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ABSTRACT

The Lagrangian evolution of cloud cover and cloud-controlling variables is well approximated using red

noise processes with different autocorrelation time scales for each variable. Trajectories within the sub-

tropical marine boundary layer are generated using winds from ECMWF Re-Analysis data for low cloud

decks in four eastern subtropical ocean basins. Cloud cover, liquid water path, and boundary layer depth are

sampled at 12-h intervals using A-Train satellites, and droplet concentration is sampled every 24 h. Lower-

tropospheric stability and vertical velocity are sampled concurrently using reanalysis data. Samples are

converted to seasonal and diurnal anomalies. Data are spatially averaged over a range of length scales. The

e-folding decay times t for autocorrelation are calculated for each variable based on lag times of 12, 24, 36, and

48 h. Using lag 24 h and an averaging radius of 100 km, t ’ 15–17 h for liquid water path and vertical velocity,

t ’ 19 h for cloud cover, t ’ 24–25 h for boundary layer depth and droplet concentration, and t ’ 53 h for

lower-tropospheric stability.

Time scales vary somewhat between regions and are shortest in the eastern Indian Ocean. Decay time

t increases with averaging scale and the autocorrelation e-folding length of a variable at a fixed time. Diurnal

analysis shows cloud cover anomalies have a stronger memory duringmorning breakup, while other variables

show stronger memory as clouds reform in the evening. Lagrangian cloud anomalies are less persistent than

anomalies at a fixed location. For the latter, estimated t values can vary significantly at different lag times, so a

red noise assumption is inappropriate.

1. Introduction

Eastman andWood (2016, hereinafter EW16) studied

cloud responses in subtropicalmarine stratocumulus (Sc)

regimes to controlling variables using the Lagrangian

perspective, following the flow within the planetary

boundary layer (PBL). To compare changes between

sets of trajectories over time, they found that it was

necessary to account formemory effects in cloud-related

quantities, such as cloud cover, droplet concentration

(Nd), and liquid water path (LWP). They used a linear

regression approach to estimate and correct for these

effects. In this work, we show that thesememory effects

are well described as red noise processes, in which

anomalies are damped on quantifiable characteristic

time scales. Anomalies for each variable are defined as

the departure from the seasonal and diurnal mean for

the location sampled.

Red noise processes with robust decorrelation time

scales (Hasselmann 1976; Jenkins andWatts 1968;Mann

and Lees 1996; von Storch and Zwiers 1999; Wunsch

1999) have been observed in the atmosphere with time

scales ranging from seconds for small-scale turbulence

(Hanna 1981) to hours or days for midlatitude boundary

layer cloud cover (Mauger and Norris 2010) to decades

or centuries for large-scale climate variability (Roe 2009).

Roe (2009) posits that red noise processes should be con-

sidered the null hypothesis for geophysical time series in

general. Hanna (1981) andMauger andNorris (2010) both

compared Lagrangian decorrelation time scales (following

the flow) to Eulerian time scales (at a fixed location) and

found that Lagrangian time scales were longer.

The over 62000 individual trajectories studied by EW16

create an unparalleled resource for studying Lagrangian

evolution of subtropical marine boundary layer clouds and

their controlling variables. We estimate decorrelation time

scales for different cloud and cloud-controlling variables
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associated with Sc clouds and their controls as a function

of averaging length scale for downstream evolution

times up to 48h. We interpret these Lagrangian time

scales and compare them with corresponding Eulerian

time scales, reaching different conclusions than Mauger

and Norris (2010).

2. Data

All data for this study are for the years 2007–08. Data

fields are for twice-daily retrievals, one for day (1330

local time) and one for night (0130 local time) on a 18 3
18 grid. The grid is chosen to match the Moderate Res-

olution Imaging Spectroradiometer (MODIS) level-3

(L3) 18 3 18 grid with grid box centers at the half-degree

(e.g., latitude 20.58N, longitude 145.58W). Reanalysis

data grids are originally for observation times of 0000,

0600, 1200, and 1800 UTC, so observation times are in-

terpolated to match the timing of the A-Train observa-

tions where necessary. Zenith angle biases seen in the

MODIS data products have been removed using the

same technique as in EW16.

a. Data unchanged from EW16

The majority of the data used in this study are iden-

tical to those used in EW16, to which the reader is re-

ferred for more detail about the processing of these

products. Cloud cover data come from the MODIS L3

cloud mask product (MYD08-D3; Hubanks et al. 2008;

