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ABSTRACT

Decreases in subtropical low cloud cover (LCC) occur in climate model simulations of global warming. In

this study 8-day-averaged observations from theModerate Resolution Imaging Spectroradiometer (MODIS)

and the Atmospheric Infrared Sounder (AIRS) spanning 2002–14 are combined with European Centre for

Medium-RangeWeather Forecasts (ECMWF) interim reanalysis to compute the dependence of the observed

variability of LCCon various predictor variables. Large-scale thermodynamic and dynamic predictors of LCC

are selected based on insight from large-eddy simulations (LESs) and observational analysis. It is found that

increased estimated inversion strength (EIS) is associatedwith increased LCC.Drying of the free troposphere

is associated with decreased LCC. Decreased LCC accompanies subsidence in regions of relatively low EIS;

the opposite is found in regions of high EIS. Finally, it is found that increasing sea surface temperature (SST)

leads to a decrease in LCC. These results are in keeping with previous studies of monthly and annual data.

Based upon the observed response of LCC to natural variability of the control parameters, the change in LCC

is estimated for an idealizedwarming scenario where SST increases by 1K andEIS increases by 0.2K. For this

change in EIS and SST the LCC is inferred to decrease by 0.5%–2.7%when the regressionmodels are trained

on data observed between 408S and 408N and by 1.1%–1.4% when trained on data from trade cumulus–

dominated regions. When the data used to train the regression model are restricted to stratocumulus-

dominated regions the change in LCC is highly uncertain and varies between21.6% and11.4%, depending

on the stratocumulus-dominated region used to train the regression model.

1. Introduction

Oceanic boundary layer cloud cover strongly affects

reflected shortwave (SW) radiation and has relatively

little effect on the outgoing longwave (LW), leading to a

negative cloud radiative effect that significantly impacts

Earth’s radiative balance (Hartmann and Short 1980).

The overall response of low clouds to warming is highly

uncertain (Bony et al. 2006; Caldwell et al. 2013; Vial

et al. 2013; Webb et al. 2013). Despite this uncertainty, a

recurrent feature of global climate models (GCMs) is a

positive SW cloud feedback across the subtropics due

to a decrease in boundary layer cloud cover. This feature

is corroborated by long-term trends in observed cloud

cover (Norris et al. 2016). The strength of this decrease

varies greatly within the CMIP5 and CMIP3 model en-

sembles, however (Myers and Norris 2016; Zelinka et al.

2012, 2013). Consequently, this uncertainty in the cloud

feedback leads to significant uncertainty in the change in

temperature in response to radiative forcing, or equilibrium

climate sensitivity (ECS) (Vial et al. 2013;Webbet al. 2006).

Because clouds depend on turbulent motions with

scales much smaller than the GCM horizontal resolu-

tion, GCMs must assume that low cloud cover (LCC) is

dependent on large-scale thermodynamic and dynamic

parameters (Qu et al. 2014b, 2015; Quaas 2012). Here

we quantify the dependence of observed subtropical

cloud cover on various large-scale predictors utilizing

the record afforded to us by remote sensing and re-

analysis at 8-day-average time scales. Clouds respond to

changes in their environment on a time scale of hours

to a week, making this selection of time scale appro-

priate (Eastman et al. 2016; Jones et al. 2014; Mauger

and Norris 2010). This approach offers a useful com-

parison to studies utilizing monthly to interannual time
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scales to study the covariance of LCC and thermody-

namic and dynamic predictor variables (Myers and

Norris 2013, 2015, 2016; Qu et al. 2015; Seethala et al.

2015). Our study corroborates the results of these

studies. It also provides a useful contrast to these studies

because it examines low cloud cover, as opposed to

cloud radiative effect (Myers and Norris 2015, 2016),

and examines shorter time scales than previous studies

of cloud cover (Qu et al. 2015; Seethala et al. 2015),

allowing a much greater data volume to be examined.

Our study verifies the results of these analyses using the

observational record at the time scale for which clouds

respond to their environment.

In this study, as in previous studies, the prospect of

using observations to measure the relationship of cloud

properties to their environment is constrained by

structural uncertainty. If the time and space scales of the

observations are too small, the relationships that govern

the response of LCC to anthropogenically forced change

may not emerge clearly because 1) it takes some time for

clouds to respond to large-scale forcing, especially in the

boundary layer (Eastman et al. 2016; Jones et al. 2014;

Klein et al. 1995;Mauger andNorris 2010), and 2) clouds

and boundary layer properties are advected through

space by the large-scale horizontal flow. These problems

can be partly alleviated by using a Lagrangian analysis

that follows the air in the boundary layer, but this only

reveals that the boundary layer clouds are in a constant

state of adjustment to the changing large-scale condi-

tions and adapting to them (Eastman and Wood 2016).

Therefore, even Lagrangian experiments cannot reveal

the ideal of an equilibrium cloud response to large-scale

forcing.

