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Abstract
We present a clustering method to extract the depth of interaction (DOI)
information from an 8 mm thick crystal version of our continuous miniature
crystal element (cMiCE) small animal PET detector. This clustering method,
based on the maximum-likelihood (ML) method, can effectively build look-
up tables (LUT) for different DOI regions. Combined with our statistics-
based positioning (SBP) method, which uses a LUT searching algorithm
based on the ML method and two-dimensional mean–variance LUTs of light
responses from each photomultiplier channel with respect to different gamma
ray interaction positions, the position of interaction and DOI can be estimated
simultaneously. Data simulated using DETECT2000 were used to help validate
our approach. An experiment using our cMiCE detector was designed to
evaluate the performance. Two and four DOI region clustering were applied to
the simulated data. Two DOI regions were used for the experimental data. The
misclassification rate for simulated data is about 3.5% for two DOI regions and
10.2% for four DOI regions. For the experimental data, the rate is estimated
to be ∼25%. By using multi-DOI LUTs, we also observed improvement of
the detector spatial resolution, especially for the corner region of the crystal.
These results show that our ML clustering method is a consistent and reliable
way to characterize DOI in a continuous crystal detector without requiring any
modifications to the crystal or detector front end electronics. The ability to
characterize the depth-dependent light response function from measured data
is a major step forward in developing practical detectors with DOI positioning
capability.

1. Introduction

While there have been numerous techniques proposed to extract depth of interaction (DOI)
information from discrete crystal detectors (Moses et al 1993, Miyaoka et al 1998, Seidel
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et al 1998, Yamamoto and Ishibashi 1998, Saoudi et al 1999, Shao et al 2002, Burr et al
2004), there have been a limited number of methods proposed to extract DOI information
from continuous crystal detectors for PET imaging (LeBlanc et al 2004, Tavernier et al 2005,
Lerche et al 2005). The main techniques have been to model the light distribution in the
detector through computer simulation and use these results to estimate DOI from the collected
light signals. The chief limitation of this approach is that it is extremely difficult to accurately
model light transport and detection in a scintillator detector.

We have previously introduced a statistics-based positioning (SBP) method to improve the
positioning performance of continuous miniature crystal element (cMiCE) detectors (Joung
et al 2002). Our initial detectors used thin crystals (e.g., 3–4 mm thick) to reduce DOI effects
on performance. The SBP algorithm relies upon characterizing the light response function of
each photomultiplier tube (PMT) channel versus event location (i.e., two-dimensional (x, y)

event position) for positioning. Data from a focused point source are collected on a grid of
X–Y positions covering the full face of the crystal. Two SBP look-up tables (LUTs) are created
to characterize the detector, one LUT for the mean and one LUT for the variance of the light
response function value versus (x, y) position. Each event is then positioned according to the
(x, y) location that maximizes the likelihood function between the event data and the SBP
LUTs.

Research efforts to allow the use of thicker crystals have led to this new method to create
LUTs to characterize cMiCE detectors for DOI. Here we propose a maximum-likelihood (ML)
clustering method to effectively build LUTs for different DOI regions. We first validated our
method using simulated data, and then evaluated it using experimental data. The effect of
using multi-DOI LUTs on intrinsic spatial resolution was also investigated.

2. Materials and methods

2.1. Data acquisition and processing

2.1.1. Simulated data. The DETECT2000 simulation package (Knoll et al 1988, Tsang et al
1995, Moisan et al 2000) was used to model the detector module. For this work, the crystal was
modelled as a 48.8 mm × 48.8 mm × 8 mm slab of Lu2SiO5 : Ce3+ (LSO) (index of refraction =
1.82). The two 48.8 mm × 48.8 mm surfaces were polished. One side was directly coupled
(i.e., no light guide) to the PMT with 0.5 mm of 1.44 index of refraction epoxy. The other
side was backed with a diffuse reflector with a reflection coefficient (RC) of 0.98. The short
sides were coated with low reflectivity paint (RC = 0.10). An 8 × 8 array of anode pads (i.e.,
DETECT surfaces), 5.8 mm × 5.8 mm with 6.08 mm centre-to-centre spacing, was placed on
the backside of a 2 mm thick glass PMT window. All interactions were photoelectric (i.e., no
Compton scatter). 2500 photoelectrons were produced per interaction. This accounts for the
light produced by LSO and the quantum efficiency of the PMT’s photocathode. The crystal
was divided into 0.1 mm thick DOI slices. The number of interactions in each DOI slice
was adjusted to take into account the linear attenuation coefficient of LSO. However within
each 0.1 mm zone, the probability of interaction was equally distributed. A more detailed
description of the simulations can be found in (Miyaoka et al 2004).

