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Abstract This paper uses spaceborne lidar data to study how near-cloud aerosol statistics of attenuated
backscatter depend on cloud fraction. The results for a large region around the Azores show that
(1) far-from-cloud aerosol statistics are dominated by samples from scenes with lower cloud fractions,
while near-cloud aerosol statistics are dominated by samples from scenes with higher cloud fractions;
(2) near-cloud enhancements of attenuated backscatter occur for any cloud fraction but are most pronounced
for higher cloud fractions; (3) the difference in the enhancements for different cloud fractions is most significant
within 5 km from clouds; (4) near-cloud enhancements can be well approximated by logarithmic functions
of cloud fraction and distance to clouds. These findings demonstrate that if variability in cloud fraction across
the scenes used for composite aerosol statistics is not considered, a sampling artifact will affect these
statistics calculated as a function of distance to clouds. For the Azores region data set examined here, this
artifact occurs mostly within 5 km from clouds and exaggerates the near-cloud enhancements of lidar
backscatter and color ratio by about 30%. This shows that for accurate characterization of the changes in
aerosol properties with distance to clouds, it is important to account for the impact of changes in cloud fraction.

1. Introduction

Aerosol-cloud interactions can induce significant changes in the optical and microphysical properties of
clouds and aerosols and are therefore highly important for understanding solar radiative forcing and
climate change. In examining aerosol-cloud interactions, many observational studies have found positive
correlations between cloud fraction and Aerosol Optical Depth (AOD), or solar reflectance, and/or lidar
backscatter [e.g., Ignatov et al., 2005; Loeb and Manalo-Smith, 2005;Matheson et al., 2005; Zhang et al., 2005;
Kaufman and Koren, 2006; Koren et al., 2007; Loeb and Schuster, 2008; Su et al., 2008; Redemann et al., 2009;
Chand et al., 2012]. Other studies found that clear areas near clouds have higher lidar backscatter (or solar
reflectance) values than areas far from clouds do, thus forming areas called “twilight zone” or “transition zone”
[e.g., Platt and Gambling, 1971; Lu et al., 2003; Charlson et al., 2007; Koren et al., 2007]. Such zones are
characterized by a gradual increase in the reflected signal as the measurements approach a cloud [Tackett
and Girolamo, 2009; Várnai and Marshak, 2011, 2012; Yang et al., 2012; Várnai et al., 2013]. Physically, such
zones are thought to contain aerosols swollen in the humid air that surrounds clouds, aerosols generated or
processed in the clouds, and undetected small and/or thin cloud pieces [e.g., Hoppel et al., 1986; Clarke et al.,
2002; Su et al., 2008; Koren et al., 2008, 2009; Bar-Or et al., 2010, 2011, 2012].

In addition, it was found that instrumental limitations [Qiu et al., 2000], cloud contamination [e.g., Zhang et al.,
2005], and three-dimensional (3-D) solar radiative processes [e.g., Wen et al., 2007; Marshak et al., 2008;
Kassianov and Ovtchinnikov, 2008] in cloudy environments can also contribute significantly to the apparent
enhancements observed near clouds. Analysis of the contributing factors in the near-cloud enhancements
is needed to help better understand both cloud-aerosol interactions and the direct radiative effect of aerosols
[e.g., Várnai et al., 2013].

Studies of aerosol near-cloud behavior often involve statistics taken from large data sets that cover large
areas and a long time span. For example, in a global yearlong data set, Várnai and Marshak [2012] found an
anticorrelation between median distance to cloud and cloud fraction, though they also noted that cloud
structure also influences the distribution of distance to cloud. One may argue that far-from-clouds clear-sky
regions can occur only in areas with low cloud fractions while the statistics of close-to-clouds regions are
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likely to be strongly influenced by areas with higher cloud fractions. Therefore, AOD (as well as reflectance
or lidar backscatter) may be higher close to clouds than far from clouds simply because of the well-
documented positive correlations between AOD and cloud fraction [e.g., Loeb and Manalo-Smith, 2005;
Chand et al., 2012]. As a result, the statistically increasing scattering enhancement as clouds are approached
could potentially merely be a consequence of these correlations, rather than reflecting any physical changes
near clouds.

