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Figure 1. Line of response (dashed line) misplace due to DO1 
effect. 

[ l l ] .  Using simple Anger logic [12] modules with up to 64 
crystals have been decoded using 4 PMTs [ 111. Instead of 
using the light to decode as many crystals as possible, this 
work investigates methods to share light to extract DO1 
information. The hypothesis is that by controlling how light 
is shared between neighboring crystals (A and B) DO1 
information can be extracted from the ratio of light collected 
using simple Anger logic [(A-B)/(A+B)]. The interface 
between crystals will be designed so that a significant amount 
of light is shared when a photon interacts near the front face 
of a crystal and very little light is shared when an interaction 
occurs near the back of a crystal (see Figure 2). Furthermore, 
the interface will be designed so the front section of the 
detector (where most of the interactions will occur) is more 
sensitive to DO1 effects than the back section of the detector 
unit. For this investigation a detector unit consists of two 
optically coupled crystals. 

11. EXPERIMENTAL METHODS 

BGO, GSO and LSO detector units were built and 
evaluated. The dimensions and surface finishes of the crystals 
used are listed in Table 1. Each of the four detector units 
tested are illustrated in Figures 3-5. Each detector unit was 
coupled to a 16 channel (4x4) metal dynode PMT (R6568, 
Hamamatsu Corp., Japan) for testing. The LSO crystals were 
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Crystal Dimensions (mm) 
BGO 
GSO #1 
GSO #2 

3.9 x 4.1 x 30 
3.9 x 4.1 x 30 

2.6 x 3.5 x 24* 

LSO 2.0 x 2.0 x 20* 

optical 
coupler 

opaque 
reflector 1L 

Surface Finish 
polished 

unpolished 
3.5 x 24 unpolished 
2.6 x 24 polished 

polished 

I PMT I 

Figure 2. DO1 decoding strategy. 

coupled to the PMT via 2mm diameter by 7.5cm long double 
clad optic fibers (Kurraray, Japan). The BGO and GSO 
crystals were directly coupled to the PMT. A high index of 
refraction, 1.74, resin (Cargille, New Jersey) was used to 
facilitate light sharing between crystals. The same resin was 
used to glue the individual sections of GSO detector unit #2 
and the LSO detector unit. For the crystals with polished 
surfaces, the section of the interface coupled with the resin 
was roughened to enhance light sharing. Detector units were 
evaluated using both white latex paint and W E  Teflon as the 
opaque reflective material along the crystal interface. After 
the crystal interface was completed the detector units were 
wrapped in W E  Teflon and coupled to the PMT. 
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Figure 3. Detector design for GSO detector unit #1 and BGO 
detector unit. 
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Figure 4. Detector interface for GSO detector unit #2. Two 2.6 x 
3.5 x 12" crystals are glued together to form crystals A and B. 
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Figure 5. Detector interface for LSO detector unit. Two 2.0 x 2.0 
x lOmm crystals are glued together to form crystals A and B. 

A block diagram of the acquisition setup is illustrated in 
Figure 6 .  The detector unit was exposed to a narrow flux 
(-3") of 5 11 keV photons (flux perpendicular to long axis 
of crystals) using a shielded line source. The photon 
flux was stepped along the length of the detector unit in 
-3" increments. Only signals from the two channels 
directly coupled to the detector unit were acquired. The FERA 
ADC (LeCroy, Chestnut Ridge, NY) integration time was 
200 ns for LSO, 300 ns for GSO and 775 ns for BGO. A 
long background acquisition was taken for the LSO detector 
unit to correct for its natural background activity. 
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black box with 
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Figure 6. Experimental setup. 
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Figure 8. Ratio peak and FWHM values of ratio plot versus DO1 
for GSO detector unit #1 (crystal B). Horizontal line is estimate 
of DO1 uncertainty for depth position. 
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Figure 9. Uncertainty in estimate of DO1 for GSO detector unit 
# l .  
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Figure 10. Uncertainty in estimate of DO1 for GSO detector unit 
#2. 
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Figure 11. Uncertainty in estimate of DO1 for LSO detector unit. 
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Figure 12. Plot of normalization photopeak position (ADC 
channel) versus DOL 

The position of the photopeak (energy spectra) also varied 
with DOI. A plot of the photopeak position versus DOI, 
individually normalized for each detector unit, is shown in 
Figure 12. 

IV. DISCUSSION 
For three of the detector units evaluated a DO1 accuracy of 

-5" was attained for the front section of the crystals and 
better than lOmm accuracy was attained for the front half of 
the detector units. While there was some movement in the 
ratio peaks for the BGO detector unit, almost no DO1 
information was provided. 

While GSO crystals produce more light than BGO 
crystals, the amount of light collected from the front section 
of the GSO detector unit #1 was only slightly more than the 
light collected from the BGO module. Additionally, the light 
collected from the LSO detector unit was approximately equal 
to the light collected from the BGO detector unit. We believe 
that the DO1 decoding technique worked well for GSO detector 

unit #1 because light lost at the unpolished surfaces of the 
GSO crystals makes the collection of light a strong function 
of the initial direction of the light photons (a requirement to 
make this technique work). It is unlikely that light photons 
produced near the rear of the detector unit will survive enough 
surface interactions (reflections) to make it across the 
optically coupled region of the crystal. For polished crystals 
(4x4x30mm), our results indicate that the amount of light 
shared across the optically coupled interface is not very 
correlated with where the light originated. While the LSO 
crystals were polished, the collection of light was still a 
strong function of the initial direction of the light photons. 
This is because for very narrow crystals it takes many more 
reflections for light originating near the rear of the crystal to 
make it to the optical interface. While we glued crystals 
together because we did not have crystals that were long 
enough to evaluate this technique, it (gluing) may have 
serendipitously improved the DO1 decoding performance of 
the LSO and the GSO #2 detector units. 

V. MODULE DESIGN 
The decoding strategy for a detector module consisting of 

32 detector units (total of 64 crystals); each crystal having a 
2mm by 2mm front face is shown in Figure 14 (see next 
page). Fiber optic connectors are used to route the light from 
the crystals to the 16 channel metal dynode PMT (H6568-10, 
Hamamatsu, Japan). Each anode (labeled 1-16) receives light 
from 4 crystals. A discrete decoding scheme (Table 2) will be 
used to determine the detector unit (2 crystals - labeled a-#) of 
interest. Once a detector unit is selected, Anger logic is used 
to determine which crystal the event occurred in and to 
estimate DOL 

Table 2. 
Decoding strategy for 64 crystal detector module (32 - detector 

units). 
detector anode detector anode detector anode detector anode 

unit pair unit pair unit pair unit pair 

b 1-6 j 6-9 r 9-14 z 14-1 
U 1-5 i 5-9 9-13 y 13-1 

c 2-6 k 6-10 s 10-14 uu 14-2 
d 2-7 1 7-10 f 10-15 bb 15-2 
e 3-7 m 7-11 U 11-15 cc 15-3 

g 4-8 o 8-12 w 12-16 ee 16-4 
f 3-8 n 8-11 v 11-16 dd 16-3 

h 4-5 p 5-12 x 12-13 ff 13-4 

VI. CONCLUSION AND FUTURE 
DIRECTIONS 

Some DO1 information can be extracted from a two crystal 
detector unit. The amount of DO1 information is a strong 
function of surface finish and the crystal dimensions. A DO1 
uncertainty of -5" was attained for the front section of the 
GSO and LSO detector units evaluated. The uncertainty 
increased to -10" in the center section of the detector units. 
The uncertainty in the rear of the detector units was limited 
by the end of the crystal. 
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