
First VPLanet Developers Workshop

Lesson 2
Best Practices and Pro Tips

The VPLanet Lexicon
VPLanet is an executable that accepts a single “primary input file”

The primary input file contains “options” and their “arguments”

It also contains a list of “body files”, which contain their own options

The primary input file and body files are known as “infiles”

Body files include an option to specify the modules to be applied

They also contain an option for “outputs” that are printed to
“forward files”

VPLanet can also write a “log file” that contains the initial and
final conditions of a simulation

More information is available in the Quick Start guide

Command Line Options

-v: verbose. VPLanet will print everything to the screen,
this overrides iVerbose in the in files

-q: quiet. VPLanet will print nothing to the screen,
this overrifes iVerbose in the in files

-h: short help. Display brief info about options and outputs

-H: long help. Display formatted help, with long descriptions
(we use this output to generate online documentation)

Example Primary Input File
General Options
sSystemName solarsystem # System Name
iVerbose 5 # Verbosity level
bOverwrite 1 # Allow file overwrites?
saBodyFiles sun.in $ # List of all bodies files for the system
 venus.in # The $ tells VPLanet to continue to the next line

Input/Output Units
sUnitMass solar # Options: gram, kg, Earth, Neptune, Jupiter, solar
sUnitLength AU # Options: cm, m, km, Earth, Jupiter, solar, AU
sUnitTime YEARS # Options: sec, day, year, Myr, Gyr
sUnitAngle d # Options: deg, rad

Input/Output
bDoLog 1 # Write a log file?
iDigits 6 # Maximum number of digits to right of decimal

Evolution Parameters
bDoForward 1 # Perform a forward evolution?
bVarDt 1 # Use variable timestepping?
dEta 0.01 # Coefficient for variable timestepping
dStopTime 4.6e9 # Stop time for evolution
dOutputTime 1e6 # Output interval for forward file

Example Primary Input File
General Options
sSystemName solarsystem # System Name
iVerbose 5 # Verbosity level
bOverwrite 1 # Allow file overwrites?
saBodyFiles sun.in $ # List of all bodies files for the system
 venus.in # The $ tells VPLanet to continue to the next line

Input/Output Units
sUnitMass solar # Options: gram, kg, Earth, Neptune, Jupiter, solar
sUnitLength AU # Options: cm, m, km, Earth, Jupiter, solar, AU
sUnitTime YEARS # Options: sec, day, year, Myr, Gyr
sUnitAngle d # Options: deg, rad

Input/Output
bDoLog 1 # Write a log file?
iDigits 6 # Maximum number of digits to right of decimal

Evolution Parameters
bDoForward 1 # Perform a forward evolution?
bVarDt 1 # Use variable timestepping?
dEta 0.01 # Coefficient for variable timestepping
dStopTime 4.6e9 # Stop time for evolution
dOutputTime 1e6 # Output interval for forward file

All text after a # is considered a comment

All white space is ignored

Example Primary Input File
General Options
sSystemName solarsystem # System Name
iVerbose 5 # Verbosity level
bOverwrite 1 # Allow file overwrites?
saBodyFiles sun.in $ # List of all bodies files for the system
 venus.in # The $ tells VPLanet to continue to the next line

Input/Output Units
sUnitMass solar # Options: gram, kg, Earth, Neptune, Jupiter, solar
sUnitLength AU # Options: cm, m, km, Earth, Jupiter, solar, AU
sUnitTime YEARS # Options: sec, day, year, Myr, Gyr
sUnitAngle d # Options: deg, rad

Input/Output
bDoLog 1 # Write a log file?
iDigits 6 # Maximum number of digits to right of decimal

Evolution Parameters
bDoForward 1 # Perform a forward evolution?
bVarDt 1 # Use variable timestepping?
dEta 0.01 # Coefficient for variable timestepping
dStopTime 4.6e9 # Stop time for evolution
dOutputTime 1e6 # Output interval for forward file

• The name of an option must be the first string on a line
• Option names are unique, and exact spelling and case are required
• The leading lower cases letter(s) denote the type of argument

b = Boolean (0 or 1)
i = integer
d = double precision
s = string

• If one of those letters is followed by an “a” it means array and
multiple arguments are permitted

• The $ means continue to the next line to obtain the next argument
• The $ and # are the only special characters in the infiles.