The above argument can be illustrated through a simple example. We consider a data set in which aerosol
samples are obtained in three regions with different cloud fractions A1, A2, and A3, and we assume that
A3> A2> A1 (Figure 1a). Let us further assume that clear-sky AODs in each region remain constant with
respect to distance to clouds and have values of τ1, τ2, and τ3 for each of the regions with A1, A2, and A3,
respectively (Figure 1b). The assumption that τ3> τ2> τ1 while A3>A2>A1 is well consistent with the
observed correlation between AOD and cloud coverage.

Combining data from all regions together, the average AOD (symbol τ) at distance x from clouds is the
weighted sum of τ(x, A) over all cloud fraction (A) values, i.e.,

τ xð Þ ¼ ∫
1

0
τ x;Að Þn x;Að ÞdA: (1)

Here the weight n(x, A) is the ratio of the number of samples with A at x to the total number of all samples

with all As at x, and so ∫
1

0
n x; Að ÞdA ¼ 1. As Várnai and Marshak [2012] found some anticorrelation between

distance to cloud and cloud fraction, we can expect to find progressively more samples with high cloud
fraction as we approach clouds. Therefore, in this simple example, it is plausible to assume that weights of
given cloud fractions vary as shown schematically in Figure 1a. In Figure 1a n(x, A1) is an increasing function of
x while n(x, A3) is a decreasing one. Because low cloud fraction is associated with low AOD, the changes
in the sample weights lead to an apparent enhancement of τ closer to clouds (black curve in Figure 1b). This
reveals that statistical results may behave differently from our initial assumption of distance-independent,
constant AOD for individual scenes. In the following, we call the apparent enhancement described above
as sampling effect/sampling artifact for the reason that it is induced by variation of sampling weights of cloud
fractions, instead of the variation of near-cloud aerosol properties.

This raises the questions: What is the true statistical near-cloud behavior? Do the enhancements observed in
earlier studies come entirely from this effect? To address these questions, we first analyze the samples’ cloud
fraction-dependent features as a function of distance to cloud using a CALIPSO data set over the Atlantic
Ocean. Next, we examine the near-cloud behaviors of aerosols for various cloud fractions. Finally, we
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Figure 1. Schematic illustration of the potential effect of sampling on the averaged aerosol optical thickness (AOT) as a function
of distance to cloud, x. (a) Probability density function n(x,A) [∫n(x, A)dA= 1] for three cloud fractions A1< A2< A3. (b) Average
AOT, [τ xð Þ ¼ ∫τ x; Að Þn x; Að ÞdA] assuming AOT for each cloud fraction is constant: τ(x,A1) = 0.1, τ(x,A2) = 0.2, τ(x,A3) = 0.3.
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introduce a method for studying near-cloud aerosol properties using satellite observations and estimate the
fraction of enhancements due to the statistical cloud fraction-sampling effect.

2. Data and Methodology

In this study we analyze data from a large region over the Atlantic Ocean near the Azores (25°–45°N, 20°–37°W).
This region is well suited for this study because it is rich in low-level marine boundary layer clouds types
and cloud fractions and is ideal site for studying interactions between cloud, aerosol, and precipitation
[e.g., Wood, 2009; Rémillard et al., 2012; Dong et al., 2014; Wood et al., 2014].

We examine this region using data from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization)
lidar on board the CALIPSO (Cloud Aerosol-Lidar and Infrared Path finder Satellite Observations) satellite,
which was launched in 2006 [e.g., Winker et al., 2007]. CALIOP provides range-resolved cloud and aerosol
data along its track, including attenuated total lidar backscatter at 532 nm and 1064nm and perpendicularly
polarized lidar backscatter at 532 nm. CALIOP operational algorithms (currently in version 3) use this data
along with altitude and latitude information for feature identification and classification [Liu et al., 2009;
Omar et al., 2009].

Similarly to earlier studies [e.g., Várnai and Marshak, 2011, 2012; Yang et al., 2012], we reduce the noise due to
background illumination and sampling by using only nighttime data and by combining observations from a
three year period (2006.6.21-2009.6.21) over the entire study region.