In this paper we use simple simultaneous correlations

between large-scale dynamic and thermodynamic pre-

dictors and LCC. It should be noted that the variability

associated with temporal lags and horizontal advection

is present in our data, but it is not addressed in the re-

gression analysis. We take the view that disequilibrium

between large-scale forcing and cloud properties is a

feature of the mean state of the climate and so do not

consider this a weakness of the analysis but an aspect of

the climate. The hypothesis we are using is that a large

enough sample of the relationships between large-scale

forcing and clouds will capture the underlying physical

relationships between large-scale forcing and boundary

layer clouds that govern the observed climatology of

LCC. We regress over a large volume of data, we divide

the data into different subsets to test the robustness to

sample, and we test how well the resulting statistical

relationships can reproduce the observations.

A second structural uncertainty in the analysis pre-

sented in this paper arises in applying the relationships

derived from current observations to the case of cli-

mate change. We will take the relationships we derive

from current observations and apply them to the

changes in large-scale control variables that global

warming simulations produce to see if the relationships

derived from the present predict the same cloud

changes that climate models predict in response to

warming. It is not an unreasonable conceit to think that

the relationships between LCC and large-scale mete-

orological controls have value in predicting the change

in LCC as the climate changes. In GCMs the twentieth-

century relationships between LCC and large-scale

meteorological controls are able to predict the twenty-

first-century change in LCC (Qu et al. 2014b, 2015), and

careful analysis of the satellite era shows that long-term

observations of cloud cover beginning in the 1980s echo

the most robust elements of the changes in cloud cover

that GCMs predict (Norris et al. 2016). Despite these

pieces of evidence we cannot validate the satellite re-

cord against some other period of forced variability,

and thus this constitutes a structural uncertainty in our

analysis.

The organization of this paper is as follows: In section

2a we discuss the observational and reanalysis datasets

used to diagnose LCC dependence on predictor vari-

ables. In section 2b we detail regression modeling of

LCC in terms of predictor variables. In section 2b(2) the

regression models developed from subsets of the ob-

servational record are evaluated in their ability to re-

produce the observational record in the 408S–408N
region as a whole. In section 3a we will discuss robust

elements of the dependence of LCC on thermodynamic

and dynamic predictors that appear across subsets of the

dataset. In section 3b we estimate the change in LCC in a

highly idealized warming scenario and compare this to

the decrease in LCC inferred from other observational

datasets and CMIP5 models.

2. Methods

a. Data

In this study we examine LCC averaged over 8-day

periods during 2002–14. In this section we provide a

general overview of the data we use to analyze the de-

pendence of LCC on thermodynamic and dynamic

predictor variables. The predictor variables considered

are as follows: estimated inversion strength (EIS)

(Wood and Bretherton 2006), wind speed at 10m

(U10m), pressure velocity at 550 hPa (v550) as a mea-

sure of atmospheric subsidence, free-tropospheric RH

(RHFT), and finally SST. These predictors are discussed

in more detail in section 2b. These predictor variables
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are collocated with measurements of LCC. LCC re-

trieval is paired with relevant collocated thermodynamic

and dynamic properties. The dataset is restricted to

oceans in the latitude band 408S–408N. Further subset-

ting into regions is discussed in section 2b. We will now

discuss the satellite instruments and reanalysis used to

create these two datasets. A summary of the data used in

this study is provided in Table 1.

1) MODIS

Moderate Resolution Imaging Spectroradiometer

(MODIS) instruments ride on board both the Terra

and Aqua platforms (Oreopoulos 2005; Platnick et al.

2003). We will use these instruments to study the de-

pendence of cloud fraction on large-scale control

variables.

Cloud cover is assumed to be randomly overlapped.

Active remote sensing indicates that randomoverlap is a

reasonable assumption outside of regions of deep con-

vection and landmasses (Li et al. 2015; McCoy et al.

2014). To calculate LCC we use the 8-day-averaged

MODIS cloud-top pressure (CTP) histogram provided

in theAqua collection 6 dataset filtered for sensor zenith

angles of less than 328, which reduces bias in cloud

fraction retrieval (Maddux et al. 2010). Low clouds are

defined to have a CTP . 680 hPa. The randomly over-

lapped low cloud fraction is calculated as

LCC
RandomOverlap

5CF
CTP.680hPa

/(12CF
CTP,680hPa

) ,

where the cloud fraction (CF) with CTP less than

680hPa is the sum of the cloud fraction in CTP bins less

than 680hPa, and CF with CTP greater than 680 is the

sum of the cloud fraction in CTP bins greater than

680hPa.

We will now discuss the thermodynamic and dynamic

datasets collocated with the retrieved LCC.

2) AIRS

The Atmospheric Infrared Sounder (AIRS) rides

on board the Aqua platform. It is a grating infrared

spectrometer, which provides a vertical profile of

atmospheric thermodynamic properties (Aumann et al.

