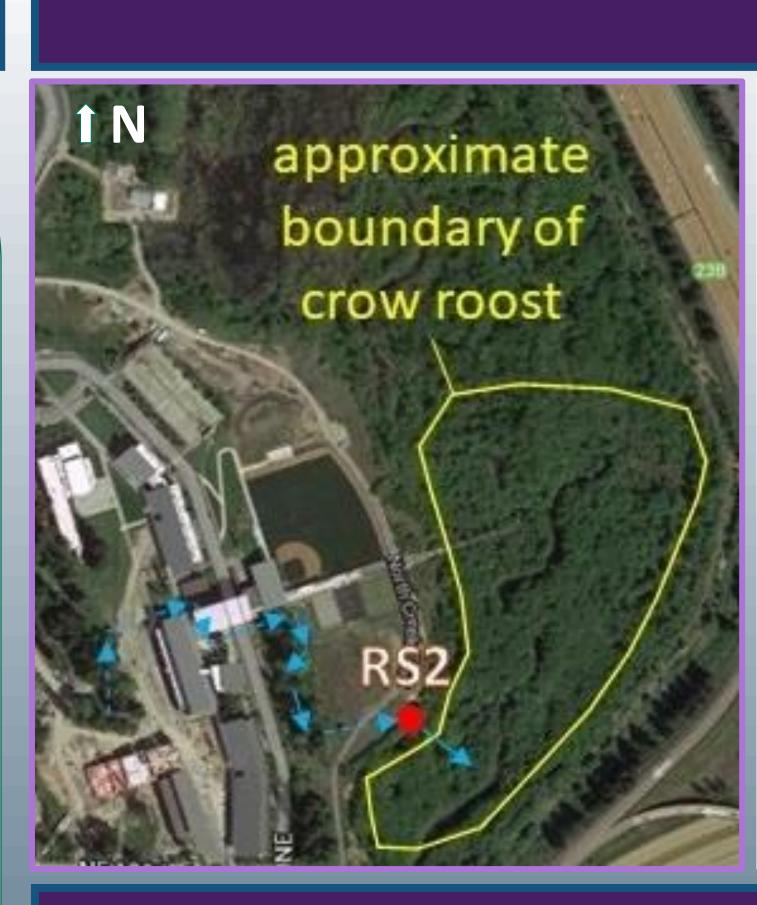
Use of the Fungus Stropharia rugosoannulata in Mycoremediation of Wetland Water Contaminated by Crow Feces

SU-1046

Abstract

Mycoremediation uses live fungus to clean-up contaminated sites. In this study, water from a wetland polluted by crow feces and known to contain antibiotic resistant (AR) bacteria was subjected to mycoremediation. Two different mushroom species were investigated initially to see if counts of the indicator bacteria *E. coli* changed when wetland water (WW) was passed through 12" columns containing mycelium-inoculated wood chips. Initial run through trials with King Stropharia (Stropharia rugosoannulata) mycelium demonstrated 2 hours of residence of water in the columns resulted in 30-50% reductions (n=2), while 24 hours residence resulted in 50-100% reduction (n=2). Blue oyster (*Pleurotus ostreatus*) mycelium reduced E. coli counts (by 50%) only in the 24 hour residence time trial. We, therefore, continued studies with King Strophoria. To quantify the effect of mycelium on *E. coli* and other bacteria, in the absence of other factors present in WW, dechlorinated tap water was spiked with either enumerated E. coli, Salmonella, or Campylobacter. Spiked water (70 CFU/100 ml) was added to the S. rugosoannulata inoculated woodchip column and 10 ml was withdrawn after retention for 3, 6, or 9 hrs in the column. Salmonella and E. coli showed 100% reduction in CFUs in 6 hrs. At 3 hours *E. coli* showed no change, and Salmonella a 22% reduction in CFUs. Campylobacter was quantified by extracting total DNA from water samples after 3, 6, and 9 hrs, and subjecting to quantitative PCR for determination of gene copy numbers (GCN), when a 32% reduction was observed after 6 hrs. When S. rugosoannulata inoculated woodchips were placed in a 55 gallon barrel out in the wetland roost area, and surface runoff was directed through the barrel with no attempt at retention, 0-30 % reduction was observed in *E. coli* CFUs in 3 different trials while Campylobacter showed 41%-47% (n=3) reduction in GCN. Extracted DNA when tested by qPCR for AR genes, showed reduction in ESBL gene, bla CTX-M, (96-98%), tetM (19-78%), tetA (5%-30%), tet B (15-46%) and strB (39-78%) genes, indicating bacteria other than E. coli that contained these genes were affected. These results demonstrate that mycoremediation has the potential to be effective in removal of certain bacteria. Methods to increase residence time are necessary to achieve an effective reduction. Notably, *E. coli* was not a good indicator for this removal.