In this study, we examine the 532 nm attenuated total lidar backscatter coefficient β (the ratio of vertically
integrated backscatter within an aerosol layer over layer thickness) and the attenuated total color ratio χ
(ratio of total backscatter at 1064 nm over that at 532 nm) at a horizontal resolution of 333m. The backscatter
coefficient is used for examining variations in the optical density of aerosol layers, while the color ratio is
related to changes in the size of spherical particles [Liu et al., 2000, 2004; Cattrall et al., 2005; Omar et al., 2005].
To be consistent with earlier studies [Várnai and Marshak, 2011, 2012; Yang et al., 2012], we examine aerosol
properties in cloud-free columns as a function of distance to the nearest cloud edge—the closest point
where a cloud is detected in the 0.333 km or 1 km cloud mask. While the 5 km resolution cloud mask is
not used for defining the nearest cloud edge, aerosol data are used only when the 5 km cloud mask
(most sensitive to thin clouds) also indicates a fully cloud-free column at all altitudes. Also, we use aerosol
data only if the nearest cloud is of liquid water phase with a cloud top below 3 km and if the top of the
aerosol layer is below 5 km. Moreover, we exclude data from clear-sky segments shorter than 3 km in
order to reduce the amount of data possibly contaminated by undetected clouds. To further reduce the
influence from undetected clouds, aerosol data are used only if a particle layer is identified as an aerosol
layer with high confidence [Liu et al., 2009], with CAD (cloud-aerosol discrimination) values larger than
70. (Additional tests showed that using higher CAD thresholds does not change the basic observed behaviors
and our conclusions.)

In this paper, we define cloud fraction as the ratio of the number of 0.333 km cloudy profiles (with clouds in
either the 0.333 km or 1 km resolution cloudmask) to the total number of 0.333 km profiles within 15 km from
it. Since CALIOP can only detect clouds and aerosols along the 1-D track, clouds off the track are unknown
and can cause uncertainties in estimating the true distance to clouds and cloud fraction [e.g., Astin et al.,
2001]. However, the cloud fractions estimated based on 1-D tracks and 2-D images should be statistically
similar; as a result, the cloud fraction-dependent features found in 1-D can be a good approximation of the
features in 2-D. Finally, Várnai and Marshak [2012] found that near-cloud behaviors are highly correlated
when considering 1-D or 2-D distances to clouds.

3. Results

The distribution of the total number of aerosol samples N(x, A) as a function of distance to clouds x and
cloud fraction A is shown in Figure 2. Figure 2a indicates that the sample number distributions vary
with cloud fraction in a way that depends on how close the samples are to clouds: At farther distances,
samples are distributed over a narrow range of small cloud fractions (see the purple curve); while at closer
distances, samples are from a much wider cloud fraction range and mostly from higher cloud fractions of
0.3–0.5 (e.g., the red curve). This behavior is consistent with the assumptions used in the introduction
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(Figure 1a). Figure 2b shows the way the sample fraction (n(x, A) in equation (1)) changes with distance to
cloud for various ranges of cloud fraction. The plot shows that for low cloud fractions (red curve) sample
fractions increase dramatically with distance, while for high cloud fractions (e.g., black curve) sample
fractions decrease with distance. We note that this behavior is qualitatively similar to the one assumed in
Figure 1a. These features arise from the fact that far-from-cloud samples are more easily found in areas of
smaller cloud fractions than larger ones.

The near-cloud properties observed at specific cloud fractions are shown in Figure 3. The most important
findings are as follows. (1) The enhancements of near-cloud backscatter and color ratio occur for all cloud
fractions and are most pronounced for higher cloud fraction values, as shown in Figures 3a and 3b. This
feature indicates that the mechanisms causing the near-cloud enhancements (such as aerosol humidification
and cloud contamination) are present in all clear-sky conditions but are most prominent in high cloud
fraction cases. (2) At a given distance away from cloud, both the attenuated total backscatter coefficient
β and color ratio χ are increasing functions of cloud fraction and are more sensitive to cloud fraction at closer
distances (Figures 3c and 3d). In contrast, the positive correlations of backscatter coefficient and color ratio
with cloud fraction are not significant at larger distances to clouds (> ~5 km). This indicates that clouds
have a strong influence on their surroundings, but the range of influence may be limited to about 5 km, at
least for this data set. (3) As indicated by the high regression coefficients R, the enhancements in near-cloud
aerosol properties can be well approximated by the logarithmic functions, i.e.,