The grid shown in figure 1 was used to characterize a region of the detector. Symmetry
was used to generate the full detector LUT (i.e., 33 × 33). The grid spacing was 1.52 mm
(i.e., 1/4 the PMT anode pixel pitch distance). Each dot represents a point annihilation photon
flux of 511 keV photons perpendicular to the crystal surface. A flux of 100 000 annihilation
photons was used as the training data set to characterize the detector and a flux of 20 000
annihilation photons was used as the testing data set to validate our ML clustering algorithm.
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Figure 1. Grid locations (1.52 mm spacing) used to characterize the centre and corner sections of
the detector for the simulated data set.

2.1.2. Experimental data. The experimental settings are the same as described in (Ling et al
2006). A cMiCE detector consisting of a 50 mm × 50 mm × 8 mm thick LYSO crystal (Saint
Gobain, Newbury, OH) and 52 mm square, 64-channel flat panel PMT (Hamamatsu H8500,
Japan) was used.

The two large area surfaces of the crystal were polished and the edges were left roughened.
The roughened edges were painted black to reduce reflected light. The crystals were coupled
to the PMT using Bicron BC-630 optical grease (Saint Gobain, Newbury, Ohio). The surface
of the crystal opposite the PMT was painted white.

The point spot flux was produced using a 0.25 mm diameter, 23 µCi Na-22 source (Isotope
Products, Valencia, CA) and a 2 mm × 2 mm cross-section coincidence detector placed at
a distance from the source. Based upon the geometry of the setup, the point spot flux had
a squarish shape and a FWHM (full width at half maximum) of ∼0.52 mm, as illustrated in
figure 2, at the front surface of the crystal. The flux broadens to ∼0.65 mm FWHM at the rear
surface of the crystal. Data were collected with the point spot fluxes normal to the detector
surface on a grid with ∼1 mm spacing in both X and Y, covering over a quarter of the crystal.
70% of the data were kept for the training data set with the remaining 30% used as testing
data.

All 64 channels from the multi-anode, flat panel PMT were acquired for each coincidence
event. Two 32-channel CAEN ADC cards (N792 ADCs, CAEN, Italy) were used for data
acquisition. The data were acquired to an Apple computer running OS X and the Orca data
acquisition software package (from CENPA, University of Washington (Howe et al 2004)).

Raw data were processed in the same manner as in (Ling et al 2006). We applied a
two-step data filtering process on the raw data to preferentially select the data we used to build
our SBP LUTs. In the first step, we set an energy window of ±20% around the photopeak
to select 511 keV events that were photoelectrically absorbed in the crystal, as shown in
figure 3. Second, we used an ‘Anger mask’ technique to reduce the number of Compton
scattered events that were used for characterizing the detector. Events within the photopeak
energy window were positioned using Anger logic. A contour mask at 20% of the maximum
height as illustrated in figure 4 was applied. Events within the mask are more likely single
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Figure 2. Profile of the point spot flux used in the experiment. From the geometry of the
experimental setup, the point spot flux has a FWHM of 0.52 mm.
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Figure 3. Energy window of ±20% around the photopeak.

photoelectric absorption events and are kept for LUT building. By using an ‘Anger mask’, we
are able to eliminate many of the Compton scattered events from biasing the true relationship
between the photon interaction location and the light distribution. The ‘Anger mask’ technique
is further described in section 2.1.3 Anger mask validation.

Because of its stochastic nature, it is not possible to obtain a testing data set with known
spatial position (x, y) and DOI for each event at the same time. Most DOI calibration processes
use an incident photon flux on the side of the crystal, which offers relatively good control over
DOI. However because of the dimensions of our crystal, this methodology would only allow
us to test a small fraction of the crystal along its edge and not the centre section of the detector.