2003). In this study we use the 8-day-averaged data from

the AIRS collection 6 to describe free-tropospheric

relative humidity. Geophysical retrievals are obtained

after cloud clearing has identified cloud-free and broken

cloud scenes (Susskind et al. 2003). Error due to cloud

contamination has been substantially reduced in col-

lection 6 (Susskind et al. 2014) but may still represent a

source of error. Soundings of temperature and pres-

sure as well as the surface pressure and relative hu-

midity forecasts included in the AIRS data are used to

calculate EIS (Wood and Bretherton 2006). The free

troposphere is examined using 450–650-hPa pressure

levels in theAIRS collection 6 dataset. Free-tropospheric

RH is calculated as the mean RH in the 450- and

650-hPa levels.

3) ERA-INTERIM

In this study we use data from the European Centre

for Medium-Range Weather Forecasts (ECMWF) in-

terim reanalysis (ERA-Interim) (Dee et al. 2011) to

examine several thermodynamic and dynamic pre-

dictors. The four-times-daily output from ERA-Interim

is interpolated to the local overpass time for the Aqua

satellite. The U10m and v550 are used in conjunction

with LCC from MODIS because no equivalent dynam-

ical retrieval product is available from AIRS.

b. Regression analysis

The goal of our analysis is to create a multiple linear

regression model of LCC as a function of a set of pre-

dictor variables, in keeping with previous studies (Myers

and Norris 2015; Qu et al. 2015). As in previous studies,

the relations derived from this regression model can

then be used to understand how the evolution of various

large-scale predictor variables in a warming climate

should change LCC. This assumes that the current re-

lationships between LCC and the various predictors

hold in a warming climate.

As noted in previous studies, many of the predictor

variables of LCC covary (Myers and Norris 2015). This

is problematic in terms of creating a robust regression

TABLE 1. Summary of the remote sensing and reanalysis data used in this study.

Data description

U10m ERA-Interim octet-averaged 10-m wind speed.

SST ERA-Interim octet-averaged SST.

RHFT AIRS RH octet-averaged and averaged over the 450–650-hPa pressure levels.

EIS EIS calculated according to Wood and Bretherton (2006) using AIRS retrievals of thermodynamic properties. The

near-surface RH forecast in the AIRS data was used instead of a constant value as in Wood and Bretherton (2006).

v550 Subsidence at 550-hPa octet-averaged from ERA-Interim.

LCC MODIS collection six 8-day CTP histogram for solar zenith angle less than 328 is used to calculate low cloud cover

(CTP . 680 hPa) using random overlap.
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model of LCC. Most notably, EIS and sea surface

temperature (SST) are substantially negatively corre-

lated (r , 20.6) (Fig. 1). Additionally, it is interesting

to note that EIS’s relation to SST is well fit by a hy-

perbolic tangent, and this nonlinearity may further

complicate disentangling these predictors. Overall, the

covariability of EIS and SST is especially problematic

because both increase in a warmed climate but have

conflicting effects on LCC (Qu et al. 2014a,b, 2015;

Webb et al. 2013). This makes the change in LCC in a

warming climate strongly sensitive to the relative

strength of the relationship between these predictors

and the LCC. To help alleviate the problem of co-

linearity, the multiple regression model is created using

partial least squares (de Jong 1993; Wold et al. 1984,

2001). The regressionmodels were trained using data at

18 3 18 spatial and 8-day temporal resolution. Each

regression model of LCC was trained using EIS, SST,

U10m, RHFT, and pressure velocity (subsidence) as

predictor variables.

To examine the robustness of the regression models

created in this study we subset our dataset into regions.

We first examine the 408S–408N region to see how LCC

depends on predictor variables without subsetting the

data to capture a particular dynamical regime. This re-

gion is split into 208-latitude bands to examine robust-

ness. The data in each 208-latitude band are used to

create a regression model. The spread in the coefficients

in regression models is used to evaluate robustness of

our results.

In addition to the 408S–408N region split into 208-latitude
bands, we considered several subregions associated

with specific dynamical regimes. The behavior of stra-

tocumulus (Sc) clouds (Klein and Hartmann 1993) is

examined by creating subsets of the dataset containing

the five subtropical low cloud regions as identified in

Qu et al. (2015). These regions are dominated by large

stratocumulus decks that transition to trade cumulus

(TrCu). This subset of the data will be referred to

as TrCu-Sc. A regression model is trained in each of

the stratocumulus-dominated regions yielding a total

of five regression models of LCC. Trade cumulus

cloud behavior is examined by creating subsets of

the dataset containing five large subtropical trade

cumulus–dominated regions. This subset of the data

will be referred to as TrCu. Training regression models

of LCC on the data from each of these regions yields an

additional five regression models. In total there are 14

regression models of LCC as predicted by U10m, EIS,

SST, RHFT, and pressure velocity (subsidence). The

TrCu and TrCu-Sc regions are shown in Fig. 2. All

subsets of the data used to create regression models are

listed in Table 2.