β x; Að Þ ≈ a1 Að Þ � b1 Að Þ· log xð Þ (2)

and

χ x;Að Þ ≈ a2 Að Þ � b2 Að Þ· log xð Þ (3)

where, in this study, A ranges from 0.1 to 1 and x is the dimensionless distance to clouds normalized by
the resolution of 1 km, with x ≥ 1. Let us analyze the trend in coefficients a and b in the logarithmic
approximation of the attenuated total backscatter coefficient β(x, A) (see equation (2) and Figures 3a
and 3c). (The coefficients for the attenuated total color ratio χ(x, A) behave similarly (Figures 3b and 3d)).
First, a1(A) = β(x= 1,A) describes the near-cloud behavior while b1(A) is the degree of dependence on the
distance to clouds; both are functions of cloud fraction A (Figure 3a). As expected, both a1 and b1 are
increasing functions of A, i.e., the larger A the bigger β near clouds and the stronger changes in β with the
distance from cloud. Note that for the smallest cloud fraction (red curve), a1 and b1 are both the smallest
and show the weakest dependence on distance from cloud.

Figure 3c shows that the attenuated backscatter β(x, A) as a function of A can be also well approximated by
a logarithmic function,

β x;Að Þ ≈ a3 xð Þ � b3 xð Þ· log Að Þj j (4)
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Figure 2. Sample numbers used in the analysis. (a) Total number of samples, N(x,A), for each distance to cloud x, as a
function of cloud fraction A. (b) Probability density function n(x,A) = N(x,A)/∫N(x, A)dA as a function of distance to cloud.
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for x ≥ 1 and A ≥ 0.1. Here coefficient a3(x), as a function of x, is equal to the asymptotic value of β if A= 1 and
b3(x) describes the degree of cloud fraction dependence for each distance from cloud. We can see that
both functions a3 and b3 are decreasing; in other words, the bigger the distance from cloud the weaker
dependence of aerosol properties on cloud fraction (compare red and magenta curves in Figures 3c or 3d).
An approximation similar to equation (4) is also valid for the attenuated total color ratio χ (see Figure 3d).

The presence of near-cloud enhancements for all cloud fractions in Figure 3 confirm that the enhancement in
composite statistics comes, at least in part, from physical changes near clouds. Meanwhile, the dependence
of n(x, A) on x in Figure 2 indicates that a sampling artifact is also likely to affect the composite statistics
(see Figure 1).

In order to estimate the impact of sampling effects on the composite statistics, we resample our data to
make the distribution of cloud fraction (n(x,A)) used in equation (1) the same for any distance to clouds. We
specify this distribution to be the one observed at distance x0, a large distance beyondwhich aerosol properties
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Figure 3. Medians of attenuated total backscatter coefficient β and total color ratio χ as a function of normalized
distance to cloud x and cloud fraction A. (a) Median attenuated total backscatter coefficient versus normalized distance
to cloud and a log fit: β(x,A) ≈ a1(A)� b1(A)·log(x) with x ≥ 1, for four intervals of cloud fraction (0.0–0.1, 0.2–0.3, 0.4–0.5,
and 0.6–0.7) and the average one (0.0–1.0). Note that the distance to cloud is normalized by resolution of 1 km and both
a1(A) = β(x = 1,A) and b1(A) are increasing functions of A. (b) The same as in Figure 3a but for attenuated total color
ratio. Log fits are χ(x,A)≈ a2(A)� b2(A)·log(x) with x ≥ 1; a2(A) = χ(x= 1,A). (c) Median attenuated total backscatter coefficient
versus cloud fraction and a log fit: β(x,A) ≈ a3(x)� b3(x)·|log(A)| with 1 ≥ A ≥0.1 for five distances to cloud ranging from
1 km to 5 km. Note that both a3(x) = β(x,A = 1) and b3(A) are decreasing functions of x. (d) The same as in Figure 3c but
for total color ratio. Log fits are χ(x, A) ≈ a4(x)� b4(x)·|log(A)| with 1 ≥ A ≥0.1; a4(x) = χ(x,A= 1). The curves in Figures 3a–3d have
been truncated for large distances to clouds and/or large cloud fractions because the sample numbers after the
truncated point are either zero or extremely low leading to large uncertainties.
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vary little with cloud fraction. In this study we use x0 = 10 km (Figure 3). This resampling will make the
distribution of cloud fraction to be n(x,A) = n(x0,A) for any x ≥ 1, thus removing the impacts on composite
statistics combining data for all cloud fractions.