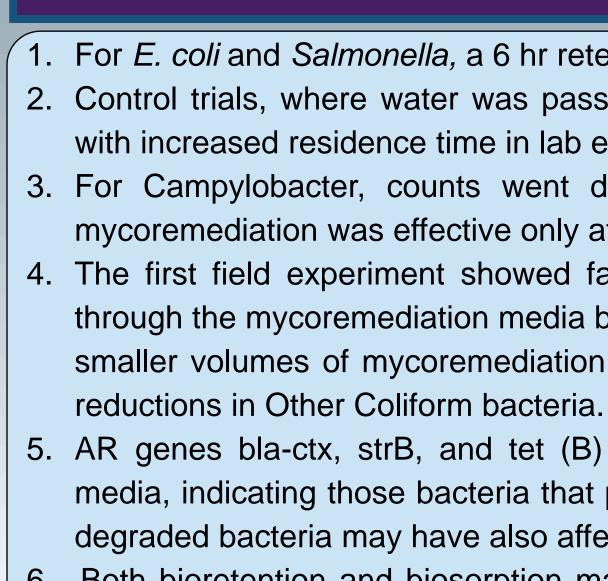
Introduction and Goals


A large amount of crow feces is deposited throughout the year on the UW Bothell/Cascadia College Campus, especially in the campus wetland which serves as a roost to over 15,000 crows in the peak winter season. We reported earlier that the wetland contains a variety of antibiotic resistant bacteria, with many of them being multidrug resistant (1). Muti-locus sequence typing of the *E. coli* and *Campylobacter* strains indicated wild birds as a primary source for the bacteria.

Many species of fungi have demonstrated the ability to reduce the toxicity of substrates and degrade recalcitrant pollutants. In addition, several species are predators of bacteria and nematodes and it has been documented that they can live using bacteria as their sole nutrient source (2). Agaricus bisporus, an edible mushroom has been shown to degrade both Gram-positive and Gram-negative bacteria by their natural release of several enzymes as well as antibiotic metabolites (3). Use of fungal mushroom for remediation of contaminated sites is called mycoremediation. Our goal was to test whether mycoremediation could reduce the bacterial load and antibiotic resistant genes in the wetlands, a method that was recently reported to be effective for reducing pathogen loads in water (4). The mushroom species King Stropharia, Stropharia rugosoannulata, was tested under laboratory conditions and in the field. Spiked water as well as polluted wetland water was examined.