1) CHOICE OF PREDICTOR VARIABLES

LCC exhibits considerable spatial variability across

the subtropical oceans (Fig. 2). Although macrophysical

andmicrophysical factors determine the coverage of low

cloud (Albrecht 1989; Nakajima et al. 2001), in this study

we consider only the relationship of low cloud to large-

scale thermodynamic and dynamic variables. This is

problematic because correlation is not causation and

cloud coverage and boundary layer properties affect

each other. This issue is common to observational

studies of the dependence of low cloud on atmospheric

predictors (Eastman and Wood 2016; Klein and

Hartmann 1993; Qu et al. 2015; Yue et al. 2013), and we

acknowledge this issue. We provide the following ar-

guments to support the view that the large-scale prop-

erties we have chosen have value as control variables.

First, we refer to modeling analysis in support of

mechanistic linkages between LCC and each predictor

variable. Second, while clouds determine the boundary

layer properties to some degree, we ameliorate this

problem by selecting predictors of boundary layer

properties that are somewhat more external to the

boundary layer and are not as directly impacted by the

cloud cover. That is to say, this work considers SST and

wind speed, as opposed to air temperature and relative

humidity within the boundary layer, although it might be

argued that the latter variables more directly influence

cloud cover. This being said, we cannot completely dis-

count the possibility that relations between large-scale

FIG. 1. EIS as a function of SST over the 408S–408N region.

Binned values of EIS are shown as gray dots. Various fits to the

data are shown in the legend with the correlation between the

observed EIS and the predicted EIS based on the fit. The number

of data points used to calculate the correlation is also noted.
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predictors and LCC are correlative rather than causa-

tive. We will now discuss the predictor variables that we

consider in this study and their anticipated effect

on LCC.

Stronger inversions capping the planetary boundary

layer (PBL) trap moisture more effectively, enhancing

cloud fraction (Klein and Hartmann 1993; Wood and

Bretherton 2006) and increasing its persistence

(Eastman and Wood 2016). The importance of lower-

tropospheric stability (LTS) and subsequently EIS

has been thoroughly established through numerous

observational analyses (Klein and Hartmann 1993;

Koshiro and Shiotani 2014; Myers and Norris 2013,

2015; Wood and Bretherton 2006). AIRS data de-

scribing atmospheric temperature, pressure, and

near-surface RH and temperature are used to cal-

culate EIS as detailed in Wood and Bretherton

(2006), except that we use the observed near-surface

RH, as opposed to a constant value used in Wood and

Bretherton (2006). A positive correlation between EIS

and LCC is expected based on previous observational

studies.

Modeling and observational studies indicate that as

the subtropical free troposphere dries, in a relative

sense, entrainment of warmer and drier air from the

subtropical free troposphere leads to a thinning of low

cloud by increasing the lifting condensation level more

than the cloud-top height (Bretherton et al. 2013; Wood

2007, 2012), although thickening may occur for deep

boundary layers and a free-tropospheric RH above 40%

(Randall 1984). Coupling between free-tropospheric

humidity and cloudiness is supported by large-eddy

simulation (LES) and mixed-layer model (MLM) sim-

ulations (Bretherton et al. 2013; de Roode et al. 2014;

van der Dussen et al. 2015).

LES studies indicate that decreasing subsidence al-

lows cloud to thicken, although this seems to be regime

and model dependent (Blossey et al. 2013; Bretherton

et al. 2013). Observations indicate that EIS and

subsidence are often correlated, but multiple linear re-

gression and compositing show that EIS and subsidence

have independent effects on LCC and that subsidence

tends to reduce LCC at constant EIS (Myers and

Norris 2013).

Because boundary layer relative humidity stays al-

most constant in a warming climate (Held and Soden

2000), earlyGCMs assumed clouds did not change as the

climate warmed, and several years passed before cloud

feedbacks became part of the scientific literature

(Schneider 1972). Observational analysis of SST and

stratiform cloud-cover anomalies show a robust nega-

tive relationship in the midlatitudes and eastern oceans

(Clement et al. 2009; Eastman et al. 2011; Klein et al.

1995; Kubar et al. 2012; Norris and Leovy 1994). Single-

column and LES modeling robustly reduces cloudiness

with warming in a constant relative humidity setting

(Bretherton and Blossey 2014; Bretherton et al. 2013;

Brient and Bony 2013; Rieck et al. 2012). Cloud thinning

through increased surface temperature is examined by

using SST as a predictor.

FIG. 2. The climatological LCC from MODIS from 8-day-averaged data. The regression model is trained using

data from each of the 208-latitude bands between 408S and 408N (orange symbols), each of the stratocumulus-

dominated regions that capture the TrCu-Sc transition (Qu et al. 2015) (shown in green), and each of the subtropical

TrCu regimes (shown in blue). These regions are listed in Table 2. The colored symbols next to each region cor-

respond to the symbol used in the remaining figures to denote that region.

TABLE 2. Latitude and longitude ranges of the regional subsets

analyzed in this study. These regions are shown in Fig. 2.