Therefore, for testing we adjusted the point photon flux to a 45◦ incidence angle relative to
the crystal surface along the X-axis, as shown in figure 5. Thus ideally DOI can be referenced
by the x coordinate of the positioned event. An advantage of this acquisition scheme is that
we can obtain testing data sets at any section of the crystal. A second set of testing data to
evaluate our DOI method was collected on the same quarter of the crystal as the training data.
Data were collected on a 10 × 10 grid with ∼1 mm spacing in both axes in the centre and
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Figure 4. Point source using Anger positioning. Only points within the light Anger mask circle
are used for SBP look-up table generation.

Figure 5. An annihilation photon beam incident at 45◦ relative to the surface. The depth of the
first photon interaction in the crystal is equal to the spatial position along the X-axis.

corner regions of the detector. Energy windowing as described above was also applied to the
data. No ‘Anger masking’ is applied to the testing data sets.

2.1.3. Anger mask validation. Data from the DETECT simulations were used to generate
the empirical light propagation probability function pi(x, y, z), which is the probability of
an isotropically outgoing light photon from location (x, y, z) inside the crystal reaching the
ith PMT channel. GEANT was used to simulate the photoelectric absorption and Compton
scattering of 10 000 perpendicularly incident annihilation photons at each characterization
position as shown in figure 1. We assumed a LSO light yield N of 23 000 scintillation
photons/MeV and a PMT efficiency Q of 22.5% (Moisan et al 1997). Non-proportional
scintillation was also implemented by discounting the number of light photons at each
interaction vertex. The correction factor R was taken from the experimental electron response
function from (Rooney et al 1997). For each event the expected number of light photons
received by the ith PMT channel, λi can be calculated by

λi =
∑

j

NQpi( �xj )R(Ej )Ej , (1)

where j is the index for interaction vertex, and Ej is the energy deposited at the j th interaction
vertex. N,Q,pi and R are as described above. We further assume that the response of each
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Figure 6. Effect of Anger mask on removing scattered events. The Anger mask using a 20%
contour, shown as two solid lines in the plot, can effectively exclude large angle Compton scattered
events, while including most of the single interaction photoelectric events.

channel follows an independent Poisson process with λi . Thus a new set of simulated data
with the effect of Compton scattering was generated.

A sample projection of an Anger positioning result is shown in figure 6. Projections of
single interaction photoelectric absorption events and Compton scatter events are also shown.
The two solid lines show the Anger mask using the contour at 20% of the maximum. Events
outside the mask were filtered out. At the cost of excluding a small portion of the single
interaction photoelectric absorption events, a good percentage of the Compton scatter events,
especially those with large angle Compton scatter, were excluded. The results support the
Anger mask technique and that the height of the contour is appropriate.

2.2. Statistics-based (maximum-likelihood) positioning algorithm

Suppose, the distributions of observing PMT outputs M = M1,M2, . . . ,Mn for scintillation
position �x, are independent normal distributions with mean µi(�x) and standard deviation
σi(�x).

The likelihood function for making any single observation mi from distribution Mi given
�x is

L[�x|(m1,m2, . . . , mn)] =
n∏

i=1

1√
2πσi(�x)

exp

[
− (mi − µi(�x))2

2σ 2
i (�x)

]
. (2)

The log-likelihood function reduces to

ln L = −
n∑

i=1

[
(mi − µi(�x))2

2σ 2
i (�x)

+ ln σi(�x)

]
+ const. (3)

Finally, the ML estimator of event position is given by

�̂x = arg min
∀�x,�x=�̂x

n∑
i=1

[
(mi − µi(�x))2

2σ 2
i (�x)

+ ln σi(�x)

]
. (4)
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Figure 7. Sample light collection histogram for a single PMT channel from simulated data,
illustrating non-Gaussian characteristics. For photon fluxes directly over one of the PMT’s anodes
the amount of light collected by that anode (channel) varies significantly with DOI. The non-
exponential shape of the high-end tail is a result of the depth-dependent light collection efficiency
for the PMT channel.