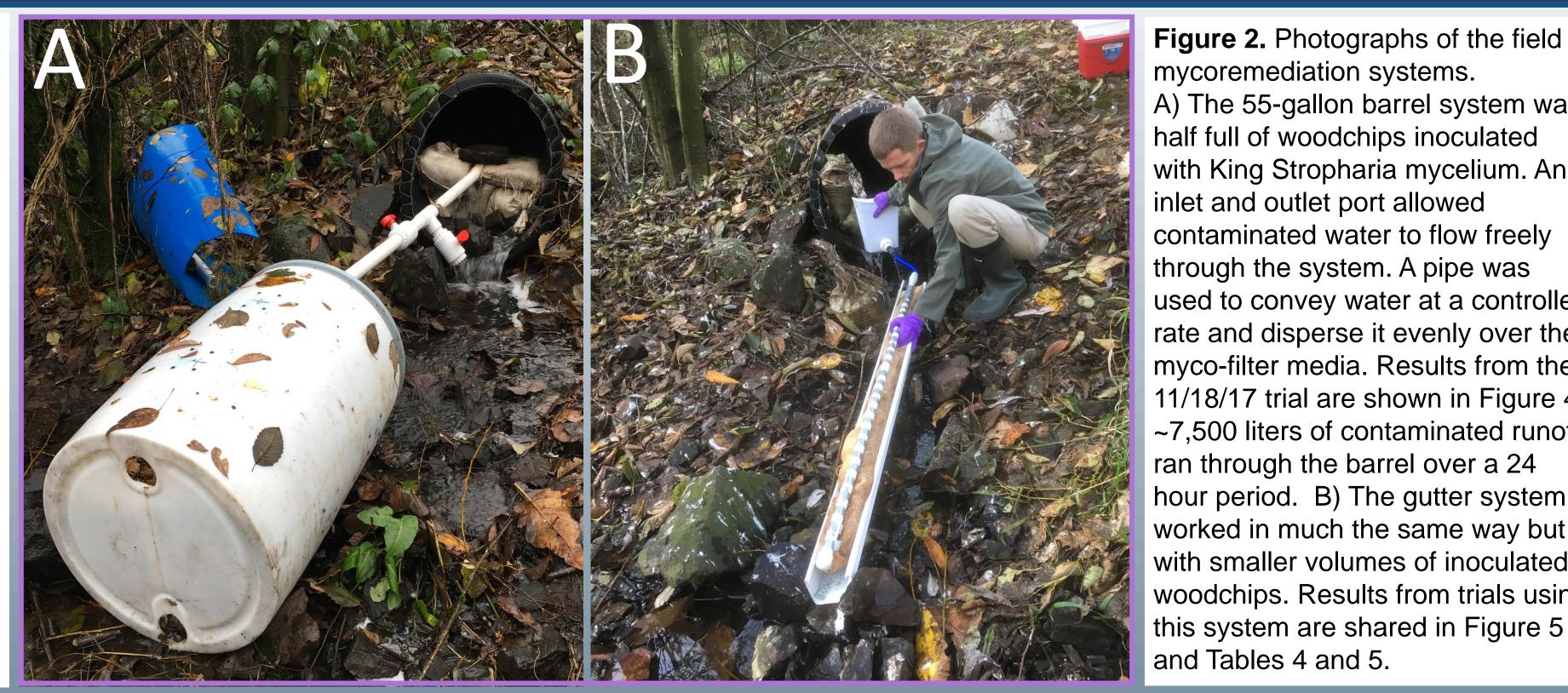
Methods

- Preparation of biofilter material: Sterile red Alder Sawdust /wood chip mix were inoculated with Pleurotus columbinus or Stropharia rugosoannulata fungus and allowed to grow at room temperature for at least two months.
- 2. Preparation of biofiltration columns: PVC plastic pipes, 1.5 inch diameter and 1-foot long, were filled with 750 grams of either myceliuminoculated, or uninoculated alderwood sawdust/woodchip mix (**Figure 3**).
- 3. Preparation of spiked synthetic stormwater: Tap water dechlorinated with sodium thiosulfate (25 mg/L) was spiked overnight with a culture of *E. coli* and Salmonella or C. jejuni (grown for 36-48 hr) at a concentration of 70 CFU/100 ml.
- 4. Collection of wetland water (WW): 500 ml of water was collected in sterile bottles, before and after passage through biofilters (Figure 2)
- 5. Biofiltration in the lab: Water was added evenly over the top surface of the biofilter column and allowed to percolate. Inflow samples, 100 ml, were collected at the beginning of each analysis. Outflow water samples (10 ml) were collected in triplicate at various time intervals.
- 6. Enumeration of E. coli and Other Coliform bacteria in Colony Forming Units (CFU): Appropriately diluted water samples were filtered onto 0.45 um filter pads. Filter pads were placed onto a petri dish containing an absorbent pad soaked with Coliscan MF medium (Hach) and incubated at 35⁰ C for 24 hrs following EPA Method 10029. Blue (*E. coli*) and red (Other Coliform) colonies were counted.
- 7. Enumeration of Salmonella: Appropriately diluted water samples were filtered onto 0.45 um filter pads. Filters were rinsed and the rinsate was placed on Xylose Lysine Deoxycholate (XLD) Agar. Black Colonies were counted.
- 8. Enumeration in Gene Copy Numbers (GCN): GCN was measured in the water samples to investigate reduction in Campylobacter and antibiotic resistance genes. Total DNA were extracted directly from 0.45 µM filters using the Water Master kit (Epicenter). qPCR was performed using the primers and probes listed in **Table 1** for Campylobacter genus, antibiotic resistance genes for tetracycline: tetA, tet B, tetM, streptomycin resistant genes strA, strB, and beta-lactamase genes bla_{CMY} and bla-_{CTX}. Controls and standards were generated for quantitative measurements of each of the genes, using PCR amplicons that were cloned into *E. coli* Cells (Topo[®] TA Cloning kit, Invitrogen) or used directly.


