
First VPLanet Developers Workshop

Lesson 6
How to Add an Option

Overview

Five steps:
- Determine which module(s) the option applies to
- Define a new integer ID
- Add text to InitializeOption
- Create Read function
- Add Verify step (if necessary)

The framework between outputs and options is similar
- We’ll spend some time on Verify in this lecture

We’ll go over reading in mass for this lecture

Step 1: Which Module(s)?

Mass is necessary for every module, so its ID goes in options.h

The syntax is almost identical to output, but OPT replaces OUT

If your new option is module specific, put it in the appropriate
header file, e.g. poise.h

Step 2: Define and Integer ID

Step 3: Update InitializeOptions
As with output, we begin by defining values in the OPTIONS struct

Many fields relate to keeping
track of if/where the option
was found in a file

Others relate to negative
units

Others keep track of the cast

Others declare which file(s)
the option can exist in

Step 3: Update InitializeOptions

The first set of lines define the strings associated with the option
(Note that inside VPLanet, string prefixes are “c” for char)
First, we set the option name, which must begin with the cast prefix
Then we set the description (pretty simple, no long description needed)
Next is a string describing the default value (Line 4379)
Then the negative unit, if applicable (use astropy conventions!)
Then the dimension (unit), for use with bigplanet

Step 3: Update InitializeOptions

The next block of lines set the numerical values of the option
Line 4382 sets the default value (MEARTH defined in vplanet.h)
Then an integer for the type or cast:

- Boolean = 0
- Integer = 1
- Double = 2
- String = 3
- For an array, add 10

Step 3: Update InitializeOptions

Next on line 4384, we tell VPLanet this option can exist in multiple files
Then is the conversion factor for negative arguments
The iModuleBit field defines which modules the option applies to

- Each module has a unique bit; options that apply to all are set to 0
Line 4387 lets VPLanet know that negative options are allowed
The iFileType distinguishes between primary file (0) and body file (1)
Finally, we define the ReadOption function for the function pointer array

Step 4: Write the ReadOption Function

ReadOptions must all have the same argument list
lTmp is the line number
This function reads a double, which is placed in dTmp

- other options are bTmp, iTmp and cTmp (plus arrays)

Step 4: Write the ReadOption Function

AddOptionDouble searches for the option
If found, the argument goes in dTmp, line number in lTmp
If option not a double, use the appropriate cast (examples to come)

Step 4: Write the ReadOption Function

If the option is found, lTmp >= 0, and the first if-then block is entered
NotPrimaryInput checks if the option is in the Primary Input File

- This is not checked automatically, so include if necessary

Step 4: Write the ReadOption Function

The next lines assign the member of the BODY struct
Since dMass has negative option, if negative do the conversion
If positive, adjust value based on user-defined units
Note that offset between body number and file number!

Step 4: Write the ReadOption Function

UpdateFoundOption records the position of the option in the file
Finally, if the option was not found, assign the default
All options should have a default value; can lead to user error!

Step 4: Write the ReadOption Function

Reading integer options has similar format
Here we assign the # of digits to be output to the CONTROL struct

Step 4: Write the ReadOption Function

This option can only be defined once, so we check for duplication
We also check that the argument is in range
LineExit provides a helpful error message

Step 4: Write the ReadOption Function

Reading in strings is slightly more complicated
- C is not good at handling strings

In general strings are converted to integers in a struct
Please #define IDs; no “magic numbers”!

From ReadOptions to VerifyOptions

In the ReadOption function, you can do minimal checking of arguments
- Unphysical values
- Out of bounds
- Undefined strings

Verify is for more complicated checks across multiple options

Verify also initializes many values, couples modules, and finishes
setting up structs

At the end of Verify, the options must be fully vetted, and an integration
is ready to begin

Top-Level Verify Function

Top-Level Verify Function

The order of these functions is
important!

The first half of Verify is pretty
straight-forward

Initializing CONTROL, filling out
members of structs, etc.

Top-Level Verify Function

Things get more complicated in the
second half

VPLanet must ensure module
combinations are OK

VerifyImK2 ensures interiors are
self-consistent (tidal Q depends

on temperature, but temperature
depends on tidal Q)

At the end, calculate AuxProps and
derivatives

Finally, set first step of the integration

Digging into Verify

The user can set the following:
- Mass
- Radius
- Density
- A mass-radius relationship

The code only keeps track of mass
and radius

VerifyMassRad converts 4 options
into 2 BODY struct members

Note functions like TripleLineExit
and VerifyTwoOfThreeExit

Function continues…

Finishing Up Your New Option
As with outputs, please write unit tests so your code will continue

to work

Note that for coverage statistics, exit lines should be excluded:

if (dTmp < 0) {
 if (control->Io.iVerbose >= VERBERR) { // LCOV_EXCL_LINE
 fprintf(stderr,"ERROR: %s must be >= 0.\n",options->cName); //LCOV_EXCL_LINE
 }
 LineExit(files->Infile[iFile].cIn,lTmp); // LCOV_EXCL_LINE
}

if (dTmp < 0) {
 // LCOV_EXCL_START
 if (control->Io.iVerbose >= VERBERR) {
 fprintf(stderr,"ERROR: %s must be >= 0.\n",options->cName);
 }
 LineExit(files->Infile[iFile].cIn,lTmp);
 // LCOV_EXCL_STOP
}

or