Region Lat range Lon range

408S–408N 408–208S All longitudes

208S–08 All longitudes

08–208N All longitudes

208–408N All longitudes

TrCu-Sc (Qu et al. 2015) 108–308S 1108–708W
108–308S 258W–158E
208–408S 758–1158E
158–358N 1558–1158W
108–308N 558–158W

TrCu 108–258S 1808–1208W
108–258S 408–908E
108–258S 408–108W
108–258N 1208E–1308W
108–258N 808–408W
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2) ABILITY OF THE REGRESSION MODELS TO

REPRODUCE OBSERVED LCC

We evaluate the ability of the 14 regression models

trained in different data subsets (one from each sub-

region listed in Table 2) to reproduce the observed

temporal and spatial pattern of LCC. The historical

LCC is calculated using each subregion’s regression

model and the observed predictor variables over the

2002–14 period and in the 408S–408N region. The fol-

lowing evaluations of the regression models from each

subregion are performed: 1) How well can the re-

gression model reproduce the historical record? 2) How

well can the regression model reproduce the observed

climatology? The first question is answered by evaluat-

ing the regression model trained in each subset of the

data against the 408S–408N data at 18 3 18 spatial reso-
lution and 8-day temporal resolution for the years 2002–

14. The second question is answered by averaging the

dataset to create a climatology of 12 months at 18 3 18
spatial resolution and then evaluating the regression

model. Regression model performance was evaluated

using RMSE, correlation, and the mean bias between

observed and predicted LCC.

The correlation coefficient, root-mean-square error

(RMSE), and mean bias between the observed and

predicted LCC are shown in Fig. 3. The ranges of the

correlation coefficient, RMSE, and mean bias in Fig. 3

show how much each quantity changes between the

different regression models. For example, the range

for the TrCu-Sc regime is given by comparing the five

regression models (one for each subregion). The LCC

calculated from MODIS data and random overlap

is not likely to be robust in the regions of deep con-

vection. Therefore, regions where the climatologi-

cal pressure velocity at 550 hPa is closer to zero

than 20.005 Pa s21 are excluded from the calcula-

tion of the correlation coefficient to prevent the

FIG. 3. (left) Evaluation of the ability of the regression models trained in each subregion to

reproduce the observed LCC over 408S–408N at 18 3 18 spatial resolution and 8-day temporal

resolution and (right) when the observational record of LCC is averaged to create a 12-month

climatology at 18 3 18 spatial resolution. The regression models being evaluated are differ-

entiated by region and subregion (see Fig. 2). The region used to train the regression model

noted on the x axis. Regression coefficients, RMSE, and mean-bias for the regression models

trained in each of the subregions are shown as dots. Scatter along the x axis has been added for

visual clarity. The units of RMSE and mean bias are in units of percent cloud cover.
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regions of deep convection from spuriously biasing

the results.

The regression models predict the observed record of

LCC at 8-day temporal resolution with a correlation of

greater than 0.4 and an RMSE of 20% (where% is units

of LCC). When the regression models are evaluated

based on their ability to predict the observed climatol-

ogy of LCC, the correlation between predicted and ob-

served LCC exceeds 0.6 and RMSE is below 15% (in

units of LCC) (Fig. 3). Mean bias is less than 10% (in

units of LCC). Overall, the regression models are able

to reproduce some fraction of the variability in octet-

averaged LCC and a fairly substantial portion of the

climatological LCC.

3. Results

a. Coefficients relating predictors to LCC

Wenow consider the differences between the regression

models created using data from different subregions. The

range of the coefficients given by the different regression

models relating LCC to each predictor variable is shown in

Fig. 4. The coefficient relating EIS and SST to LCC esti-

mated by previous studies is shown for comparison. These

studies are Seethala et al. (2015) and Qu et al. (2015). Qu

et al. (2015) used interannual anomalies in ISCCP,

PATMOS-x,MISR, andMODIS data regionally averaged

over five Sc-dominated regimes to create a regression

model of LCC on EIS and SST. Seethala et al. (2015) used

monthly anomalies in ISCCP and PATMOS-x data at

2.58 3 2.58 spatial resolution from Sc-dominated regions to

create a regressionmodel on SST, SST advection, andEIS.

The coefficients relating U10m and RHFT to LCC are

fairly similar across regions. The sign of these coefficients

in the regression analysis are in agreementwith our a priori

expectations. LCC increases with increasing surface wind

speed in all regions and datasets. This is consistent with

increased fluxes of water into the boundary layer

(Bretherton et al. 2013). Increasing RH in the free tropo-

sphere increases LCC everywhere, in keeping with ex-

pectations (Fig. 4). Increasing subsidence has uncertain

effects on LCC and leads to a decrease in LCC only in the

408S–408N and trade cumulus regions. In the TrCu-Sc re-

gions the dependence on subsidence is positive. This is

likely due to the dependence of LCC on subsidence

changing sign between low- and high-EIS regimes as

shown by Myers and Norris (2013), although it is in-

teresting to note that this is the opposite sign found by Qu

et al. (2015) in their analysis of GCM LCC.

The coefficient relating EIS to LCC is positive in every

region except the Canarian stratocumulus-dominated

region and the North Atlantic trade cumulus (Fig. 4).

FIG. 4. The coefficients relating LCC to each predictor from the

regressionmodels trained in the various study regions. Estimates of

coefficient values from the different subregions are shown as in Fig.