Oreopoulos 2005). Liquid water path retrievals come

from the Advanced Microwave Scanning Radiometer

for Earth Observing System (AMSR-E; Wentz and

Meissner 2004) for day and night. Lower-tropospheric

stability (LTS), our chosen proxy for inversion strength,

is defined as the difference between potential tempera-

ture at 700 hPa and at 2m (u7002 u2m). At the trajectory

beginning (0 h), LTS is derived from the ECMWF-

Auxiliary dataset (Partain 2007), which provides ECMWF

Re-Analysis data specifically along the CloudSat/Cloud–

AerosolLidar and InfraredPathfinder SatelliteObservations

(CALIPSO) track. Farther along in the trajectories, at ob-

servation hours greater than 0, u700, and u2m are obtained

from the ERA-Interim data fields (Dee et al. 2011).

Droplet concentration Nd is derived from two MODIS

level-3 products: cloud droplet effective radius re and

liquid water path for cloudy pixels only. Both LWP and re
are from the MODIS cloud optical properties product

(King et al. 2003; Platnick et al. 2003). We use the same

relationship as shown in Eq. (1) of EW16 to derive Nd.

We use the same regions of study as shown in Fig. 1 of

EW16 (also Fig. 4 in this paper), located in the eastern

subtropics of the North and South Pacific, the South

Atlantic, and the Indian Ocean and the same ;62000

trajectories, computed as in EW16 and Bretherton et al.

(2010) using the 925-hPa wind from ERA-Interim. We

only study trajectories advecting toward the west in order

tominimize the number of samples that are influenced by

meteorology associated with the westerly storm tracks.

b. Vertical velocity v at 850mb

Myers andNorris (2013) show that vertical velocity on

the mesoscale (scales of;100km) is a significant cloud-

controlling variable. For this work, vertical pressure

velocity v (Pa s21) at 850mb is taken from the ERA-

Interim (Dee at al. 2011) on a 18 3 18 grid.

c. Planetary boundary layer depth

As described in EW16, we use the Cloud–Aerosol

Lidar with Orthogonal Polarization (CALIOP) carried

on the CALIPSO to produce an initial estimate of PBL

depth at the beginning of each trajectory using the ver-

tical feature mask product (Vaughan et al. 2004).

For this study, we also wish to analyze how PBL depth

changes along trajectories, as PBL depth has been shown

to be an important cloud-controlling variable (Bretherton

and Wyant 1997; Berner et al. 2013). Specifically, we are

interested in how fast PBL height anomalies along tra-

jectories decorrelate with time. Because the CALIPSO

data are too sparse for this purpose, we also estimate PBL

depth based on cloud-top temperature retrieved from

MODIS, which samples a much broader swath width

under theA-Train orbits.We use theCALIPSO retrievals

of cloud-top height to test and calibrate the MODIS re-

trievals, as detailed in the remainder of this section.

Figure 1 shows the median and interquartile range for

our CALIPSO-derived PBL depth (CPBL) for bins of

FIG. 1. Median (red dashes) and interquartile range (blue boxes)

for daytime boundary layer depths for bins of percent cloud cover.

Boundary layer depth derived from the CALIPSO vertical feature

mask product, cloud amount from MODIS cloud mask.
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percent cloud cover from MODIS (CC) during the day.

The figure shows overcast conditions associated with

shallow boundary layers, with the CPBL increasing as

CC declines from 100% until around 50%, when CPBL

decreases as CC declines further. This is consistent with

the physical model proposed for the evolution of cloud

cover and PBL depth by Wyant et al. (1997): Sc decks

originate as shallow, unbroken cloud decks, but the Sc

begins to break up after the PBL deepens and decouples,

leaving behind shallow trade cumulus (Cu). This rela-

tionship is also shown nicely by Karlsson et al. (2010).

To track the evolution of PBL depth, we expand the

sampling from the CALIPSO curtain using fields of

cloud-top temperature (CTT) and sea surface temper-

ature (SST). Sea surface temperature data come from

the ERA-Interim 18 3 18 grids and CTT profiles (his-

tograms) on the 18 3 18 grid come from MODIS (King

et al. 2003). CTT profiles are only used if there are no

samples within a box with temperatures below 08C. For
each sample, we calculate the temperature difference

