Reproductive Management of Zoo Animals

Nancy Hawkes, PhD – General Curator

It's not always like it is in the movies ...

Ex situ Propagation

- Absence of natural ranging, predators, resource fluctuations, seasonal changes
- Fragmentation of natural populations is similar to effect in managing zoo populations
- Led by our knowledge of domestics -- but goal is to maximize genetic diversity

Why Breed?

- •Insurance policy for wild populations
- •Ambassadors for education and fund-raising
- Minimize importations
- Stock for reintroductions

American Zoo & Aquarium Association

- •215 accredited institutions
- •106 Species Survival Programs

- •Reproductive Assessment
- Natural Breeding
- Assisted Reproduction
- Handrearing
- •Contraception
- •Reintroduction

Species "rescued" by zoos:

- Arabian oryx
- •Black-footed ferret
- •California condor
- •European bison
- •Guam rail
- •Pere David's deer
- •Red wolf

Golden lion tamarin

Reintroduction

Golden Lion Tamarin Reintroduction

- · one of first SSP species (445 animals @ 150 zoos)
- 500 left in patches of Mata Atlantica
- · 42 founders/gene diversity 96.2%
- · "pipeline zoos" serve as training camps
- · first reintroduction in 1984
- · reintroduction has added 359 animals
- · 95% of reintroduced population wild-born
- · no reintroductions needed in 2002

California Condor

©ZSSD

- Andean condor used as model
- •Artificial incubation and rearing protocols

©ZSSD

Black-footed Ferret

- NA most endangered mammal
- last 18 rescued in 1987
- natural breeding and laparoscopic intrauterine AI to increase population, overcome aggression
- 1991 first reintroduction
- 2600 produced in captivity

How do they do it?

SOCIAL ORGANIZATION

- solitary
- family groups
- female kin groups
- single male groups
- multimale groups
- · parental care
- · communal care

MATING STRATEGY

- monogamy
- polygyny
- polyandry
- promiscuity

When do they do it?

ENVIRONMENTAL CUES

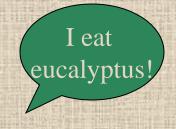
- seasonality/photoperiod
- temperature/humidity
- substrate/nesting resources
- food resources
- population size
- stress

INTERNAL PROCESSES

- puberty
- ovulatory cycle
- ovulatory process
- gestation/parturition

CONSERVATION BREEDING PROGRAM

Animal Management


Assisted Reproduction Technology

- · physical facilities/spatial configuration
- environmental parameters
- husbandry program
- · record-keeping
- genetic context
- social context
- · enrichment
- training
- diet

Nutrition

Genetics

All rhinos endangered

N/S White different subspecies

E/S Black not different subspecies

Sumatran/Bornean managed as one until 1982

karyotyping of subspecies confirmed by fieldwork

now moratorium on breeding hybrids

Sexing

Physical Environment

Golden-breasted Starling

Tree Kangaroo

Social Environment

Flamingo Flock Size

Flock		%	% Nest	% Egg	% Eggs	% Chicks
Size	N	Display	Building	Laying	Hatched	Reared
1-5	8	50	25	25	25	13
6-10	10	40	40	20	20	20
11-20	13	69	69	38	38	38
21-40	8	100	100	75	75	75
40+	5	100	100	100	100	100

From Pickering et al., 1992

Breeding Success ≅ Group Size

AZA Rhinoceros Husbandry Resource Manual 1996

Editors • Michael Fouraker & Tarren Wagener • Fort Worth Zoological Park Assistant Editor • Holly Emery • Fort Worth Zoological Park

Rhino species	Recommended minimum groupings for breeding ^a	Preferred optimal holding for a breeding institution
Black	1.1	2.2 (2 pairs)
White	1.2	2.4 (1 herd/ 1 back-up male)

Cheetah

Reproductive Technology

Tools

- Husbandry Training/Operant Conditioning
- Endocrinology
- Ultrasonography
- Endoscopy/Laparoscopy
- Gamete Collection & Analysis
- Gamete Cryopreservation
- Artificial Insemination
- In vitro Maturation & Fertilization

Exploring methods of estrus detection in sun bears (*Helarctos malayanus*) Cheryl Frederick

GOALS

Adapt Giant Panda protocol to:

- Establish methods to study the reproductive biology of sun bears
- Characterize physiological and behavioral estrus (ovulation & sexual receptivity)
- Develop an assisted reproduction program for sun bears

Get Creative!