¹ Division of Biological Sciences, STEM, ² School of Interdisciplinary Arts & Sciences, Univ. of Washington, Bothell, WA

strA	5'- TCAATCCCGACTTCTTACCG	
	5'-CACCATGGCAAACAACCATA	
	Hex-TGCTCGACCAAGAGCGGC-BHQ-1	
strB	5' ATCGCTTTGCAGCTTTGTTT	
	5' ATGATGCAGATCGCCATGTA	
	FAM-ATGCCTCGGAACTGCGT-BHQ-2	
tetA	5'-GCTACATCCTGCTTGCCTTTC	SYBR
	5'-CATAGATCGCCGTGAAGAGG	
tetB	5'-TTGGTTAGGGGCAAGTTTTG	
	5'GTAATGGGCCAATAACACCG	SYBR
bla-CMY-2-F	5'CAGACGCGTCCTGCAACCATTAAA	
bla-CMY-2-R	5'TACGTAGCTGCCAAATCCACCAGT	SYBR
	5'GGTTTCTCTTGGATACTTAAATCAATCR	
tetM	5'CCAACCATAYAATCCTTGTTCRC	
	5' FAM-ATGCAGTTATGGARGGGATACGCTATGGY-BHQ- 1	
CTX-M consensus primer -F	5'-ATGTGCAGYACCAGTAARGTKATGGC	
CTX-M consensus primer-R	5'-ATCACKCGGRTCGCCXGG RAT-3'	
CTX-M-1 group probe	5'FAM-CAGGTGCTTATCGCTCTCGCTCTGTT-BHQ-3'	
CTX-M probe for all groups	5'-VIC-CGACAATACNGCCATGAA-MGB-NFQ-3'	
W/O CTX-M-1		
Salmonella (invA)		
invA_176F	5'-CAACGTTTCCTGCGGTACTGT	
invA_291R	5'-CCCGAACGTGGCGATAATT	
invA-Tx_208	FAM-CTCTTTCGTCTGGCATTATCGATCAGTACCA- TAMRA	
Campylobacter spp. (16S rRNA)		
Camp-F2	5'-CACGTGCTACAATGGCATAT	
CampR2	5-GGCTTCATGCTCTCGAGTT	
Camp-Probe	5-FAM-CAG AGA ACA ATC CGA ACT GGG ACA BHQ1	

Table 1.	
Camp-Probe	5-
CampR2	5
Camp-F2	5'
Campylobacter spp. (16S rRNA)	
invA-Tx_208	F# T#
INVA_291R	5



through mycelium inoculated media.

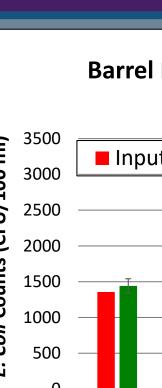

K. Sen¹, K. Maloney ², T. Berglund¹, B. Taheri ¹, R. Mayer², R. Turner²

Figure 1. Map of the campus and wetland of UW **Bothell and Cascadia** College. The red dot indicates the location of the sampling site for wetland water used in laboratory experiments as well as where runoff was directed into field mycoremediation systems (see Figure 3). Blue arrows indicate direction of water flow to and from the site. Dashed arrows indicate flow in pipes. The crow roost boundary fluctuates year to year, though the southern portion is relatively stable Aerial photo from Google