DT between the surface and cloud top. We then use the

lapse rate parameterization presented in Wood and

Bretherton (2004, their Fig. 4) to estimate the lapse

rate for each sample (G; Kkm21). Cloud-top heightH is

then calculated as H 5 DT/G.
CALIPSO and MODIS cloud-top height (CTH) in-

ferred PBL depths (shortened to just ‘‘PBL depth’’ or

‘‘CTH PBL depth’’) are most directly comparable for

overcast conditions, where the cloud top is generally

smoother, there are no cloud edges, and fewer thin spots

where the MODIS CTT retrievals could be biased by a

warmer surface below. In overcast conditions, we as-

sume that the largest peak in CTT histograms represents

the temperature at the top of the PBL. Overcast

MODIS-derived PBL (MPBL) depths tended to be 100–

200m deeper than their collocated CALIPSO equiva-

lents. The difference in overcast CPBL and MPBL

values may be due to the relative coarseness of the CTT

histograms, which are for 5-K bins, meaning a possible

(though highly unlikely) error of nearly 1 km, although

actual discrepancies between MPBL and CPBL esti-

mates were not nearly that large. Differences could also

be the result of small calibration errors. For our finished

MPBL product, we apply a correction to the MPBL

data, subtracting the mean difference between overcast

MPBL and CPBL from the MPBL data for all cloud

amounts. This ‘‘calibration correction’’ is uniform in

space and time and for all cloud amounts.

In more broken cloud scenes, we assume that the top

of the PBL is colder than the most populous CTT bin in

each histogram, owing to the increased prevalence of

thin clouds and cloud edges in the sample. For retrievals

with less than overcast cloud cover we ‘‘tune’’ the his-

togram sampling by decreasing the sampling threshold

on the cold side of the peak as cloud fraction declines in

order to match the curve between the CALIPSO CTH

inferred PBL and cloud amount shown in Fig. 1. Further

below, we describe the iterative process used to deter-

mine the sampling threshold. Our sampling method is

illustrated in Fig. 2. Three composite histograms repre-

senting the mean distribution for all available 18 3 18
boxes within our regions over five days are shown. Each

bar represents the relative frequency of occurrence for

subgrid pixels within the L3 18 3 18 grid that have a CTT

in the specified 5-K bin. Figure 2a shows a CTT histo-

gram for overcast conditions (CC. 90%). The black bar

represents the peak in the sample, which we assign as the

CTT for the sample. Figure 2b shows a CTT histogram

FIG. 2. Composite frequency distributions of cloud-top temperature bins for pixels within 18 3 18 grid boxes for our regions of study.

Distributions are shown for bins of nighttime cloud cover: (a) 90%–100%, (b) 60%–70%, and (c) 30%–40%. Sampling thresholds for each

bin of cloud cover are shown as the dashed line. The black bar on the histogram represents the assigned cloud-top temperature for clouds at the

PBL top for each cloud cover bin. Mean distributions are for all available grid boxes in our study regions during the first five days of 2007.
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for 60%–70% cloudy conditions, where we assume that

the top of the PBL is only observed in some of the

pixels within the 18 grid box of the L3 data, while

more pixels represent broken or thin clouds with an

emissivity ,1. We have determined (using the process

described below) that the representative CTT for the

PBL top in 60%–70% cloudy conditions is the histo-

gram bar farthest on the cold side of the peak that is at

least 21% as high as the peak. Figure 2c shows a his-

togram for 30%–40% cloudy conditions where we ad-

just the sampling even more toward the cold side of the

plot, choosing the leftmost bar that is at least 6% as

high as the peak.

The thresholds for this sampling method were de-

termined using an iterative process where, for each 10%

bin (from 30%–90%) of cloud cover, we altered the

sampling threshold until the CC versus MPBL curve

matched the curve shown in Fig. 1 of CC versus CPBL.

This was done for day and night separately. Sampling

thresholds are shown in Table 1. This iterative process

guarantees that the CC versus PBL depth relationship is

unbiased for our MPBL product. Figure 3 shows the

MODIS- and CALIPSO-derived PBL depths for day

(Fig. 3a) and night (Fig. 3b) separately before the cali-

bration correction and combined (Fig. 3c) after the

calibration correction, verifying that the CC versus PBL

depth relationship is consistent between both datasets.

Figure 3d shows the correlation coefficient between

vectors of collocated MPBL and CPBL samples for day

and night for bins of sample cloud cover. All correlations

are above r 5 0.45.

We do not estimate an MPBL for samples with cloud

amounts below 30%, since correlation coefficients drop

below 0.4 and the sampling thresholds appear unrea-

sonably small. A slight zenith angle correction has also

been applied to the MPBL data, which showed a high

bias at wide viewing angles. MPBL data with viewing

angles above 608 have been excluded, since the zenith

angle bias at those angles appeared disproportionally

large (excluding only the farthest 78). Contour maps for

climatologies of the MPBL product are shown for each

region in Fig. 4. Figure 4 compares favorably to other

studies showing PBL depth and cloud-top heights, spe-

cifically Fig. 5 of Sun-Mack et al. (2014), which shows a

TABLE 1. Sampling thresholds for cloud-top temperature histograms used to derive PBL depths from MODIS. Percentages represent

the minimum height (relative to the highest peak in the distribution, on the cold side of the peak) that a histogram bin must achieve to

represent the cloud-top temperature at the inversion top. See Fig. 2.

