University of Washington, Tacoma

joint with Dr. Dwayne Chambers (UWT), Dr. Daniel Heath (PLU), Dr. Courtney Thatcher (UPS)



Outline

- Graph Automorphism Groups
- Examples & Motivation
- Topological Symmetry Groups (TSG)
- Examples and Results
- Petersen Graph meets TSG₊

ヘロト ヘアト ヘヨト ヘ

Definition

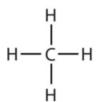
An *automorphism* of a graph Γ is a permutation of the vertices that preserve adjacency. Let $Aut(\Gamma)$ denote the group of automorphisms Γ .

イロト イポト イヨト イヨト

æ

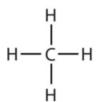
Definition

An *automorphism* of a graph Γ is a permutation of the vertices that preserve adjacency. Let $Aut(\Gamma)$ denote the group of automorphisms Γ .



Definition

An *automorphism* of a graph Γ is a permutation of the vertices that preserve adjacency. Let $Aut(\Gamma)$ denote the group of automorphisms Γ .



Definition

An *automorphism* of a graph Γ is a permutation of the vertices that preserve adjacency. Let $Aut(\Gamma)$ denote the group of automorphisms Γ .

.⊒...>

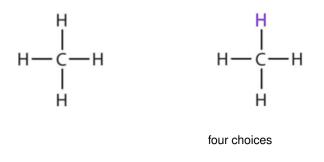
Definition

An *automorphism* of a graph Γ is a permutation of the vertices that preserve adjacency. Let $Aut(\Gamma)$ denote the group of automorphisms Γ .

.⊒...>

Definition

An *automorphism* of a graph Γ is a permutation of the vertices that preserve adjacency. Let $Aut(\Gamma)$ denote the group of automorphisms Γ .



★ E → ★ E →

Definition

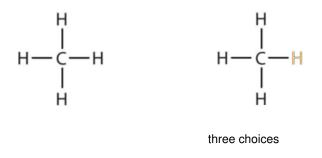
An *automorphism* of a graph Γ is a permutation of the vertices that preserve adjacency. Let $Aut(\Gamma)$ denote the group of automorphisms Γ .



.⊒...>

Definition

An *automorphism* of a graph Γ is a permutation of the vertices that preserve adjacency. Let $Aut(\Gamma)$ denote the group of automorphisms Γ .



→ E → < E →</p>

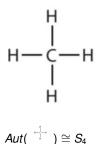
Definition

An *automorphism* of a graph Γ is a permutation of the vertices that preserve adjacency. Let $Aut(\Gamma)$ denote the group of automorphisms Γ .

size of *Aut*(^{*-¹/₄}): 4 * 3 * 2

Definition

An *automorphism* of a graph Γ is a permutation of the vertices that preserve adjacency. Let $Aut(\Gamma)$ denote the group of automorphisms Γ .



★ 문 ► ★ 문 ►

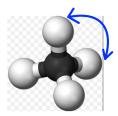
Definition

An *automorphism* of a graph Γ is a permutation of the vertices that preserve adjacency. Let $Aut(\Gamma)$ denote the group of automorphisms Γ .

Aut($\overset{\text{\tiny{H-1}}}{\downarrow}$) \cong S_{A}

Definition

An *automorphism* of a graph Γ is a permutation of the vertices that preserve adjacency. Let $Aut(\Gamma)$ denote the group of automorphisms Γ .



Aut($\overset{*-\tilde{l}-*}{l}$) \cong S₄

http://symmetry.otterbein.edu/
gallery/index.html

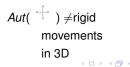
イロト イポト イヨト イヨト

Definition

An *automorphism* of a graph Γ is a permutation of the vertices that preserve adjacency. Let $Aut(\Gamma)$ denote the group of automorphisms Γ .



Aut(
$$\overset{\text{\tiny }}{\overset{\text{\tiny }}{\overset{\text{\tiny }}}}$$
) \cong S₄

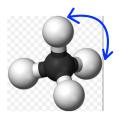


★ E → ★ E →

Ruth Vanderpool Ph. D. Topological Symmetry Groups Meet the Petersen Graph

Definition

An *automorphism* of a graph Γ is a permutation of the vertices that preserve adjacency. Let $Aut(\Gamma)$ denote the group of automorphisms Γ .