2. Horizontal scatter has been added for visual clarity. The region

that the regression model was trained in is noted on the x axis. The

sensitivity of LCC to EIS and SST calculated inQu et al. (2015) and

Seethala et al. (2015) from interannual and monthly anomalies,

respectively, are shown also. The LCC dataset and time range used

in each study is noted in the legend.
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This may reflect the scant cloud cover in these regions

relative to the other regions considered in this study

rather than some underlying physical difference (Fig. 2).

Analysis of the dependence of ship-observed sea-

sonal LCC on EIS, not considering variability in SST,

yields values of 6% (Wood and Bretherton 2006) and

5.3%K21 (Koshiro and Shiotani 2014) in the regions

identified in Klein and Hartmann (1993) and 4.7%K21

over the global ocean (Koshiro and Shiotani 2014).

These values are larger than the coefficient values re-

lating EIS and LCC yielded by our analysis (Fig. 4).

Overall, the coefficient relating EIS to LCC produced

from the 8-day MODIS data is within the uncertainty of

the coefficient calculated from other remote sensing

studies (Qu et al. 2015; Seethala et al. 2015). We have

extended this comparison to longer-time-scale studies

by repeating our analysis averaging the data to annual-

mean values, as opposed to 8-day means. This analysis is

shown in Fig. S1 of the supplemental material. It was

found that the same analysis performed on annual-mean

data became somewhat uncertain. EIS sensitivity in-

creased in the regressionmodels trained using data from

the TrCu and global region, while it became highly un-

certain in the regression models trained in the TrCu-Sc

regions. SST sensitivity decreased somewhat and be-

came more uncertain across the TrCu-Sc regions.

However, this appears to be very sensitive to whether

the annual-mean values or the anomalies in the annual-

mean relative to the long-termmean (as used in previous

studies of LCC on longer time scales; Myers and Norris

2015; Qu et al. 2015) were used to train the regression

models. We repeated our analysis using anomalies in the

annual-mean relative to the long-term mean at every

latitude and longitude and found that the coefficients

relating SST and EIS to LCC actually became more

consistent across regions and were consistent with re-

gression models trained on 8-day averages. This indi-

cates that, consistent with previous studies, these effects

are relatively time-scale invariant (Myers and Norris

2016; Qu et al. 2015). However, we did find that the

coefficients relating wind speed, subsidence, and RHFT

to LCCbecamemore varied depending on the subregion

used to train the regression model. Overall, our partic-

ular dataset agrees with previous studies of LCC de-

pendence on EIS and SST at longer time scales.

The dependences of LCC on SST in the regression

models in the various subsets of the data (TrCu, etc.) are

always negative or are indistinguishable from zero. The

coefficient is only positive in some of the models trained

in the TrCu-Sc regions. The regressionmodels trained in

the TrCu-Sc regions produce a wide range of possible

coefficient values depending on region where the re-

gression model is trained. Ultimately, only two of the

TrCu-Sc regions show a positive LCC–SST coefficient.

The remaining data subsets show a robustly negative

LCC–SST coefficient.

A negative dependence of LCC on SST is consistent

with numerous LES studies and observational studies

(Bretherton and Blossey 2014; Clement et al. 2009;

Myers and Norris 2015, 2016; Qu et al. 2015; Seethala

et al. 2015). The dependence of LCC on SST agrees

qualitatively with previous satellite-based studies at

longer temporal scales over the stratocumulus regimes

(Qu et al. 2015; Seethala et al. 2015).

b. Estimated changes in LCC for a 1-K increase in
SST

The coefficients derived from the different regional

subsets are in general agreement with our expectations

based on LES simulation and other observational stud-

ies. Because EIS and SST both increase with warming

(Qu et al. 2014a; Webb et al. 2013), the change in LCC is

sensitive to the relative strength of the dependence of

LCC on these predictors. Significant spatial structure

exists in the EIS response to warming (Qu et al. 2014a),

but for the purpose of this simplified calculation we as-

sumeEIS increases by 0.2K per 1-K SST increase (Webb

et al. 2013). This greatly simplifies the projected global

warming response but is useful in terms of evaluat-

ing how consistent a picture of change in LCC is given by

the regression models trained in this study as compared

to previous studies. The change in LCC is calculated

as DLCC5 0.2K(›LCC/›EIS)1 1K(›LCC/›SST). The

coefficients relating EIS and SST to LCC from each of

the 14 regression models trained in this study are then

used to predict the change in LCC.

It is debatable whether linearity can be assumed in a

warming climate. This appears to be a good assumption in

GCMs. Linear regression models of LCC created from

the current climate in GCMs can generally explain their

change in LCC in a warming climate (Myers and Norris

2016; Qu et al. 2014b, 2015). We cannot validate whether

the change in observed LCC in a warming climate is rel-

atively linear, and we must content ourselves with noting

that a GCM’s LCC appears to have a relatively linear

response to warming-induced EIS and SST (Myers and

Norris 2016; Qu et al. 2014b, 2015). We find that when

annual-mean anomalies in LCC and predictors were used

to train the regressionmodel for the data used in this study

(see Fig. S1) the predicted change in LCC for a 1-K

warming and 0.2-K increase in EIS were similar to the

results utilizing regression models trained on 8-day means

(Fig. S2 in the supplemental material).