Day

Cloud amount

Night

Cloud amountSampling threshold Sampling threshold

30%–40% 6%

30%–50% 7% 40%–50% 8.5%

50%–60% 9% 50%–60% 14%

60%–70% 14% 60%–70% 21%

70%–80% 19.5% 70%–80% 27%

80%–90% 32% 80%–90% 45%

90%–100% 100% 90%–100% 100%

FIG. 3. (a) Day and (b) night comparison of PBL depths from all

availableCALIPSO andMODIS observations with 2-sigma standard-

error bars for 10% bins of cloud cover. (c) Day and (d) night corre-

lation between vectors of collocated CPBL and MPBL depths for

10% bins of cloud cover.
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global, seasonal breakdown of single-layer cloud-top

heights based on a geographically varying lapse rate, and

Chan andWood (2013, their Fig. 5), who used COSMIC

GPS radio occultation to identify moisture hydrolapses

that typically mark the top of the PBL. In subtropical

eastern ocean basins, all three studies show shallower

boundary layers near the coast with ‘‘tongues’’ of shal-

low PBLs extending offshore with the mean flow. All

three studies also show cloud-top height/PBL depths

ranging from about 0.5 km near the coast to around 2km

offshore, with deeper PBLs in the eastern Indian Ocean

relative to our other study areas.

3. Methods

a. Calculating anomalies

The distributions of cloud cover and cloud-controlling

variables are not uniform across our study regions, nor

are the lengths of our trajectories. As a consequence of

this nonuniformity, we cannot directly compare cloud

changes between trajectories. Some trajectories may

show large changes if they advect across a region that

shows a strong climatological change, while others may

show little to no change if they travel only a short dis-

tance or span a region with more uniform cloud prop-

erties. To account for this, we follow EW16 and convert

all variables that are tracked along the trajectories to

anomalies, which are calculated by removing the sea-

sonal mean for day and night separately.

b. Maximizing available data

Trajectories are all run from 0h (T0) to 48h (T48). To

maximize the data available, for each variable we ex-

amine every possible 12-, 24-, or 36-h change. The 12-h

changes comprise changes from T0 to T12, T12 to T24,

T24 to T36, and T36 to T48. The 24-h changes are made

up of T0 to T24, T12 to T36, T24 to T48, etc.) Because of

this, we have 4 times as many 12-h changes as trajectories.

c. Calculating e-folding times using a red noise
assumption

A red noise (AR1) process generates a statistically

stationary time series having a zero mean, constant

FIG. 4. Climatological average, cloud-top height inferred,MODIS-derived PBL depths for our four regions of study

for all available data during the years 2007–08.
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variance, and samples that are correlated in time through

partial persistence of the signal, unlike white noise,

which is uncorrelated in time. Red noise time series show

an exponential decrease of autocorrelation at longer lag

times (Von Storch and Zwiers 1999). Given samples

with a particular lag T at which the lagged autocorrela-

tion is found to be r(T), the e-folding time t that it takes

for the lag correlation to decline by a factor of 1/e can be

calculated:

t5
2T

log[r(T)]
. (1)

For a red noise process, the estimated t should be in-

dependent of the lag T used to estimate it.

Figure 5 shows an example of how we estimate r(T)

from our data, which encompasses anomaly time series

for thousands of trajectories, for the case of cloud cover

and a lag T 5 24h. It shows a scatterplot of initial cloud

cover anomalies (CCA0) along the x axis and their

corresponding 24-h anomalies (CCA24) upon resam-

pling of the trajectories. We sample a circular region

with a radius of 100 km around each sample point along

our trajectories. To reduce clutter, we only plot every

15th point. We split the trajectories into 20 bins of CCA0

with an equal number of trajectories in each bin. Bins

are shown by the differences in color in the scatterplot.

The means of CCA0 and CCA24 are marked with an ‘‘x’’

within each bin. An estimate of the slope and a repre-

sentation of the error (discussed below) is shown by the

black lines.