How do we collect gametes?

- manual semen collection
- conditioned masturbation
- electroejaculation
- laparoscopy
- uterine flushing
- at necropsy

Manual Collection

Training for Gametes

Conditioned Masturbation

Opportunistic Electroejaculation

Necropsy

Ultrasound-guided Laparoscopy

What do we do with gametes?

- Research/technique development
- Cryopreservation
- Artificial insemination
- *In vitro* maturation
- *In vitro* fertilization
- Embryo transfer/gamete intrafallopian transfer (GIFT)
- Intra-cytoplasmic sperm injection (ICSI)
- Sex sorting

Cryopreservation

First Bengal tiger cubs by embryo transfer

Donoghue et al., 1990

Bongo calf from embryo transfer to eland

Dresser et al., 1984

Sex Selection

A word about training ...

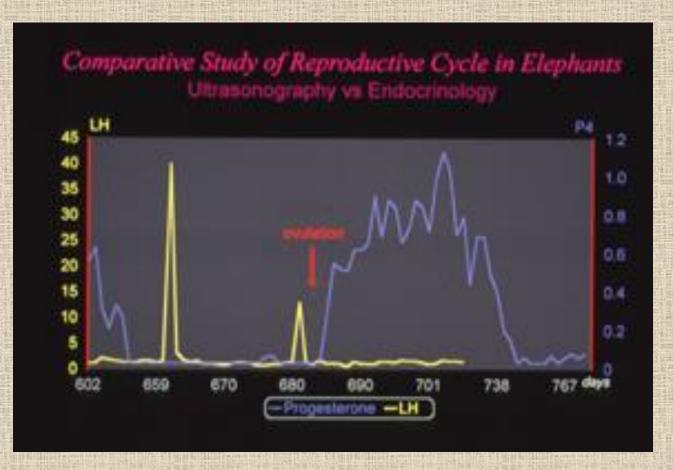
Training for Reproductive Assessments and ART

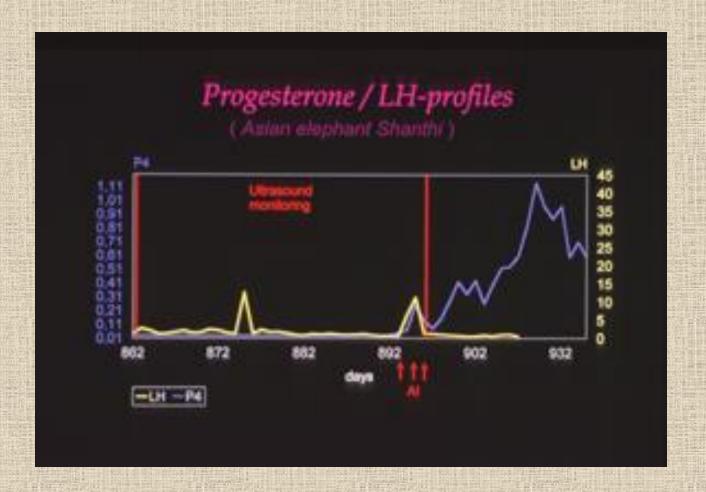
Maternal Care Training

Elephant ART

- husbandry training
- endocrinology
- ultrasonography
- endoscopy
- semen collection
- artificial insemination

Do the Math

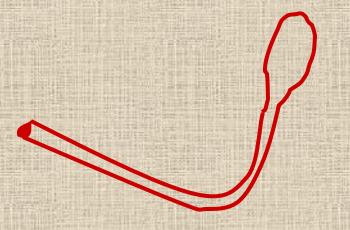

- Elephant SSP recommends an inter-birth interval of 4 years
- Hansa (Chai's first baby) is over 6 years old
- Gestation is 22 months


Plus, they only ovulate 3 times a year!

NZP: Kandula 2001

Thomas Hildebrandt & Frank Goeritz Berlin Institute for Zoo Biology & Wildlife Research

Elephant Estrous Cycle



Onyx

Balloon Catheter

Endoscope

Insemination Catheter

Endoscopic image

Ultrasonographic image