2.3. Look-up table generation

It is obvious that the essential components of the SBP algorithm are µi(�x) and σi(�x). If µ

and σ are functions of �x = (x, y), the SBP method will give an estimate of the 2D spatial
position. If the functions are of �x = (x, y, z), the interaction position can be estimated in
3D simultaneously. Since it is impossible to derive closed form functions, the functions were
determined from the simulated and experimental training data sets.

A sample light collection histogram for a single PMT channel at one of the characterization
locations from the simulated data set is illustrated in figure 7. It is the histogram of the amount
of light received by the PMT channel underneath the point spot flux. The skewness of the
distribution is caused by the depth-dependent light collection efficiency of the PMT channel.
Only data after energy windowing and applying the ‘Anger mask’ were used. Depending upon
the location of the point flux, the histograms may vary in the amount of light received and
the skewness of the distribution. The mean and standard deviation of the light response are
calculated for each PMT channel at each characterization spot.

LUTs representing the mean and standard deviation of the detector response function
(DRF) for each PMT channel versus grid position were generated from the individual light
collection histograms. For the simulated data set, the initial tables were 33 × 33 × 64, where
33 × 33 is the number of grid positions and 64 is the number of PMT channels. Simulations
were not run for each grid position. Instead symmetry of the detector was used to generate
the full LUTs. Cubic spline interpolation was then used to expand the LUTs to 129 × 129
(or 0.38 mm sampling) × 64. The LUTs were used with the SBP algorithm to estimate the
location and DOI of the detected event.

Similar LUTs were built using the experimental training data. The difference is that the
LUTs covered just over a quarter of the detector and the sample spacing was ∼0.2 mm after
interpolation. Unlike the simulation, full LUTs covering the whole detector surface were not
built.

Two sets of LUTs were generated for both the simulated and experimental data sets. The
first set of LUTs , or 2D LUTs, was for the mean and standard deviation of the PMT signals
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using the filtered training data at each grid position, which depends only on the X and Y
position. For the second set of tables, the data were first divided into two or four DOI regions
by the ML clustering method discussed below. For each of the DOI regions, LUTs of mean
and standard deviation were calculated and then combined into multi-DOI LUTs.

2.4. Maximum-likelihood clustering algorithm

Our ML clustering algorithm utilizes the fact that the light distribution pattern varies
continuously and smoothly with DOI so scintillation events happening in similar DOI regions
of the crystal will produce similar light distribution patterns. Our method clusters the events
based on the similarity in the empirically measured light distribution patterns, instead of
modelling the distribution.

The major steps of the ML clustering algorithm are described below.

Step 1. For the filtered training data at each position, find the PMT channel N receiving the
maximum amount of light. Separate the data into two initial groups, as illustrated by the solid
line in figure 8(a). Group 1 is events with pulse height in channel N less than the median.
Group 2 is events with pulse height in N greater than the median.

Step 2. For each of the sets of data (i.e., groups 1 and 2) generate the mean µ
(j)

i and standard
deviation σ

(j)

i , where i is the number of the PMT channel and j is the group number.

Step 3. For each event calculate the likelihood ratio (LR) between groups 1 and 2:

LR = L[Group 1|(m1,m2, . . . , mn)]

L[Group 2|(m1,m2, . . . , mn)]
. (5)

Separation in LR can be used to tune the number of events falling in each group. Here
we choose the separation value to be 1. After all the data has been sorted go back to step 2
and iterate.

Step 4. After a stable separation is reached, the final mean and standard deviation are generated
where they represent the light response LUTs for groups 1 and 2, respectively. The testing
data sets will be used to validate that the two groups correspond to front (close to entrance
surface) and back (close to PMT) DOI regions of the detector.

The idea behind the initial grouping in step 1 is that the signal from channel N correlates
with interaction depth, as interactions near the photocathode will have a large amount of light
in this channel and a smaller fraction of the light will shine on this channel when the interaction
is farther away.

In step 3, we proposed to set the separation at LR = 1, which does not force an equal
number of events to be assigned to groups 1 and 2. Instead we believe that a ‘natural’ separation
will be more powerful in differentiating the future testing events than a ‘forced’ separation
when the fraction of events assigned to each depth is predetermined.