If CCAt is approximately a red noise time series, we

expect that this scatterplot will have a linear fit whose

slope is the correlation coefficient r(T) (von Storch and

Zwiers 1999, p. 150). The binning by CCA0 shows that

such a linear relationship does exist. Using standard

formulas from linear regression, we also calculate sam-

pling error in the estimated slope r(T). Figure 5 shows

the two-standard-deviation confidence range of the slope.

4. Results

In Fig. 6, we apply the same technique shown in Fig. 5

to CCA for all lags (T5 12, 24, 36, and 48 h) sampled by

our trajectories. The sampling radius is also 100 km. The

scatterplots are omitted, but the bin means are still

shown as well as the confidence interval. Figure 6 shows

that, for all sampling lags, there is a linear relationship

between CCA0 and CCAT, with the slope decreasing for

longer lag times. Also shown are two reference lines, one

showing initial anomalies matched with themselves, which

represents a system with perfect memory [r(T) 5 1], and

another showing our analysis carried out for randomly

matched start and end points [r(T) 5 0].

The e-folding times t in hours estimated from these

lags are noted in the legend of Fig. 6. Their confidence

intervals are deduced from those of r(T). The estimates

FIG. 5. Cloud cover anomalies sampled at 0 h vs those sampled

again at 24 h along every 15th trajectory. Bins of starting cloud

anomalies are shown by different colors. Bin means for CCA0 and

CCA24 are shown as crosses. The confidence interval showing the

2-sigma bounds of a linear fit to the means is plotted with a black line.

FIG. 6. Bin-mean cloud cover anomalies at 0 h vs bin-mean cloud

cover anomalies atT hours for all available trajectories. The e-folding

times (tT) for specific lag times T are shown in the legend. Also

shown are a 1:1 line showing a plot of 0-h observations matched with

themselves (tperfect) and a flat line showing a plot of 0-h observations

randomly matched with 12-h end points (trandom). The 2-sigma

confidence intervals are shown for each lag time and incorporated

into the errors shown in the t values in the legend.

3084 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 73



of t using lags of 24 h or longer are not statistically dis-

tinguishable, consistent with a red noise process. How-

ever, the estimated t is somewhat lower for a lag of 12 h.

Since cloud cover has a substantial diurnal cycle, its

anomalies are perhaps poorly modeled as a red noise

process on subdiurnal time scales.

Figure 7 uses the same conventions as Fig. 6, but for

anomalies of LWP (Fig. 7a),Nd (Fig. 7b), LTS (Fig. 7c),

cloud-top height inferred PBL depth (Fig. 7d), and

v (Fig. 7e). There are fewer bins for the Nd plot as a

result of the daytime-only data availability, which halves

our number of available trajectories. Except for v, the

plots show overwhelmingly linear relationships between

initial and ending mean anomalies for each variable.

Vertical motion is unique in showing curved lines in

these plots, which we interpret as negative v anomalies

(upward motion) being more persistent than positive

v anomalies (downwardmotion). This is reflected in larger

error bounds on the red noise fits t for v throughout.

The thick shaded lines on Fig. 8 show the range of

t values for all of our tracked variables at each lag time

based on the confidence intervals estimated in Figs. 6

and 7. Significant differences in t values are seen be-

tween most variables. Liquid water path and v have the

shortest estimated e-folding times (t ’ 12–17h), meaning

LWP and v anomalies change quickly relative to other

variables following the flow. Cloud cover shows a mar-

ginally longer t of 14–20h. Droplet concentration and

PBL depth show yet longer t values of 24–29 h, except

for PBL depth at 12 h, which curiously shows a much

lower t of only 16h, similar to the shorter t seen for cloud

cover at 12h. Tropospheric stability shows by far the lon-

gest e-folding time, with t between two and three days.

Confidence intervals for v and LWP expand notice-

ably with longer lag times, even overlapping with zero at

48 h. This is because of the lagged autocorrelations de-

grading to nearly zero after 48 h, since t values are only

around 14–20h. Except for LTS, most of the plots are

nearly flat from 24 to 48h. The relative invariance of

t for changing lag times shows that the red noise assump-

tion is reasonable for these variables in the Lagrangian

perspective. Lower-tropospheric stability is unique in

showing a decline in t with increasing lag times, suggesting

that the temporal behavior of LTS along trajectories is

less well represented by a red noise assumption.