Aut($\overset{*-l}{\downarrow}$) \cong S₄ in 3D \cong A₄

Embeddings Matter!!!

イロト イポト イヨト イヨト

Definition

The *topological symmetry group* of a graph Γ embedded in S^3 is the subgroup of $Aut(\Gamma)$ induced by homeomorphisms of the graph in S^3 . It is denoted by $TSG(\Gamma)$

イロト イポト イヨト イヨト

э.

Definition

The *topological symmetry group* of a graph Γ embedded in S^3 is the subgroup of $Aut(\Gamma)$ induced by homeomorphisms of the graph in S^3 . It is denoted by $TSG(\Gamma)$

Definition

The *topological symmetry group* of a graph Γ embedded in S^3 is the subgroup of $Aut(\Gamma)$ induced by homeomorphisms of the graph in S^3 . It is denoted by $TSG(\Gamma)$

 Fix vertex and rotate opposite △.

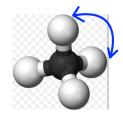
Definition

The *topological symmetry group* of a graph Γ embedded in S^3 is the subgroup of $Aut(\Gamma)$ induced by homeomorphisms of the graph in S^3 . It is denoted by $TSG(\Gamma)$

 Fix vertex and rotate opposite △.

Definition

The *topological symmetry group* of a graph Γ embedded in S^3 is the subgroup of $Aut(\Gamma)$ induced by homeomorphisms of the graph in S^3 . It is denoted by $TSG(\Gamma)$



- Fix vertex and rotate opposite △.
- Reflect over mirrors.

Topological Symmetry Group

A fix:

Definition

The *topological symmetry group* of a graph Γ embedded in S^3 is the subgroup of $Aut(\Gamma)$ induced by homeomorphisms of the graph in S^3 . It is denoted by $TSG(\Gamma)$

- Fix vertex and rotate opposite △.
- Reflect over mirrors.

 $TSG(\stackrel{\clubsuit}{\longrightarrow}) \cong S_4$ Recall we want $\cong A_4$

Definition

The orientation preserving topological symmetry group, TSG₊(Γ), is the subgroup of TSG(Γ) induced by orientation preserving homeomorphisms of (S^3 , Γ).

Note: mirror symmetry is not included!

Definition

The orientation preserving topological symmetry group, TSG₊(Γ), is the subgroup of TSG(Γ) induced by orientation preserving homeomorphisms of (S^3 , Γ).

Note: mirror symmetry is not included!

 Fix vertex and rotate opposite △.

Definition

The orientation preserving topological symmetry group, TSG₊(Γ), is the subgroup of TSG(Γ) induced by orientation preserving homeomorphisms of (S^3 , Γ).

Note: mirror symmetry is not included!

 Fix vertex and rotate opposite △.

Definition

The orientation preserving topological symmetry group, TSG₊(Γ), is the subgroup of TSG(Γ) induced by orientation preserving homeomorphisms of (S^3 , Γ).

Note: mirror symmetry is not included!

- Fix vertex and rotate opposite △.
- Reflect over mirrors.

Definition

The orientation preserving topological symmetry group, $TSG_+(\Gamma)$, is the subgroup of $TSG(\Gamma)$ induced by orientation preserving homeomorphisms of (S^3, Γ) .

Note: mirror symmetry is not included!

Fix vertex and rotate opposite \triangle .

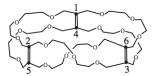
 Reflect over mirrors.

$$TSG_+(\overset{>}{>}) \cong A_4$$

Definition

The orientation preserving topological symmetry group, TSG₊(Γ), is the subgroup of TSG(Γ) induced by orientation preserving homeomorphisms of (S^3 , Γ).

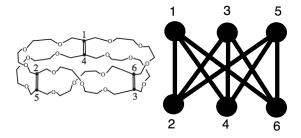
Note: mirror symmetry is not included!



Definition

The orientation preserving topological symmetry group, TSG₊(Γ), is the subgroup of TSG(Γ) induced by orientation preserving homeomorphisms of (S^3 , Γ).

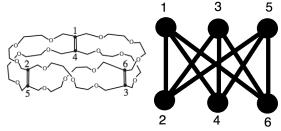
Note: mirror symmetry is not included!



Definition

The orientation preserving topological symmetry group, TSG₊(Γ), is the subgroup of TSG(Γ) induced by orientation preserving homeomorphisms of (S^3 , Γ).

Note: mirror symmetry is not included!