DOI ranges corresponding to different DOI regions were calculated from the number of
events clustered in each group. For two DOI regions, the two regions are separated at a depth
of 4.24 mm. The DOI region of [0, 4.24 mm] will be referred to as front; [4.24 mm, 8 mm]
region will be referred to as back. For four DOI regions, the separation depths are 1.95 mm,
3.95 mm and 5.93 mm.

For the algorithm as described we are only dividing the detector into two DOI regions
for the experimental data. In principle the detector can be divided into more DOI regions,
where the maximum number will mainly be limited by the statistics of the data used to
characterize the detector.
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Figure 8. Sample light collection function after clustering from the simulated data set (a) two
DOI regions clustering result, (b) four DOI regions clustering result. The solid lines in the plots
illustrate the initial guess of the DOI groupings. Depending upon the location of the photon flux
on the crystal face, the amount of overlap can be greater or less than shown.

3. Results

3.1. Method validation using simulated data

The ML clustering algorithm was first validated using the DETECT2000 simulated data. The
training data set was separated into two and four DOI regions. A sample light collection
histogram after ML clustering is shown in figure 8. 2D and multi-DOI LUTs are also shown
in figure 9. The characteristics of the multi-DOI LUTs for different DOI were as we expected.
The LUT for events interacting near the PMT is more localized; the light distribution for
events interacting near the entrance surface of the crystal is more spread out.

The DOI results from the SBP method were examined against the true DOI from
simulation. Misclassification rates, defined as the number of misclassified events divided
by the total number of events, were calculated for each testing data set.
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(a)

(c)

(b)

Figure 9. Sample 2D and 2-DOI 3D LUTs from simulated data: (a) the mean LUT for a given
channel; (b), (c) mean LUT of front (b) and back (c) DOI regions.

Table 1. Misclassification rate for simulated data.

Misclassification rate (%)

LUT used Centre Corner

Two DOI regions 3.5 ± 0.5 4.6 ± 1.0
Four DOI regions 10.2 ± 0.7 13.9 ± 4.6

The sample averages of the estimated DOI using the multi-DOI LUTs versus the true
DOI from simulation were plotted in figure 10. Different DOI regions determined previously
were separated by solid lines in the graphs. Results are summarized in table 1. For 2-depths,
the misclassification rate is 3.5% for points in the centre section of the detector and 4.6%
for the corner section. For 4-depths, the misclassification rates are 10.2% and 13.9% for the
centre and corner sections, respectively. The results show that the ML clustering method
can effectively cluster events into four DOI groups according to the similarity of their light
distribution pattern.

3.2. Performance evaluation using experimental data

An experimental light collection histogram after ML clustering is shown in figure 11.
The 45◦ incident angle experimental testing data were positioned using SBP with multi-

DOI LUTs derived from the cMiCE training data set. DOI results were examined using the
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Figure 10. DOI results of the simulated data set using (a) 2-DOI and (b) 4-DOI LUTs. The
horizontal axis is the true DOI from simulation; the vertical axis is the average of the estimated
DOI for all points at each depth.

estimated spatial positions. Since the flux is incident at a 45◦ angle to the surface of the crystal
along the X-axis, we would expect that all events should have the same Y position, whereas
they should be spread out along the X-axis, as illustrated in figures 12 and 13. The region of
interaction was determined as the 8 mm interval with the most number of events, shown as the
section between the two solid lines in figure 12. Events outside the interaction region were
excluded from further investigation. An enlarged view of the interaction region is shown in
figure 14. The top graph in figure 14 is the average DOI region number for each estimated
X position. Since group 1 corresponds to the front and group 2 corresponds to the back,
figure 14 correctly illustrates the gradual change of depth with position with respect to the
X-axis. DOI results from three adjacent flux positions with ∼1 mm spacing are illustrated in
figure 15.
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Figure 11. Sample light collection histogram after clustering from the experimental data. The
solid line represents the initial guess for the separation of the DOI groups.
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Figure 12. SBP results with 2-DOI LUT projected to the X-axis. The events in the front region
are mainly on the right side; events in the back region are on the left side. This result is consistent
with the experimental setup.