Example Primary Input File
General Options
sSystemName solarsystem # System Name
iVerbose 5 # Verbosity level
bOverwrite 1 # Allow file overwrites?
saBodyFiles sun.in $ # List of all bodies files for the system
 venus.in # The $ tells VPLanet to continue to the next line

Input/Output Units
sUnitMass solar # Options: gram, kg, Earth, Neptune, Jupiter, solar
sUnitLength AU # Options: cm, m, km, Earth, Jupiter, solar, AU
sUnitTime YEARS # Options: sec, day, year, Myr, Gyr
sUnitAngle d # Options: deg, rad

Input/Output
bDoLog 1 # Write a log file?
iDigits 6 # Maximum number of digits to right of decimal

Evolution Parameters
bDoForward 1 # Perform a forward evolution?
bVarDt 1 # Use variable timestepping?
dEta 0.01 # Coefficient for variable timestepping
dStopTime 4.6e9 # Stop time for evolution
dOutputTime 1e6 # Output interval for forward file

• VPLanet allows you to input arguments in the most convenient units
for your simulation

• If you include these units in the primary input file, the arguments
propagate to the body files

• If you add these options in a body file, they supersede the arguments
in the primary input file

Example Primary Input File
General Options
sSystemName solarsystem # System Name
iVerbose 5 # Verbosity level
bOverwrite 1 # Allow file overwrites?
saBodyFiles sun.in $ # List of all bodies files for the system
 venus.in # The $ tells VPLanet to continue to the next line

Input/Output Units
sUnitMass solar # Options: gram, kg, Earth, Neptune, Jupiter, solar
sUnitLength AU # Options: cm, m, km, Earth, Jupiter, solar, AU
sUnitTime YEARS # Options: sec, day, year, Myr, Gyr
sUnitAngle d # Options: deg, rad

Input/Output
bDoLog 1 # Write a log file?
iDigits 6 # Maximum number of digits to right of decimal

Evolution Parameters
bDoForward 1 # Perform a forward evolution?
bVarDt 1 # Use variable timestepping?
dEta 0.01 # Coefficient for variable timestepping
dStopTime 4.6e9 # Stop time for evolution
dOutputTime 1e6 # Output interval for forward file

• You can write a log file that contains all the initial and final conditions

• The units of the log file are system units, which are SI (mks)

• We recommend writing a log file for each simulation

• You can also specify the precision of the output: 0 to 16 decimal places

Example Primary Input File
General Options
sSystemName solarsystem # System Name
iVerbose 5 # Verbosity level
bOverwrite 1 # Allow file overwrites?
saBodyFiles sun.in $ # List of all bodies files for the system
 venus.in # The $ tells VPLanet to continue to the next line

Input/Output Units
sUnitMass solar # Options: gram, kg, Earth, Neptune, Jupiter, solar
sUnitLength AU # Options: cm, m, km, Earth, Jupiter, solar, AU
sUnitTime YEARS # Options: sec, day, year, Myr, Gyr
sUnitAngle d # Options: deg, rad

Input/Output
bDoLog 1 # Write a log file?
iDigits 6 # Maximum number of digits to right of decimal

Evolution Parameters
bDoForward 1 # Perform a forward evolution?
bVarDt 1 # Use variable timestepping?
dEta 0.01 # Coefficient for variable timestepping
dStopTime 4.6e9 # Stop time for evolution
dOutputTime 1e6 # Output interval for forward file