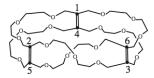
Aut() size 72

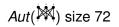
→ E → < E →</p>

Definition

The orientation preserving topological symmetry group, TSG₊(Γ), is the subgroup of TSG(Γ) induced by orientation preserving homeomorphisms of (S^3 , Γ).

Note: mirror symmetry is not included!





 Rigid motion: rotate upside down: (2,3)(5,6)(1,4)

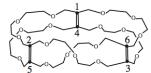
・ 同 ト ・ ヨ ト ・ ヨ ト …

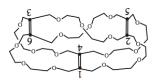
3

Definition

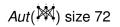
The orientation preserving topological symmetry group, TSG₊(Γ), is the subgroup of TSG(Γ) induced by orientation preserving homeomorphisms of (S^3 , Γ).

Note: mirror symmetry is not included!





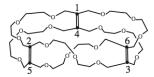
 Rigid motion: rotate upside down: (2,3)(5,6)(1,4)

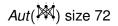


Definition

The orientation preserving topological symmetry group, TSG₊(Γ), is the subgroup of TSG(Γ) induced by orientation preserving homeomorphisms of (S^3 , Γ).

Note: mirror symmetry is not included!





- Rigid motion: rotate upside down:
- (2,3)(5,6)(1,4)
 Flexible: rotate 120° and "move the twist": (1,2,3,4,5,6)

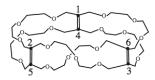
1

ヘロン 人間 とくほ とくほ とう

Definition

The orientation preserving topological symmetry group, $TSG_+(\Gamma)$, is the subgroup of $TSG(\Gamma)$ induced by orientation preserving homeomorphisms of (S^3, Γ) .

Note: mirror symmetry is not included!



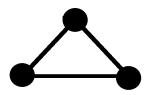
Aut(\bowtie) size 72 TSG₊(\bowtie) \cong D₆

- Rigid motion: rotate upside down:
 - (2,3)(5,6)(1,4)
- Flexible: rotate 120° and "move the twist": (1,2,3,4,5,6)

くぼう くほう くほう

1

Examples of TSG₊



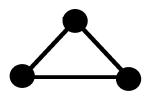
 $Aut(\stackrel{\clubsuit}{\frown}) \cong S_3$ $TSG(\stackrel{\clubsuit}{\frown}) \cong$ $TSG_+(\stackrel{\clubsuit}{\frown}) \cong$

Ruth Vanderpool Ph. D. Topological Symmetry Groups Meet the Petersen Graph

イロン 不同 とくほ とくほ とう

ъ

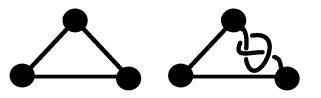
Examples of TSG₊



 $Aut(\stackrel{\frown}{\frown}) \cong S_3$ $TSG(\stackrel{\frown}{\frown}) \cong S_3$ $TSG_+(\stackrel{\frown}{\frown}) \cong S_3$

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ



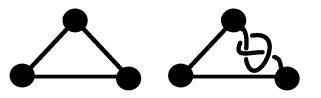
 $Aut(\stackrel{\clubsuit}{\frown}) \cong S_3$ $TSG(\stackrel{\clubsuit}{\frown}) \cong S_3$ $TSG_+(\stackrel{\clubsuit}{\frown}) \cong S_3$

 $Aut(\checkmark) \cong S_{3}$ $TSG(\checkmark) \cong$ $TSG_{+}(\checkmark) \cong$

Ruth Vanderpool Ph. D. Topological Symmetry Groups Meet the Petersen Graph

ヘロト 人間 ト ヘヨト ヘヨト

æ



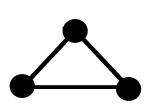
 $Aut(\stackrel{\frown}{\frown}) \cong S_3$ $TSG(\stackrel{\frown}{\frown}) \cong S_3$ $TSG_+(\stackrel{\frown}{\frown}) \cong S_3$

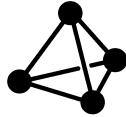
 $Aut(\checkmark) \cong S_3$ $TSG(\checkmark) \cong S_3$ $TSG_+(\checkmark) \cong S_3$