The regression models created in our study show a

robust dependence on subsidence, RHFT, and U10m.

While robust, the strength of these dependencies is not
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strong enough to substantially affect the change in LCC

given the expected change in these predictors across the

subtropics. Subtropical free-tropospheric RH is likely to

decrease in a warming climate and subsidence should

weaken (Bretherton et al. 2013). For an idealized

warming scenario subsidence decreases by approxi-

mately 2%K21 (Bretherton et al. 2013) (;0.1 hPaday21

relative to estimates of climatological subsidence from

ERA-Interim), wind speed should decrease by 0.6% 6
0.61%K21 (Bretherton et al. 2013; Lu and Cai 2009),

and free-tropospheric RH decreases by approximately

0.6%K21 (Bretherton et al. 2013; Richter and Xie 2008)

(note that percent is an absolute change in RH, not a

percentage change). The coefficients relating LCC to

these predictors in the regression models do not appear

to be large enough to cause the expected changes in

these quantities with warming to contribute very

strongly to changes in LCC, compared to the expected

LCC responses from changes in EIS or SST (Fig. 4). A

0.6% decrease in RHFT coupled with the coefficients in

Fig. 4 implies a decrease in LCC of 0.14% 6 0.08% (in

units of LCC and not differentiating by region where the

regression model was trained). A decrease of 0.6% rel-

ative to the 10-m wind speed from ERA-Interim would

translate into a decrease of approximately 0.04m s21.

The mean change in LCC calculated from this decrease

in wind speed and the regression models shown in Fig. 4

would be 0.08%6 0.03%. Changes in subsidence on the

order of 0.1 hPaday21 do not significantly affect LCC

(jDLCCj , 0.01%). The fairly weak contribution of

subsidence, wind speed, and RHFT in a warming cli-

mate to changing LCC is consistent with the analysis of

cloud-controlling factors in CMIP5 models (Qu et al.

2015; Zhou et al. 2015) and of observed anomalies in SW

CRE (Myers and Norris 2015, 2016).

In agreement with previous studies, we find that EIS

and SST changes are responsible for the majority of the

change in LCC with warming (Myers and Norris 2015,

2016; Qu et al. 2015; Seethala et al. 2015; Zhou et al.

2015). However, it is worth noting that other factors not

considered in this analysis may influence LCC changes

in a warming world. Increasing greenhouse gases in-

crease atmospheric emissivity and decrease LCC

through suppression of cloud-top radiative cooling

(Bretherton et al. 2013). We do not account for this ef-

fect, and thus our decrease in LCC is weaker than the

decrease in LCC that would occur in a world warmed by

greenhouse gases. The decrease in LCC with warming

estimated here is discussed in the context of an idealized

change over the subtropics as a whole. It is important to

note that regional changes in subsidence, wind speed,

and free-tropospheric RH may strongly affect changes

in LCC in a warming world.

Based on the internal consistency of our analysis and

the consistency of our results with previous studies

(Myers and Norris 2015, 2016; Qu et al. 2015; Seethala

et al. 2015) we present a calculation of the change in

LCC in a highly idealized warming scenario (Fig. 5). As

discussed above, the change in LCC is calculated using

the regression models created in each region and as-

suming SST increases by 1K and EIS increases by 0.2K

(Webb et al. 2006). This estimate is compared to the

decrease in LCC calculated using the EIS and SST de-

pendencies calculated by Qu et al. (2015) and Seethala

et al. (2015) coupled with a 1-K SST increase and 0.2-K

EIS increase.

The change in LCC predicted by the regression

models trained on the 8-day MODIS data is within the

range consistent with the regression models created in

studies on longer-time-scale data (Fig. 5). The re-

gression models trained using data from the entirety of

the 408S–408N region show a robust decrease in LCC of

around 0.5%–2.7%. The regression models trained on

the trade cumulus–dominated regions are more consis-

tent and predict a decrease of 1%–1.4%. The regression

models trained on the stratocumulus-dominated re-

gimes predict a change in LCC from 11.4% to 21.6%,

depending on which stratocumulus-dominated region is

used to train the model. The change in LCC predicted by

regression models created by Seethala et al. (2015) and

Qu et al. (2015) ranges in mean value from 20.34%

to 22.73%. Qu et al. (2015) used bootstrapping to cal-

culate uncertainty on the coefficients in their regression

model. In our study the uncertainty in the coefficients

relating EIS and SST to LCC as calculated by Qu et al.

(2015) are used to calculate the uncertainty in the change

in LCC as sDLCC 5 [(0.2s›LCC/›EIS)
2 1 (s›LCC/›EIS)

2]1/2.