Figure 4 compares the β and χ values with and without applying the proposed resampling method. It shows
that near-cloud enhancements become significantly smaller with the resampling (black curves) than they
were without the resampling (red curves), and that the differences are mostly within 5 km from clouds. Here
the near-cloud enhancement of β and χ is defined as the relative increase over the value at 20 km beyond
which aerosols are less affected by clouds [e.g., Twohy et al., 2009]. The inserts show that the fraction of
enhancement by the sampling effect also varies with distance to clouds; for this data set it can reach 30% at
the distance of 1 km.

It should be noted that the sampling effect depends on location and season. The example technique of using
a preselected cloud fraction distribution at a certain far-from-cloud distance (x0) is not the only method
for removing the artifacts caused by near-cloud variations in cloud fraction distributions. The key here is to
use identical cloud fraction distributions at all distances, so that the sampling artifact caused by variations in
cloud fraction distributions in equation (1) can be removed.

4. Concluding Remarks

Several studies [e.g., Tackett and Girolamo, 2009; Várnai and Marshak, 2011; Yang et al., 2012; Várnai et al.,
2013] have found that aerosol properties vary systematically with distance to the nearest cloud, pointing to
the presence of a wide transition zone around clouds. In this paper we examine whether the apparent
enhancement of aerosol backscatter and color ratio observed near clouds is indeed a sign of a such transition
zone or it is just a manifestation of the well-documented correlation between aerosol properties and
cloud fraction [e.g., Loeb and Manalo-Smith, 2005; Chand et al., 2012]. This question arises because clear-sky
sample populations used in the statistical analysis can be different near clouds and far from clouds: Near-
cloud samples are more likely to come from areas/times with higher cloud fractions, while far-from-cloud
samples are more likely to come from areas/times of lower cloud fractions.

To answer this question, we analyzed the cloud fraction dependence of near-cloud sample numbers and
aerosol optical properties using CALIOP nighttime data from a wide region around the Azores. The results
indicate that as expected, near-cloud aerosol statistics are dominated by data for higher cloud fractions, while
far-from-cloud statistics are dominated by data for lower cloud fractions. At the same time, however,
near-cloud enhancements remain large even if we use samples only from a narrow cloud fraction interval,

Figure 4. Medians of attenuated total backscatter coefficient and color ratio as a function of distance to cloud without and with removing the sampling effect. Inserts
show sampling effect fraction (1-with/without). (a) Median attenuated total backscatter coefficient. (b) Median attenuated total color ratio.
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especially if this cloud fraction is high. In addition, it is found that the cloud fraction dependence of
near-cloud behaviors can be well approximated by logarithmic functions (equations (2)–(4)).

These findings indicate that near-cloud aerosol statistics are affected by cloud fraction distributions changing
with distance to cloud. The effects can be removed if, for all distances to cloud, we resample the data to the
same cloud fraction distribution. When resampling our entire data set to the cloud fraction distribution
observed at 10 km away from clouds, the near-cloud enhancement of our original data set was reduced by up
to 30%, with most reduction occurring within 5 km from clouds.

This result suggests that systematic changes in the near-cloud transition zone are real but somewhat weaker
than previously reported and that understanding the statistics of near-cloud aerosol properties requires a
consideration of changes in cloud fraction.
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