Ruth Vanderpool Ph. D. Topological Symmetry Groups Meet the Petersen Graph

ヘロト 人間 ト ヘヨト ヘヨト

æ



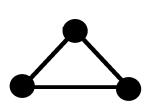


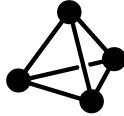
 $Aut(\stackrel{\frown}{\longrightarrow}) \cong S_3$ $TSG(\stackrel{\frown}{\longrightarrow}) \cong S_3$ $TSG_+(\stackrel{\frown}{\longrightarrow}) \cong S_3$

 $Aut(4) \cong S_4$ $TSG(4) \cong$ $TSG_{+}(4) \cong$

< 🗇 🕨

→ E > < E >



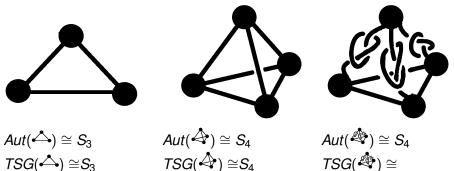


 $Aut(\stackrel{\frown}{\longrightarrow}) \cong S_3$ $TSG(\stackrel{\frown}{\longrightarrow}) \cong S_3$ $TSG_+(\stackrel{\frown}{\longrightarrow}) \cong S_3$

 $Aut(\stackrel{\clubsuit}{4}) \cong S_4$ $TSG(\stackrel{\clubsuit}{4}) \cong S_4$ $TSG_+(\stackrel{\clubsuit}{4}) \cong A_4$

< 🗇 🕨

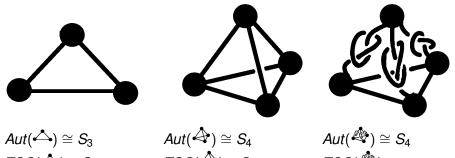
→ Ξ → < Ξ →</p>



 $TSG_{+}(4) \cong S_{3}$

 $TSG(4) \cong S_4$ $TSG_{+}(4) \cong A_{4}$ $TSG(\textcircled{P}) \cong$ $TSG_{+}(4) \cong$

ヘロト 人間 ト ヘヨト ヘヨト

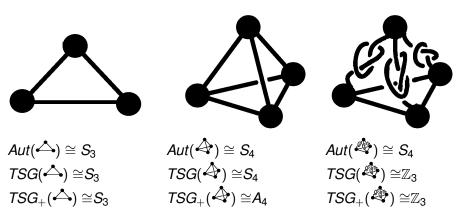


 $TSG(\stackrel{\bullet}{\hookrightarrow}) \cong S_3$ $TSG_+(\stackrel{\bullet}{\hookrightarrow}) \cong S_3$

 $Aut(\textcircled{P}) \cong S_4$ $TSG(\textcircled{P}) \cong S_4$ $TSG_+(\textcircled{P}) \cong A_4$

 $Aut(\textcircled{P}) \cong S_4$ $TSG(\textcircled{P}) \cong \mathbb{Z}_3$ $TSG_+(\textcircled{P}) \cong \mathbb{Z}_3$

ヘロト 人間 ト ヘヨト ヘヨト



Each embedding can give different groups....

イロト イポト イヨト イヨト

Graph	Polyhedral Groups	\mathbb{Z}_m and D_m	$ \begin{array}{c} \mathbb{Z}_r \times \mathbb{Z}_s \text{ and} \\ (\mathbb{Z}_r \times \mathbb{Z}_s) \rtimes \mathbb{Z}_2 \end{array} $	$\mathbb{Z}_r \times D_s$ and $D_r \times D_s$
K_2	None	\mathbb{Z}_2	None	None
K_3	None	\mathbb{Z}_3, D_3	None	None
K_4	A_4,S_4	$\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, D_2, D_3, D_4$	None	None
K_5	A_4, A_5	$\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_5, D_2, D_3, D_5$	None	None
K_6	None	$\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_5, \mathbb{Z}_6, D_2, D_3, D_5, D_6$	$ \begin{array}{c} \mathbb{Z}_3 \times \mathbb{Z}_3, \\ (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_2 \end{array} $	$ \begin{array}{c} \mathbb{Z}_3 \times D_3, \\ D_3 \times D_3 \end{array} $
K_7	None	$\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_5, \mathbb{Z}_7, D_3, D_5, D_7$	None	None
K_8	A_4,S_4	$\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_5, \mathbb{Z}_7, \mathbb{Z}_8, \ D_2, D_3, D_4, D_5, D_7, D_8$	None	None
K_9	None	$\mathbb{Z}_2,\mathbb{Z}_3,\mathbb{Z}_7,\mathbb{Z}_9,D_2,D_3,D_7,D_9$	$ \begin{array}{c} \mathbb{Z}_3 \times \mathbb{Z}_3, \\ (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_2 \end{array} $	None
K_{10}	None	$\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_5, \mathbb{Z}_7, \mathbb{Z}_9, \mathbb{Z}_{10}, \ D_2, D_3, D_5, D_7, D_9, D_{10}$	None	None
K_{11}	None	$\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_5, \mathbb{Z}_9, \mathbb{Z}_{11}, \ D_3, D_5, D_9, D_{11}$	None	None

