
First VPLanet Developers Workshop

Lesson 7
Primary Variables

Overview

Lectures 7-9 address substantive changes to VPLanet

Five steps to adding a Primary Variable
- Confirm the variables must be a primary variable
- Is it multi-module?
- Declarations
- Initializations
- Implementation

Is it a Primary Variable?

Adding a PV is a lot of work, make sure it’s necessary!

A PV is a parameter explicitly evolved by VPLanet

It becomes part of The Matrix; its evolution can affect timestepping

Adding one, adds a new governing equation to VPLanet

In most cases, the new parameter is not primary
- output
- auxiliary property
- option

Is the PV Multi-Module?

If the PV is affected by multiple modules, things are more complicated

The initial steps are the same, but multi-module PV’s have more steps

For intermediate development, we focus on single-module PVs

Multi-module PVs require updates to module.c
- This lecture should provide the groundwork, then follow examples

in the code

Declaring Primary Variables

The first step in adding a PV is to add it to the BODY struct

Let’s call our example PV “PrimaryVariable

Nothing fancy here, but we obviously need it!

Declaring Primary Variables

Next we need to add several variable to the UPDATE struct in vplanet.h

This includes variables specific to the module(s) that can affect it

Let’s call the single module that modifies our PV “Physics”

We need to add the following variables:
- iPrimaryVariable (an ID for the PV)
- iNumPrimaryVariable (number of modules that affect it)
- dPrimaryVariable (the current value of the PV)
- iPrimaryVariablePhysics (ID for the module affecting the PV)
- double *pdDPrimaryVariableDt (pointer to PV’s derivative)

Declaring Primary Variables

Next, we must declare a typedef function for the PV in vplanet.h

typedef void (*fnFinalizeUpdatePrimaryVariableModule)(BODY*,
UPDATE*,int*,int,int,int);

This is a bit complicated, but each PV needs a function that finishes
off its addition to The Matrix (we’ll return to this later)

Next we need to add a matrix of the function class to MODULE:

This line enables the code to call the function later

Declaring Primary Variables

The next step is to #define a number for this PV in vplanet.h:

#define VPRIMARYVARIABLE 2000

This is an ID that will go in update.iPrimaryVariable and/or
update.iPrimaryVariablePhysics

VPLanet is very careful about accounting for which derivatives are
in each element of The Matrix

Note that these PV ID macros all start with “V” for variable

Declaring Primary Variables

The final declaration step is to write the actual derivative function

double fdDPrimaryVariableDt(BODY *body, SYSTEM *system,
int *iaBody) {

commands

return derivative
}

Note that the argument list is required as written

The array of ints is the list of body IDs that are needed to compute
the derivative

Initialization

Now we’re ready to start allocating memory for the UPDATE struct
and assigning values

We begin in update.c and the InitializeUpdate function

This is a big function that contains the following pieces:
- Initialize number of modules affecting a PV to 0
- Initialize PVs that require multiple modules
- Allocate the 2nd dimension of The Matrix
- A loooong list of setting up PVs
- Note this function is nearly 3000 lines long!

For our new PV, the first step is easy!

update[iBody].iNumPrimaryVariable = 0;

Initialization

After setting all NumPV’s to zero, we then count how many modules
will affect each PV

We’ll return to these functions later, but for now just assume that
iNumPrimaryVariable is set to 1 because InitializeUpdatePhysics
set it to 1

After some more memory allocations, we’re ready to set up the
UPDATE struct for our new PV

Initialization

The first block of line perform some basic functions
- 210: Assume PV doesn’t get used
- But if it does, change its index to iVar (which increments per PV)
- Assign the PV ID to and accounting variable
- Assign number of PV eqns that modify it
- Allocate some memory

Note the pdVar member is a pointer; if you change it, you change the
derivative value stored in memory, too!

Initialization

The next block of lines allocates tmpUpdate struct memory
- Necessary for Runge-Kutta to capture midpoint derivatives
- Recall this is necessary to avoid allocating memory each timestep
- Memory allocations are very expensive in C

Initialization

The last set of line perform more initializations
FinalizeUpdate assigns some accounting variables,

and increments iEqn (more later)
After calculating the number of equation, we can then allocate

enough memory for The Matrix

Here we encounter a subtlety I glossed over:
There are actually 2 instances of “The Matrix”
fnUpdate is the matrix of function pointers
update.daDerivProc contains the values of those derivativces

Initialization

Now let’s look at how to add the PV to the module “Physics”

Type tells VPLanet how to “update” the PV
iNumBodies is the number of bodies that affect the derivative
iaBody is the list of bodies
The pdDPrimary… member is a pointer to this module’s derivative

Initialization

Now let’s look at how to add the PV to the module “Physics”

Next, add a line in AssignPhysicsDerivatives that actually assigns the
function to The Matrix

This function is called from Verify

Initialization
Now we can add some functions we mentioned earlier

This function increments/sets some accounting variables
If PrimaryVariable was not previously set for this body, add

1 to the number of variable associated with the body
Regardless of that point, we know we must increment the number of

equations that modify PrimaryVariable

Initialization
Next we add a NullDerivative function, a utility that might be helpful,

so it’s best to include while you’re setting up the PV

To null, we set the function pointer to return a function that returns
a small number (~1e-308)

Setting it to zero would cause dynamical timestepping to break

Finishing Up
The final piece of mandatory code is assign the FinalizeUpdate

function in AddModulePhysics

This sets the function pointer to complete the process of adding the PV

With this, VPLanet can now calculate the evolution of the PV
But you probably still need to add options and outputs to make it work
You may also need to add code to PropsAux, ForceBehavior,

InitializeBody, InitializeTmpBody, and InitializeTmpUpdate
The final steps are to add examples and tests to complete the process!