The calculated MRs (misclassification rates) for the experimental data are higher than
those for the simulated data. The estimated X position was used as the true DOI. For example,
in figure 14, all events with X position between 7.74 mm and 11.5 mm are considered events
happening in the front layer; those between 3.5 mm and 7.74 mm are considered in the back
layer. Misclassified events are those that are assigned to the wrong group. The average
MR for the centre section of the detector was 24.7 ± 2.1%. Note that this estimate is not
adjusted for the intrinsic spatial resolution of the detector and therefore is an upper bound on
the misclassification rate.

There are a number of factors that can contribute to the MR. The three main ones are
discussed. The first is the size of source. Since the source has a finite size of 0.52 mm in
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Figure 13. SBP results with 2-DOI LUT projected to Y-axis. As expected the estimated Y positions
for both the front and back group are the same.
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Figure 14. Top: E[ ˆDOI |X̂] versus X̂; Bottom: enlarged view of the interaction region (region
between solid lines in figure 12).

diameter, at any X position, the DOI can be off by up to ∼0.7 mm. The second is uncertainty
in the spatial positioning. The intrinsic spatial resolution limits the accuracy of our depth
estimate. The third is Compton scattering. Multi-interaction events falling within the energy
window can lead to incorrect DOI estimation. This is a limitation of almost all DOI detector
implementations.

The first testing data set, i.e., the perpendicularly incident data, was positioned using
both the 2D LUT and the 2-DOI LUT. As shown in table 2, the intrinsic spatial resolution at
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Figure 15. Overlay of three E[ ˆDOI |X̂] versus X̂ curves. Point flux was stepped in ∼1 mm
increments along the X-axis. Except for the statistical noise, the results are consistent with each
other.

Table 2. Intrinsic resolution results.

Resolution in X (mm) Resolution in Y (mm)

LUT used Centre Corner Centre Corner

2D LUT 1.30 ± 0.16 2.3 ± 0.5 1.35 ± 0.13 2.4 ± 0.6
2-DOI LUT 1.27 ± 0.11 1.60 ± 0.38 1.30 ± 0.09 1.79 ± 0.58

the centre section was maintained, while significant improvement was observed at the corner
section of the detector.

4. Summary and conclusion

Our ML clustering method proved to be a consistent and reliable way to generate DOI LUTs,
thus making it possible to characterize the 3D LRF of our cMiCE detector. High spatial
resolution is maintained in the centre and is improved near the edge of the detector, while
extracting DOI information. The SBP algorithm uses the mean and variance to characterize
the LRF. The model assumes a normal distribution for the light probability density functions.
After clustering, the approximation of the normal distribution is better met. This is the main
reason for the improvement of spatial resolution, especially in the area near the edge of the
crystal.

A strength of this method is that no extra treatments to the standard cMiCE crystal or
measurements are needed. Thus it is simple to implement. Another feature of this method
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is that it is coherent with the SBP algorithm. DOI and spatial positions can be estimated
simultaneously.

Since we do not consider other sources of noise in the detector system, such as the
noise from the PMT, the misclassification rate by our algorithm will be greater than the
simulation result. For our experimental results, the main reason for misclassification of
events is Compton scattering. It is also the main reason the misclassification rate is so
different between our simulated and experimental results. From our experimental results (i.e.,
figure 14), misclassification due to Compton scatter is 15–20%. In the transition region
additional sources of error are the size of source, uncertainty in estimating X position, and
intrinsic error from the algorithm.

Being able to extract depth of interaction from PET detectors can have a tremendous
impact on future PET detector designs. For commercial, human PET systems, detectors that
provide some DOI information will allow systems to be built with smaller ring diameters.
Having a smaller ring diameter will translate into lower cost scanners or scanners with a
longer axial field of view. A scanner with a longer axial field of view can shorten imaging
times for patient studies. For specialty PET systems that require ultrahigh spatial resolution
(e.g., <2 mm FWHM) detectors that provide some DOI information can lead to scanners
with much higher detection efficiency. This is especially important for small animal imaging
systems where the injected dose may be significantly limited by the specific activity of the
labelled compound (e.g., for receptor imaging studies).

We will further examine the performance of the ML clustering method on even thicker
cMiCE detectors. We will also evaluate the impact of DOI capability on the performance
of a small animal PET scanner using cMiCE detectors through simulation and experiment.
Furthermore, the effect of Compton scattering and other factors on misclassification rate will
be studied through simulation.
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