Laboratory Set-up

Primers and Probes

					-								
	Figure 3: Four filter columns on ring stands with the control		-	ation Impact on <i>E. (</i> 18/17-11/19/17	<i>Coli</i> Counts	% Reductions in Other Coliform Bacteria Counts for Gutter Mycoremediation Treatments							
	containing uninoculated wood chips. Wetland water samples, as well as dechlorinated tap water that was spiked with one of three different bacteria species, were run through columns like these. Water was retained in the columns for different lengths of time (see Table 3) before	3000 2500 2500 2000 1500 1000 1000 500 500 500 50	Output Output	Mean Reductio	R 10HR 24HR	+5 min + 15 min + 30 min $+5 min + 15 min + 30 min$ $+5 min + 10 min$ $+5 min + 15 min + 30 min$ $+5 min + 10 min$ $+ 10 min$							
×	subsamples were collected. Duplicate samples were collected at each time point.	before (input) a	and after	<i>E. coli</i> counts for (output) flowing system at set sar	through the	Figure 5 . Unlike the barrel system, the gutter system experiments fostered a decrease in Other Coliform bacteria counts instead of <i>E. coli</i> .							
	Results from Labo	ratory		Change in Car			pecies in Gene ion Experimen	e Copy Numbers ts	(GCN)				
My	coremediation Exp	eriments	;		Trial 1 (7/2 Input Output	Input	ial 2 (11/20/18) Output	Trial3 (12/1 Input Output					
Change	in <i>E. coli</i> and Salmonella Species in CF Mycoremediation Experime	ents	ratory	Campylobacter (16S rRNA)	(GCN) (GCN) 4,576.4 2,451.8	% Removal (GCN) 46.4 526.	(GCN) % Remov	val (GCN) (GCN) % 7.4 464.0 184.6	Removal 39.8				
Time (hrs)	E. coliInput (CFU)Output (CFU)% RemovalInput170170170170	Salmonella (CFU) Output (CFU) % 170	6 Removal	Salmonella (invA)				ND ND ee Figures 1 and 2	2)				
Line 10 10 10 10 10 10 10 10 10 10 10 10 10	170 350 0 170 350 0 270 350 0 275 245 10.9 295 65 77.9	170 170 150 315 165 255 220 15	0 0 0 93.2	Output = wate mycoremediat	r sampled from t	he gutter in Figu r was collected	ure 2B after pass at + 20 mins in t	sing through the the experiment or					
▲ Time (hrs)	<i>E. coli</i> Input (CFU) Output (CFU) % Removal Input	Salmonella t (CFU) Output (CFU) %	6 Removal	Change in Antibiotic Resistance Genes in Gene Copy Numbers (GCN) for Field Mycoremediation Experiments									
L L L L L L L L	445 445 0 360 415 0 505 0 100	435 435 225 175 213 0	0 22.2 100	Antibiotic Resistance Gene	Trial 1 (7/29/2 Input Output	18) Trial Input C	2 (11/20/18)	Trial 3 (12/11/ Input Output	/18) Removal				
the columns (o	indicates how long water resided in sa utput) before sampling. Longer reside	• • • •	,	tet(A) te(B)	27,685.3 2,500 3,319.4 10.76	91 >1,000 100 147,205.9	0 100 125,274 14.9	(Gen)(Gen)509,993.1347,320.2369,778.8252,070.5	31.9 31.8				
_	r reduction of pathogens.	aboro Table 2		tet(M) strA	7,132.6 5,892.2 ND ND	17.3 407 ND	90.2 77.8 ND	2,567 2,148.7 ND ND	16.3				
(GCN) for L	npylobacter Species in Gene Copy Nun aboratory Mycoremediation Experimen	indicates	how	strB bla-CMY	11,197.5 2,464.4 >1000 0	78 17,464.4 100 ND	10,708.8 39 ND ND	8,865.7 153.19 55,505 0	98.3 100				
(hrs) Input (GC	CN)Output (GCN)% RemovNDND	resided in	the	blaCTX	439,6094 172,395.3		907,925 100	ND ND	ND				
3 6 9	78 285 2518.8 1715 29 36.5	o columns k31.9 sampling.o not detect	ND is	 Table 5. Total DNA extracted from filters was tested with primers in Table 1 using qPCR. All detected antibiotic resistance genes were significantly reduced in number by passage through the mycoremediation system. 									
nclusions	5			References									
 Senst effective in reducing counts in laboratory experiments. oodchips without mycelium, showed increases of <i>E. coli</i> counts in teven in the spiked water kept on bench top. Laboratory tention. Sen, K et al. (2019). Antibiotic Resistance of <i>E. coli</i> Isolated from a Constructed Wetland Dominated by a Crow Roost, with Emphasis on ESBL and AmpC Containing <i>E. coli</i>. Frontiers in Microbiol. <u>10.3389/fmicb.2019.01034</u> Barron, GL (1992). Lignolytic and Cellulolytic Fungi as Predators and Parasites, <i>In</i> GC Carrol and DT Wicklow, Eds., <i>The Fungal Community, Its Organization and Role in the Ecosystem</i>, 2nd Ed. Marcel Dekker, NY. Fermor, TR and Wood, DA (1981). Degradation of Bacteria by <i>Agaricus bisporus</i> and Other Fungi. <i>J. Gen.</i> <i>Microbiol</i>, 126: 377-387. Taylor, AW and Stamets, PE (2014). Implementing Fungal Cultivation in Biofiltration Systems – The Past, Present, and Future of <i>Mycofiltration</i>. USDA Forest Service, Rocky Mountain Research Station. Proceedings RMRS-P-72: 23-28 													
ese gene were removal numbe	following passage through the m affected by the biofilter. Free float rs. luctions of bacteria counts in wate	ing genes from	Gra	s work was funded by UWB Facilities Services, a UW Office of Sustainability GreenSeed rant, and a King County WaterWorks Program Grant. We acknowledge Yizheng Ma for aking PCR controls and Keenan Cain, Saiwa Conejo-Morales, Alta Hunter, and Morgan Gower for their critical contributions to the field and laboratory work.									