• Finally, you can specify the details of your simulation
• Here, we run a forward simulation (backwards is also available)
• We use variable timestepping (highly recommended)
• dEta is a coefficient (<1) that controls accuracy

- Smaller dEta means more accuracy and a slower simulation
• The simulation will run for 4.6 Gyr (sUnitTime = years)
• The output interval will be 1 million years
• Note that you can not simulate evolution in time, and then the

log file will contain all the conditions implied by your body files

Example Body File

Planet a parameters
sName venus # Body's name
saModules atmesc eqtide # Modules to apply, exact spelling required

Physical Properties
dMass -0.815 # Mass, negative -> Earth masses
dRadius -0.9499 # Radius, negative -> Earth radii
dRotPeriod -243. # Rotation period, negative -> days
dObliquity 180. # Retrograde rotation
dRadGyra 0.5 # Radius of gyration (moment of inertia constant)

Orbital Properties
dSemi -0.723 # Semi-major axis, negative -> AU
dEcc 0.006772 # Eccentricity

Output
saOutputOrder Time -SurfWaterMass -RGLimit -OxygenMantleMass

Example Body File

Planet a parameters
sName venus # Body's name
saModules atmesc eqtide # Modules to apply, exact spelling required

Physical Properties
dMass -0.815 # Mass, negative -> Earth masses
dRadius -0.9499 # Radius, negative -> Earth radii
dRotPeriod -243. # Rotation period, negative -> days
dObliquity 180. # Retrograde rotation
dRadGyra 0.5 # Radius of gyration (moment of inertia constant)

Orbital Properties
dSemi -0.723 # Semi-major axis, negative -> AU
dEcc 0.006772 # Eccentricity

Output
saOutputOrder Time -SurfWaterMass -RGLimit -OxygenMantleMass

• All bodies must have a unique name

• saModules is critical! The arguments are all the physical modules to apply

Example Body File

Planet a parameters
sName venus # Body's name
saModules atmesc eqtide # Modules to apply, exact spelling required

Physical Properties
dMass -0.815 # Mass, negative -> Earth masses
dRadius -0.9499 # Radius, negative -> Earth radii
dRotPeriod -243. # Rotation period, negative -> days
dObliquity 180. # Retrograde rotation
dRadGyra 0.5 # Radius of gyration (moment of inertia constant)

Orbital Properties
dSemi -0.723 # Semi-major axis, negative -> AU
dEcc 0.006772 # Eccentricity

Output
saOutputOrder Time -SurfWaterMass -RGLimit -OxygenMantleMass

• Next come option that describe the body, including module-specific
options

• Option names are intended to be self-explanatory
• You can always learn more about options by checking the online

documentation, or running VPLanet with the -h or -H flags

• Note that some arguments are negative, suggesting unphysical values!
• Actually, VPLanet allows negative signs for positive-definite parameters

to force a specific unit
• These “custom units” are generally typical for a star-terrestrial planet
 system
• The custom units are also documented online and with the help flags

Example Body File

Planet a parameters
sName venus # Body's name
saModules atmesc eqtide # Modules to apply, exact spelling required

Physical Properties
dMass -0.815 # Mass, negative -> Earth masses
dRadius -0.9499 # Radius, negative -> Earth radii
dRotPeriod -243. # Rotation period, negative -> days
dObliquity 180. # Retrograde rotation
dRadGyra 0.5 # Radius of gyration (moment of inertia constant)

Orbital Properties
dSemi -0.723 # Semi-major axis, negative -> AU
dEcc 0.006772 # Eccentricity

Output
saOutputOrder Time -SurfWaterMass -RGLimit -OxygenMantleMass

• saOutputOrder tells VPLanet what to write in the forward files
• The order of the outputs is arbitrary

- But we recommend including Time!
• Arguments only need to be unique
• Note the negative signs again; these force custom units
• If no negative sign is prepended, then the output units are those

selected from the sUnit options, e.g. sUnitMass
• You can omit this option, and then no forward file is written