(Flapan, Mellor, Naimi, Yoshizawa 2013)

・ 同 ト ・ ヨ ト ・ ヨ ト

If Γ is an embedding in S^3 of a graph γ , what $TSG_+(\Gamma)$ are possible?

 Classified possible groups of *TSG*₊ for complete graphs. (Flapan, Mellor, Naimi, Yoshizawa 2013)

イロト イ押ト イヨト イヨトー

If Γ is an embedding in S^3 of a graph γ , what $TSG_+(\Gamma)$ are possible?

- Classified possible groups of *TSG*₊ for complete graphs. (Flapan, Mellor, Naimi, Yoshizawa 2013)
- $TSG_+(\Gamma) \leq Aut(\gamma)$

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

If Γ is an embedding in S^3 of a graph γ , what $TSG_+(\Gamma)$ are possible?

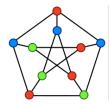
• Classified possible groups of *TSG*₊ for complete graphs. (Flapan, Mellor, Naimi, Yoshizawa 2013)

•
$$TSG_+(\Gamma) \leq Aut(\gamma)$$

Complete Graph Theorem (Flapan, Naimi and Tamvakis 2006)

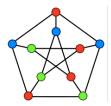
A finite group H is $TSG_+(\Gamma)$ for some embedding Γ of a complete graph in S^3 if and only if H is isomorphic to a finite cyclic group, a dihedral group, A_4 , S_4 , A_5 , or a finite subgroup of $D_m \times D_m$ for some odd m.

ヘロン 人間 とくほ とくほ とう



ヘロト ヘ回ト ヘヨト ヘヨト

æ



not complete but 3-connected

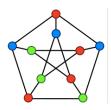
Ruth Vanderpool Ph. D. Topological Symmetry Groups Meet the Petersen Graph

< 🗇

э



- not complete but 3-connected
- "a remarkable configuration that serves as a counterexample to many optimistic predications about what might be true of graphs in general" -Donald Knuth



- not complete but 3-connected
- "a remarkable configuration that serves as a counterexample to many optimistic predications about what might be true of graphs in general" -Donald Knuth
- Inspired books!

Plan:

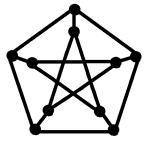
• Find Aut() and all the subgroups.

(Recall TSG_+ is a subset of Aut())

- 2 For each subgroup H of Aut(2), either
 - show there exists no embedding Γ with TSG₊(Γ) ≅ H
 - provide an embedding Γ where $TSG_+(\Gamma)\cong H$

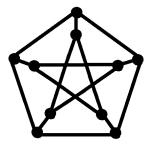
く 同 と く ヨ と く ヨ と

Step 1)



ヘロト 人間 とくほとくほとう

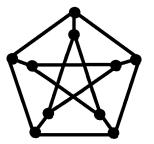
Step 1)



Aut($^{\textcircled{}}$) ... there are 10 vertices & not complete

<ロ> (四) (四) (三) (三) (三)

Step 1)



• Label each vertex with two numbers from {1,2,3,4,5}

イロト イポト イヨト イヨト

ъ

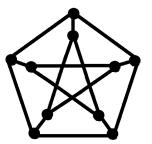


Aut(🖄)

- Label each vertex with two numbers from {1,2,3,4,5}
 - (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)

・ 回 ト ・ ヨ ト ・ ヨ ト

Step 1)

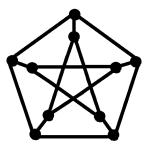


Aut(🖄)

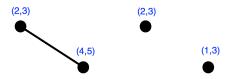
- Label each vertex with two numbers from {1,2,3,4,5}
- An edge exists between two vertices if the intersection between their two labels is empty.