a. Diurnal dependence

Figure 9 uses the same conventions as Fig. 8 but shows

e-folding times for each variable separated by whether

trajectories began during the day or night. The darker

FIG. 7. As in Fig. 6, but for anomalies of (a) liquid water path, (b) droplet concentrationNd, (c) lower-tropospheric stability, (d) cloud-top

height inferred boundary layer depth, and (e) 850-mb vertical velocity v.
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lines indicate trajectories that were observed at 0 h

during the night, so at 12 h they have transitioned to day,

then back to night at 24 h. There appear to be some di-

urnal asymmetries for each variable. Cloud cover shows

slightly more persistence for 12-h transitions from night

to day (during its morning breakup), while LWP, LTS,

v, and PBL depth anomalies are slightly more persistent

when cloud cover is filling in during the evening. Nd is

not shown since the daytime-only observations do not

allow for any diurnal breakdown. LWP appears to show

far more spread in t for trajectories originating during

the day, but also greater memory.

b. Sampling radius dependence

In all prior figures, we showed results for a 100-km

sampling radius. In this section, we explore the conse-

quences of varying that radius. In Fig. 10, we plot the

mean Lagrangian decorrelation e-folding time for hours

24, 36, and 48 calculated for sampling radii of 100, 200,

400, 800, and 1200km. We exclude the 12-h lag time

from the mean because the 12-h t estimates often dif-

fered significantly from the later hours. To avoid over-

lapping samples, we only use trajectories with starting

points that are at least as far apart as the sampling

diameter.

For each variable, the e-folding time appears to in-

crease as the sampling radius increases. We have fit

power-law approximations for the growth of t versus

sampling radiusR. These power-law fits are shown as the

dashed lines on the plot, with their functions shown in

the legend. Memory for LWP, cloud cover, v, Nd, and

PBL depth anomalies all appear to increase similarly

with sampling radius as R1/3. For LTS anomalies,

t increases slower with increasing R, with a fit shown

to be closer to R1/6.

c. Regional differences

Because this study relies on data from four distinct

regions, we show how e-folding times differ between

regions in Fig. 11. Values of t along the y axis represent

the mean e-folding time for times 24, 36, and 48h for

each variable shown on the x axis. Cloud cover anoma-

lies show the most consistent t values across all four

regions, while t values for LTS appear least consistent

from region to region. The e-folding times are shortest in

the eastern IndianOcean for every variable butv, which

shows the most consistency between regions. The

southeast Pacific and southeast Atlantic appear to

FIG. 8. Bounds for e-folding times t for all variables tracked

along our trajectories calculated at each lag time (sampling hours

12, 24, 36, and 48 h). Data are for trajectories that begin during the

day and night for all regions combined. Error bounds are estimated

using the 2-sigma confidence intervals shown in the preceding

figures.

FIG. 9. Bounds for e-folding times t for the five tracked variables

that are sampled every 12 h. Darker plots are for trajectories that

start at night (;0130 local time), and lighter plots are for trajec-

tories that start during the day (1330 local time).

3086 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 73



behavemost similarly, with overlap between t values for

five out of six variables tracked. Those two regions also

show the longest e-folding times, except for PBL depth,

where the northeast Pacific shows the strongestmemory.

The southeast Pacific and southeast Atlantic may show

longer time scales because of their greater proximity to

the equator, meaning much of the area within each box

sees a weaker impact from midlatitude high-frequency

‘‘weather noise.’’ The relative difference in t between

each variable is similar across all regions, with LWP and

v showing the shortest memory, cloud cover showing

the slightly longer t, Nd and PBL depth showing longer

and nearly comparable memory, and LTS showing the

longest persistence.

Section 4b shows that time scales of each variable are

positively related to the spatial scales of those variables.

Therefore, one possible explanation for the difference in

t values between regions is that spatial scales may vary

region to region. However, a comparison of variable

spatial scales (e-folding lengths) between regions

showed no consistent, significant difference between

regions.

d. Eulerian versus Lagrangian e-folding times

Figure 12 shows a comparison between the stationary,

Eulerian reference frame and the Lagrangian reference

frame. Stationary observations are taken at each tra-

jectory beginning, but, rather than sampling along a

trajectory, we resample the same location for 12, 24, 36,

and 48 h using the same 100-km sampling radius. In

Fig. 12, we plot the e-folding times for anomalies sampled

along the trajectory alongside the e-folding times for the

Eulerian frame of reference. The linear relationships be-

tween the mean values of initial and lagged anomalies (as

in Fig. 7) are still present in the Eulerian reference frame.

Somewhat surprisingly in regards to earlier work,

the e-folding times in the stationary (Eulerian) refer-

ence frame are either equal to or longer than the

equivalent Lagrangian t values for all variables. Eu-

lerian t values increase with longer lag times for cloud

cover, LWP, and PBL depth, suggesting that the Eu-

lerian anomalies are less well approximated by a red

noise process. For LTS, t declines with longer lag times

for both reference frames. ForNd, the change in t with

longer lag times appears equivalent for both reference

frames, though the stationary t values are longer.