The change in LCC inferred by examining 8-day-

averaged LCC over the trade cumulus regions is robustly

negative and highly consistent across regression models

trained in each subregion (see Table 2). It is unclear how

to interpret the large range in DLCC predicted by re-

gression models trained in the TrCu-Sc regions. It is

possible that this uncertainty represents the narrow

range of SST values in these regions in the training

datasets. The poor consensus as to the dependence of

LCC on SST diagnosed by the regression model in the

stratocumulus-dominated regions does not appear to

translate to the dependence in the regression models

trained on both stratocumulus and trade cumulus-

dominated regions. This seems to be supportive of this

effect at least being partially due to relatively low vari-

ance in SST in the TrCu-Sc regions. With the exception

of a few subsets of data in the TrCu-Sc regions, our

analysis supports a decrease in LCC across the sub-

tropics with warming.
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4. Conclusions

In this study we utilize the 8-day-averaged observations

available from the satellite era to study how low cloud

cover (LCC) responds to variability in dynamics and

thermodynamics. The dataset is subdivided into regions

associated with trade cumulus and stratocumulus (Fig. 2

and Table 2). The sensitivity of LCC to thermodynamic

and dynamic predictors is evaluated in each subregion

using partial least squares linear regression on a set of five

predictor variables (Fig. 4 and Table 1). Several robust

elements of the LCC response to various predictors

emerge across these subsets of observational data. LCC

increases with increasing estimated inversion strength

(EIS), wind speed, and free-tropospheric RH. Subsidence

appears to increase and decrease LCC, depending on

regime. Increasing SST decreases LCC, although this

dependence is much more uncertain in stratocumulus-

dominated regions and two of the stratocumulus-

dominated regions show SST increasing LCC. Overall,

the dependence of LCC on the predictor variables

shown in this study largely confirm a priori expectations

from large-eddy simulations and previous observational

studies utilizing different datasets and longer time scales

(Blossey et al. 2013; Bretherton and Blossey 2014;

Bretherton et al. 2013; Myers and Norris 2013, 2015; Qu

et al. 2015; Seethala et al. 2015).

In a warming world both EIS and SST increase (Qu

et al. 2014a). Whether LCC increases or decreases with

warming depends on the relative contributions of these

terms.We estimate the LCC change consistent with a 1-K

surface warming and a 0.2-K increase in EIS based on

the regression models trained in this study. Overall, the

inferred DLCC from the regression models trained in

the stratocumulus-dominated regions is very uncertain

and LCC was inferred to change between 11.4% and

21.6%. This uncertainty may be partially due to the high

degree of correlation between SST and EIS (Fig. 1) and

the relatively narrow range of SSTs available to train the

regression model in each of the stratocumulus-dominated

regions. While our analysis of the stratocumulus-

dominated regions is inconclusive as to whether LCC

would increase or decrease with warming, training the

regression model on 208-latitude-band subsets of the data

containing both the stratocumulus-dominated and TrCu-

dominated regions indicates a robust decrease in LCC

with warming. The regression models trained in these

regions show that increasing SST always decreases LCC

and indicate a warming-induced decrease in LCC of

0.5%–2.7%. If the regressionmodel is restricted to TrCu-

dominated regions, a decrease of 1%–1.4% is predicted.

If the regression models created by Seethala et al. (2015)

and Qu et al. (2015) are used to infer the change in LCC

using the method in this study, they predict a decrease of

0.3%–2.7%, depending on the observational dataset

used. This result is consistent with the decrease predicted

by this study. Overall, the range of changes in LCC per

unit of surface warming indicated by observed relation-

ships in this study and past studies is substantially smaller

than the range inferred from the sensitivity of GCMLCC

to EIS and SST deduced by Qu et al. (2015). If the sen-

sitivity of LCC toEIS and SST in theGCMs examined by

Qu et al. (2015) are used to calculate the change in LCC

resulting from a 1-K increase in SST and a 0.2-K increase

in EIS the change is between 22.7% and 11.7%.

In summary, examination of the variability of 8-day

means in trade cumulus regions robustly predicts that LCC

should decrease by 1%–1.4% for an idealized 1-K warm-

ing, while data from stratocumulus-dominated regions do

FIG. 5. The change in LCC inferred from a uniform increase in

SST of 1 K accompanied by an increase in EIS of 0.2 K. The co-

efficients from the regression models shown in Fig. 4 are used to

calculate the change in LCC. The region that the regression model

was trained in is noted on the x axis. The LCC change calculated

using the coefficients of Qu et al. (2015) and Seethala et al. (2015)

for EIS 1 0.2 K and SST 1 1K are also shown. The symbols used

for each region correspond to the key in Fig. 2.
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not indicate a robust response of LCC to warming. The

robust decrease in LCC inferred for TrCu-dominated re-

gions, in combination with the robust decrease in LCC

inferred by studies utilizing longer-time-scale observations

over the stratocumulus-dominated regions (Qu et al. 2015;

Seethala et al. 2015), suggests that GCMs that increase

LCC with warming are not consistent with the observed

variability of LCC in the current climate.
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