Getting the Most Out of the Onboard Help

Looking for the name of that options/output? -h + grep is your friend!
> vplanet -h | grep XUV

[-]FXUV -- XUV flux. [Negative = W/m^2]
[-]LXUVFlare -- XUV Luminosity from flares. [Negative = LSUN]
LXUVFrac -- Fraction of luminosity in XUV.
[-]LXUVStellar -- Base X-ray/XUV Luminosity. [Negative = LSUN]
[-]LXUVTot -- Total XUV Luminosity. [Negative = LSUN]
[-]PresXUV -- Pressure at base of thermosphere. [Negative = Pa]
[-]RadXUV -- XUV radius separating hydro. dyn. escape and equilibrium. [Negative =
Rearth]
[-]RRCriticalFlux -- Critical XUV Flux that separates RR and energy-limited escape.
[Negative = W/m^2]

Repo Overview

Repo Overview

VPLanet’s repository includes
extensive documentation that is
updated with every pull request (PR)

Repo Overview

This is a link to the ADS entry for
the VPLanet paper. If you use VPLanet,
please cite Barnes et al. (2020), PASP,
132, 24502.

Repo Overview

You all read the Code of Conduct before
the meeting, so you know what it says.
Let’s be good people and, through our
collaborative efforts, find life beyond the
Solar System!

If you have suggestions for how to improve
the Code of Conduct, please let me know!

Repo Overview

VPLanet is on twitter. The account tweets
announcements about papers, new versions,
presentations, workshops, etc.

If you have questions about VPLanet that
you think our community would also like
to know about, tweet it to @VPLanetCode!

Repo Overview

VPLanet is listed on the Astrophysics
Source Code Library.

Repo Overview

VPLanet’s license is MIT. That means
you can pretty much do whatever you
want with the code, including commercialize
it without letting other contributors know.

However, as described in the Code of Conduct,
we hope that you will add your updates to the
repository so the whole world can benefit from
your efforts!

Repo Overview

Currently the repository contains 34 examples
that demonstrate VPLanet’s capabilities. This
suite is not exhaustive, but there is some overlap.

These examples serve as “jumping off points” for
your research. They are templates that you can build
from to perform your own simulations.

Repo Overview

VPLanet runs on all major operating systems.
For Windows 10, we recommend using Microsoft’s
version of Ubuntu, available for free from the
Microsoft Store.

VPLanet may be unstable on any OS released
prior to 2015.

Repo Overview

We use GitHub Actions to test each PR against
a set of unit tests (continuous integration).
These tests ensure that new changes don’t break
previously working functionality.

If the tests are failing, the badge turns red. You
can click on the link to see which tests are failing
and decide if the code is stable for your current
purposes. We try very hard to ensure the main
branch is always passing!

Repo Overview

Currently the CI process checks 334 individual
calculations. There is some overlap between these
tests, so the actual number is probably closer to
300 unique tests.

Repo Overview

Although VPLanet is written in C, it is designed
to seamlessly connect with Python. In addition,
the examples all use Python for generating plots.
Currently VPLanet, and its support scripts, are
verified for Python distributions 3.6 - 3.9.

Repo Overview
The VPLanet team uses Valgrind’s memcheck
feature to test the code for memory errors. For
each unit test, Valgrind checks for issues such
as memory writes/reads beyond an array,
conditional expressions that rely on uninitialized
memory, blocks of memory that become locked,
etc. If all tests pass, this badge is green, and
VPLanet is “memcheck-clean”.

When memcheck is clean, that means we can say
that for every unit test, we have tracked every
single bit for the duration of the execution. But
there may still be bugs due to programming
mistakes!

Repo Overview

Finally, we rely on the third-party application
CodeCov to monitor how many lines of code
are included in our unit tests. Despite 334 tests,
we are still only 74% complete.

You can click on the badge to see details of
which subroutines and lines are checked.

Quick Tour
of the Repo