_																	
							ation Impact on <i>E. (</i> .8/17-11/19/17	<i>Coli</i> Counts	;	% Reductions in Other Coliform Bacteria Counts for Gutter Mycoremediation Treatments							
ichless ichles		containing uninoculated wood chips. Wetland water samples, as well as dechlorinated tap water that was spiked with one of three different bacteria species, were run through columns like these. Water was retained in the columns for different lengths of time (see Table 3) before			0 <i>li</i> Counts (CFL	$ \begin{array}{c} 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 0 \\ 0 \\ 5 \\ 1 \\ 30 \\ 0 \end{array} $	Output Output	Mean Reductio	+ 5 min + 15 min + 30 min + 5 min + 15 min + 30 min -10 -10 -20 -30 -30 -30 -40 -30 -40 -50 -40 -50 -40 -50 -40 -50 -40 -70 -70 -80 -90 -70 -80 -90 -70 -80 -90 -70 -80 -90 -70 -80 -90 -70 -80 -90 -70 -70 -70 -70 -70 -70 -70 -70 -70 -7								
1 *		subsamples N Duplicate san collected at e	nples were	e	befo	re (input) ar	nd after (<i>E. coli</i> counts for (output) flowing system at set sar	Figure 5 . Unlike the barrel system, the gutter system experiments fostered a decrease in Other Coliform bacteria counts instead of <i>E. coli</i> .								
Results from Laboratory								Change in Campylobacter and Salmonella Species in Gene Copy Numbers (GCN) for Field Mycoremediation Experiments									
	My	coreme	diatic	on Exp	erin	nents			Tr Input (GCN)	ial 1 (7/2 Output (GCN)	9/18) <mark>% Remov</mark>	Input		20/18) <mark>% Remov</mark>	Input	ial3 (12/11 Output (GCN) %	
	Change	•	coremediati	pecies in CF ion Experime	ents	al for Labora	atory	Campylobacter (16S rRNA)	(den) 4,576.4						. ,		39.8
	Time (hrs)	ime (hrs) Input (CFU) Output (CFU) <mark>% Removal</mark> Input (C 0 170					Removal	Salmonella (invA)NDNDNDNDNDTable 4. Input = water sampled from the runoff pipe at RS2 (see Figures 1 and 2).).
	0.25 1 2 16	170 270 275 295	350 350 245 65	0 0 10.9 77.9	170 150 165 220	170 315 255 15	0 0 0 93.2	Output = wate mycoremediat 7/29/18 and at	r sampleo ion wattl	d from tl e. Wate	ne gutt r was c	er in Fig ollectec	ure 2B af l at + 20 n	ter pass nins in t	ing thro he expe	ugh the	
		Ε.	coli	_	S	almonella		Change in Antibiotic Resistance Genes in Gene Copy Numbers (GCN) for									
l	C Time (hrs) 0 3 6	mile (ms) mpat (cr o) output (cr o) input (cr o) output (cr o) in				Removal 0 22.2 100	Field Mycoremediation Experiments Field Mycoremediation Experiments Trial 1 (7/29/18) Trial 2 (11/20/18) Trial 3 (12/1 Antibiotic Input Output Input Output Input Output Input Output Resistance Gene (GCN) % Removal (GCN) % Removal (GCN) % Removal (GCN) % GCN)								Output	L8) Removal	
1	the columns (o	indicates how l output) before s er reduction of p	ampling. Lo	onger reside	•	`		tet(A) te(B) tet(M)	27,685.3 3,319.4	(GCN) % 2,500 10.76 5,892.2	Removal 91 100 17.3	(GCN) >1,000 147,205.9 407	(GCN) % 0 125,274 90.2		(GCN) 509,993.1 369,778.8 2,567	, , , , , , , , , , , , , , , , , , ,	31.9 31.8 16.3
ľ	Change in Ca	mpylobacter Spe _aboratory Myco	ecies in Ger	ne Copy Nun		Table 3. ⊤		strA strB	ND	ND 2,464.4	78	ND 17,464.4	ND 10,708.8	39	ND 8,865.7	ND 153.19	98.3
	Time Input (G		t (GCN)	Remov		indicates he long water	-	bla-CMY blaCTX	>1000	0	100	ND	ND	ND	55,505	0	100