Eulerian t values are somewhat sensitive to where they

are sampled along the trajectories, with larger t values

seen at the trajectory midpoints than at their begin-

nings (not shown).

5. Discussion

Results from this work show that cloud variables and

cloud-controlling variables evolve with distinct quanti-

fiable time scales. A red noise assumption is appropriate

when variables show consistent estimated anomaly

decorrelation e-folding times for different lag times.

Figure 12 indicates that a red noise assumption for

anomalies in most of our variables is a reasonable ap-

proximation in a Lagrangian reference frame, but not

in a stationary reference frame, for which the persis-

tence is longer and estimated t increases substantially

with longer lag. We can think of cloud fields evolving

FIG. 10. Bounds for e-folding times t plotted as a function of

sampling radius R for all tracked variables. The e-folding times are

the average t for hours 24, 36, and 48. Exponential fits are plotted

as the dashed lines, with their functions shown in the figure legend.

FIG. 11. Bounds for e-folding times t for each tracked variable

separated by region. Values of t are the mean e-folding time for

hours 24, 36, and 48.
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rapidly as they advect through and respond to a rela-

tively static spatial pattern of controlling variables.

The difference shown in e-folding times between the

Eulerian and Lagrangian reference frames does not

agree with prior studies mentioned in section 1. Mauger

and Norris (2010) indicated that longer t values would

be present when following the flow, while we show that

t is actually greater at fixed locations. Methodology

differences between studies may differ significantly

enough to make a direct comparison impossible. Fur-

ther, their study region is in the northeast Atlantic,

which is a smaller Sc deck and may behave differently

than the Sc regions in this study.

The Lagrangian persistence time scales of LWP and

v are similar. We suggest that this may not be coinci-

dental, but instead reflects a response of LWP to me-

soscale changes in v, such as shallow, geostrophically

balanced circulations or gravity waves. Indeed, simul-

taneous anomalies of LWP and 2v have a significant

correlation coefficient of 0.3, suggestive of a relation we

might expect: more LWP in regions of persistent

anomalous ascent. Considering that v is derived from a

necessarily imperfect reanalysis, it seems likely that this

correlation may be stronger. Stratocumulus thickness is

also known to respond to gravity waves propagating

along the inversion (e.g., Allen et al. 2013). One might

anticipate a quadrature relationship with a 908 phase

shift betweenv and LWP (which is sensitive to inversion

displacement), but the 12-h time sampling is too coarse

to resolve this.

The Lagrangian persistence time scales of anomalies

of Nd and PBL depth are also similar. In this case, there

is less physical motivation for an underlying systematic

relationship between these variables, except for their

common correlation with meteorological variability.

Indeed, only a weak negative correlation was seen be-

tweenNd and PBL depth. A slightly stronger correlation

was found between lagged values of Nd and values of

PBL depth at T 5 0, indicating a possible eventual in-

fluence on Nd by PBL depth.

There is a curious jump in t for PBL depth and cloud

cover between 12- and 24-h lag times. This significant

increase suggests the presence of other, unaccounted for

cloud-controlling variables that may act to quickly de-

grade anomalies at shorter lag times, which this study

cannot quantify because of our limited 12-hourly sam-

pling. Further study using data with improved temporal

resolution would be valuable.

We suggested a viewpoint that the Lagrangian be-

havior of our variables might be due to the cloud-topped

boundary layer advecting through highly persistent but

spatially variable anomalies of cloud-controlling factors.

In this case, the Lagrangian persistence time scale of

anomalies would be related to their spatial scale at a

fixed time divided by a typical advection speed at which

the PBL moves across these anomalies. Hence, it is

valuable to compute a decorrelation length scale for

each variable, which we show in Fig. 13. To produce

Fig. 13, we create a vector of randomly sampled points

within our regions on each day and then create a second

vector for points that are a specified distance away. The

points in the second vector are chosen in random di-

rections from the initial points but are required to re-

main in our regions of study. We then correlate the two

vectors for a variety of different separation distances to

see how anomalies degrade with increasing distance. All

samples are for a 100-km sampling radius. A similar

approach was used by Barnes and Hartmann (2012) to

characterize the scales of midlatitude eddymotions. The

e-folding length is the distance for which the correlation

coefficient between the two vectors is 1/e. A 1/e line is

shown in gray on the plot.