ヘロト 人間 ト ヘヨト ヘヨト

Step 1)

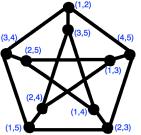


- Label each vertex with two numbers from {1,2,3,4,5}
- An edge exists between two vertices if the intersection between their two labels is empty.



イロト イポト イヨト イヨト

Step 1)

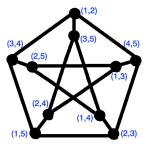


Aut(🖄)

- Label each vertex with two numbers from {1,2,3,4,5}
- An edge exists between two vertices if the intersection between their two labels is empty.
- Automorphisms are determined by permuting the numbers {1,2,3,4,5}

・ロト ・四ト ・ヨト ・ヨト ・

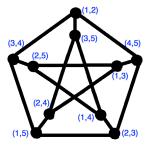
Step 1)



Aut(🖄)

- Label each vertex with two numbers from {1,2,3,4,5}
- An edge exists between two vertices if the intersection between their two labels is empty.
- Automorphisms are determined by permuting the numbers $\{1, 2, 3, 4, 5\}$ Consider $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$

・ 同 ト ・ ヨ ト ・ ヨ ト



Aut(🖄)

- Label each vertex with two numbers from {1,2,3,4,5}
- An edge exists between two vertices if the intersection between their two labels is empty.
- Automorphisms are determined by permuting the numbers $\{1, 2, 3, 4, 5\}$ Consider $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$ $(1, 2) \longrightarrow (2, 3)$ $(2, 5) \longrightarrow (1, 3)$

ヘロン 人間 とくほ とくほ とう

Step 2) Subgroups of *Aut*(⁽

ヘロア 人間 アメヨア 人口 ア

ъ

Step 2) Subgroups of Aut(🖄): S_5 A_5 S_4 A_4 D_6 D_5 D_3 D_4 \mathbb{Z}_5 \mathbb{Z}_6 \mathbb{Z}_4 \mathbb{Z}_3 \mathbb{Z}_2 $S_3 imes \mathbb{Z}_2$ $\mathbb{Z}_2 \times \mathbb{Z}_2$ $\mathbb{Z}_5 \rtimes \mathbb{Z}_4$

→ Ξ → < Ξ →</p>

ъ

Step 2) Subgroups of Aut(🖄): S_5 A_5 A_4 S_4 D_5 D_6 D_3 D_4 \mathbb{Z}_5 \mathbb{Z}_6 \mathbb{Z}_4 \mathbb{Z}_3 \mathbb{Z}_2 $S_3 imes \mathbb{Z}_2$ $\mathbb{Z}_2 \times \mathbb{Z}_2$ $\mathbb{Z}_5 \rtimes \mathbb{Z}_4$

イロト イポト イヨト イヨト

Step 2) Subgroups of Aut(🖄): S_5 A_5 S_4 A_4 D_5 D_6 D_3 D_4 \mathbb{Z}_5 \mathbb{Z}_6 \mathbb{Z}_4 \mathbb{Z}_3 \mathbb{Z}_2 $S_3 imes \mathbb{Z}_2$ $\mathbb{Z}_2 \times \mathbb{Z}_2$ $\mathbb{Z}_5 \rtimes \mathbb{Z}_4$

イロト イポト イヨト イヨト

Step 2) Subgroups of Aut(🖄): S_5 A_5 S_4 A_4 D_5 D_6 D_3 D_4 \mathbb{Z}_5 \mathbb{Z}_6 \mathbb{Z}_4 \mathbb{Z}_3 $rac{\mathbb{Z}_2}{S_3 imes \mathbb{Z}_2}$ $\mathbb{Z}_2 \times \mathbb{Z}_2$ $\mathbb{Z}_5 \rtimes \mathbb{Z}_4$

イロト イポト イヨト イヨト

- http://symmetry.otterbein.edu/gallery/index.html
- E. Flapan, R. Naimi, H. Tamvakis, Topological Symmetry Groups of Complete Graphs in the 3-Sphere, Journal of the London Mathematical Society, 73, (2006), 237-251.
- E. Flapan, B. Mellor, R. Naimi, M. Yoshizawa. Classification of Topological Symmetry Groups of K_n , arXive: http://arxiv.org/pdf/1205.1560.pdf
- D.A. Holton, J. Sheehan. The Petersen Graph, Cambridge University Press, (1993)

ヘロト ヘアト ヘビト ヘビト