	(hrs) 0 3 6 9	ND 78 2518.8 29	ND 285 1715 36.5		0 31.9 0	resided in t columns be sampling. N not detected	efore ND is	blaCTX 439,6094 172,395.3 96 1.5E +08 907,925 100 ND ND ND ND Table 5. Total DNA extracted from filters was tested with primers in Table 1 using qPCR. All detected antibiotic resistance genes were significantly reduced in number by passage through the mycoremediation system. ND ND ND ND ND									
n	clusion							References									
 Sen, K et al. (2019). Antibiotic Resistance of <i>E. coli</i> Isolated from a Constructed Wetland Dominated by a Crow Roost, with Emphasis on ESBL and AmpC Containing <i>E. coli</i>. <i>Frontiers in Microbiol</i>. <u>10.3389/fmicb.2019.01034</u> Barron, GL (1992). Lignolytic and Cellulolytic Fungi as Predators and Parasites, <i>In</i> GC Carrol and DT Wicklow, Eds., <i>The Fungal Community, Its Organization and Role in the Ecosystem,</i> 2nd Ed. Marcel Dekker, NY. Fermor, TR and Wood, DA (1981). Degradation of Bacteria by <i>Agaricus bisporus</i> and Other Fungi. <i>J. Gen. Microbiol,</i> 126: 377-387. Taylor, AW and Stamets, PE (2014). Implementing Fungal Cultivation in Biofiltration Systems – The Past, Present, and Future of <i>Mycofiltration.</i> USDA Forest Service, Rocky Mountain Research Station. Proceedings RMRS-P-72: 23-28 																	
stently reduced following passage through the mycoremediation nese gene were affected by the biofilter. Free floating genes from I removal numbers.									Acknowledgements work was funded by UWB Facilities Services, a UW Office of Sustainability GreenSeed nt, and a King County WaterWorks Program Grant. We acknowledge Yizheng Ma for ing PCR controls and Keenan Cain, Saiwa Conejo-Morales, Alta Hunter, and Morgan Gower for their critical contributions to the field and laboratory work.								

Coi

1. For E. coli and Salmonella, a 6 hr retention time was 2. Control trials, where water was passed through wo with increased residence time in lab experiments.

3. For Campylobacter, counts went down overnigh mycoremediation was effective only after 6 hrs of ret

4. The first field experiment showed fairly consistent through the mycoremediation media between 1 and smaller volumes of mycoremediation media and br

5. AR genes bla-ctx, strB, and tet (B) were consister media, indicating those bacteria that possessed the degraded bacteria may have also affected the final

6. Both bioretention and biosorption may have been a factor in reductions of bacteria counts in water after passing

ksen@uw.edu 425-352-3360

Figure 2. Photographs of the field mycoremediation systems. A) The 55-gallon barrel system was half full of woodchips inoculated with King Stropharia mycelium. An inlet and outlet port allowed contaminated water to flow freely through the system. A pipe was used to convey water at a controlled rate and disperse it evenly over the myco-filter media. Results from the 11/18/17 trial are shown in Figure 4. ~7.500 liters of contaminated runoff ran through the barrel over a 24 hour period. B) The gutter system worked in much the same way but with smaller volumes of inoculated woodchips. Results from trials using

and Tables 4 and 5.

Results from Field Mycoremediation Experiments