Figure 13 shows that anomalies with short e-folding

lengths also have short Lagrangian e-folding times,

consistent with our viewpoint. The e-folding lengths for

FIG. 12. Bounds for e-folding times t for each tracked variable

from the moving Lagrangian perspective (light) and the stationary

‘‘Eulerian’’ perspective (dark) plotted vs lag time.
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LWP and v are the smallest, at around 350 km. Cloud

cover, Nd, and PBL depth anomalies show similar

e-folding lengths of around 450 km, and LTS anomalies

show much longer distances, nearly 1400km. These re-

sults show that there is a relationship between the

anomaly Lagrangian time scale and its decorrelation

length scale.

If we assume a typical wind speed of 7m s21 in the

PBL, then it would take roughly 14 h to travel 350km

(approximately the e-folding lengths for LWP and v),

which matches the Lagrangian time scales for LWP and

v. The same can be shown for cloud cover and LTS.

Boundary layer depth and Nd, however, show longer

‘‘Lagrangian memories’’ than can be explained by the

spatial scales of the fields alone, suggesting they may

have internal persistence along trajectories that is not

simply associated with their spatial coherence.

If spatial scales were responsible for our observed

Lagrangian time scales, then we might expect that cor-

relations between Lagrangian observations at T5 0 and

T 5 24 should be greater for trajectories that traveled

shorter distances such that the decline in r with distance

traveled along the trajectory should be similar to that

shown in Fig. 13. To test this, we grouped our trajecto-

ries into four subsets based on distance traveled, then

compared the correlation between Lagrangian obser-

vations atT5 0 andT5 24h.We show these correlation

coefficients as a function of mean distance traveled in

Fig. 14 along with the curves from Fig. 13. Figure 14

shows that correlation coefficients do decrease as tra-

jectory distances increase, but that the decrease with

distance is not as substantial as that shown in Fig. 13,

suggesting that the Lagrangian t value is partially but

not entirely predictable from the spatial scales of the

cloud-controlling variables studied here.

It was hypothesized that regional differences in

spatial scales could explain the differences in time

scales between regions; however, a comparison of

e-folding lengths between regions did not show this to

be the case. No consistent regional pattern was seen

for length scales.

6. Conclusions

A consistent, positive, linear relationship is seen be-

tween initial cloud anomalies and subsequently ob-

served (lagged) anomalies when following the flow in

the PBL within subtropical Sc decks. At lag times longer

than 12h, this relationship is well fit by a red noise

process, in which anomalies decorrelate with a particu-

lar e-folding time scale t. Somewhat different e-folding

times are found for cloud cover (t’ 19h), Nd (t’ 25–

29 h), and PBL depth (t’24–27 h). Lower-tropospheric

stability shows a much longer memory (t’46–63h) but

is less well modeled by a red noise assumption, since its

apparent persistence time scale decreases with lag time.

Vertical velocity and LWP show behavior similar to one

another with shorter time scales (t ’ 13–17h). LWP is

also significantly correlated with 2v, suggesting that

v anomalies on this time scale are a significant control

on LWP.

There is some interaction of these results with the

strong diurnal cycle of mean cloud and boundary layer

properties, which introduces potential nonstationarity

FIG. 13. Correlation coefficients r for concurrently observed

vectors of tracked variables, which are set a specified distance apart

during daytime in all four study regions. Data are for the

years 2007–08.

FIG. 14. Lines are as in Fig. 13. The crosses represent correlation

coefficients between Lagrangian observations at T 5 0 and T 5
24 h for trajectories grouped by distance traveled.
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not captured by a simple red noise process. The esti-

mated persistence time of anomalies for cloud cover

and PBL depth are shorter for a 12-h lag than for 24-h

and longer lags (by 70%–80% for cloud cover and by

55%–85% for PBL depth). The e-folding times also

depend on whether the initial sample time is at night or

daytime; cloud cover shows stronger memory during

morning breakup when transitioning from night to day,

while all other variables show the opposite.

Different stratocumulus regions also show different

behavior. Anomalies in the east Indian Ocean show

shorter t values for every variable, while the southeast

Atlantic and southeast Pacific show the most similar

behavior. Larger averaging regions for samples are also

associated with longer Lagrangian time scales.

A comparison between the Lagrangian and Eulerian

reference frame shows that anomalies appear to have

more persistence at a fixed point and that a red noise

assumption is accurate only when following the flow.

Spatial decorrelation scales of cloud-related variables

are strongly related to their Lagrangian temporal

decorrelation scales. A conceptual model in which the

Lagrangian time scale is predicted by the spatial

decorrelation scale and the advection speed is quali-

tatively, but not quantitatively, accurate in under-

standing these relationships.
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