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ABSTRACT

We study the dynamical stability of planetary systems consisting of one hypothetical terrestrial-mass planet (1 or
10 M⊕) and one massive planet (10 M⊕–10 Mjup). We consider masses and orbits that cover the range of observed
planetary system architectures (including non-zero initial eccentricities), determine the stability limit through
N-body simulations, and compare it to the analytic Hill stability boundary. We show that for given masses and
orbits of a two-planet system, a single parameter, which can be calculated analytically, describes the Lagrange
stability boundary (no ejections or exchanges) but diverges significantly from the Hill stability boundary. However,
we do find that the actual boundary is fractal, and therefore we also identify a second parameter which demarcates
the transition from stable to unstable evolution. We show the portions of the habitable zones (HZs) of ρ CrB,
HD 164922, GJ 674, and HD 7924 that can support a terrestrial planet. These analyses clarify the stability
boundaries in exoplanetary systems and demonstrate that, for most exoplanetary systems, numerical simulations of
the stability of potentially habitable planets are only necessary over a narrow region of the parameter space. Finally,
we also identify and provide a catalog of known systems that can host terrestrial planets in their HZs.
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1. INTRODUCTION

The dynamical stability of extra-solar planetary systems
can constrain planet formation models, reveal commonalities
among planetary systems, and may even be used to infer the
existence of unseen companions. Many authors have studied the
dynamical stability of our solar system and extra-solar planetary
systems (see Wisdom 1982; Laskar 1989; Rasio & Ford 1996;
Chambers 1996; Laughlin & Chambers 2001; Goździewski et al.
2001; Ji et al. 2002; Barnes & Quinn 2004; Ford et al. 2005;
Jones et al. 2006; Raymond et al. 2009, for example). These
investigations have revealed that planetary systems are close to
dynamical instability, illuminated the boundaries between stable
and unstable configurations, and identified the parameter space
that can support additional planets.

From an astrobiological point of view, dynamically stable
habitable zones (HZs) for terrestrial-mass planets (0.3 M⊕ <
Mp < 10 M⊕) are the most interesting. Classically, the HZ is
defined as the circumstellar region in which a terrestrial-mass
planet with favorable atmospheric conditions can sustain liquid
water on its surface (Huang 1959; Hart 1978; Kasting et al.
1993; Selsis et al. 2007, but see also Barnes et al. 2009).

Previous work (Jones et al. 2001, 2006; Menou & Tabachnik
2003; Sándor et al. 2007) investigated the orbital stability
of Earth-mass planets in the HZ of systems with a Jupiter-
mass companion. In their pioneering work, Jones et al. (2001)
estimated the stability of four known planetary systems in the
HZ of their host stars. Menou & Tabachnik (2003) considered
the dynamical stability of 100 terrestrial-mass planets (modeled
as test particles) in the HZs of the then known 85 extra-solar
planetary systems. From their simulations, they generated a
tabular list of stable HZs for all observed systems. However,
that study did not systematically consider eccentricity, is not
generalizable to arbitrary planet masses, and relies on numerical
experiments to determine stability. A similar study by Jones
et al. (2006) also examined the stability of Earth-mass planets
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in the HZ. Their results indicated that 41% of the systems in
their sample had “sustained habitability.” Their simulations were
also not generalizable and based on a large set of numerical
experiments which assumed that the potentially habitable planet
was on a circular orbit. Most recently, Sándor et al. (2007)
considered systems consisting of a giant planet with a maximum
eccentricity of 0.5 and a terrestrial planet (modeled as a test
particle initially in circular orbit). They used relative Lyapunov
indicators and fast Lyapunov indicators to identify stable zones
and generated a stability catalog, which can be applied to
systems with mass ratios in the range 10−4 to 10−2 between the
giant planet and the star. Although this catalog is generalizable
to massive planets between a Saturn mass and 10 Mjup, it still
assumes that the terrestrial planet is on a circular orbit.

These studies made great strides toward a universal definition
of HZ stability. However, several aspects of each study could
be improved, such as a systematic assessment of the stability of
terrestrial planets on eccentric orbits, a method that eliminates
the need for computationally expensive numerical experiments,
and a wide coverage of planetary masses. In this investigation,
we address each of these points and develop a simple analytic
approach that applies to arbitrary configurations of a giant-plus-
terrestrial planetary system.

As of March 2010, 376 extra-solar planetary systems have
been detected, and the majority (331, ≈88%) are single-planet
systems. This opens up the possibility that there may be
additional planets not yet detected, in the stable regions of these
systems. According to Wright et al. (2007), more than 30%
of known single-planet systems show evidence for additional
companions. Furthermore, Marcy et al. (2005a) showed that
the distribution of observed planets rises steeply toward smaller
masses. The analyses of Wright et al. (2007) and Marcy et al.
(2005a) suggest that many systems may have low-mass planets.4

4 Wittenmyer et al. (2009) did a comprehensive study of 22 planetary
systems using the Hobby–Eberly Telescope (Ramsey et al. 1998) and found no
additional planets, but their study had a radial velocity (RV) precision of just
10 ∼ 20 m s−1, which can only detect low-mass planets in tight orbits.
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Therefore, maps of stable regions in known planetary systems
can aid observers in their quest to discover more planets in
known systems.

We consider two definitions of dynamical stability. (1) Hill
stability. A system is Hill stable if the ordering of planets is
conserved, even if the outer-most planet escapes to infinity.
(2) Lagrange stability. In this kind of stability, every planet’s
motion is bounded, i.e., no planet escapes from the system and
exchanges are forbidden. Hill stability for a two-planet, non-
resonant system can be described by an analytical expression
(Marchal & Bozis 1982; Gladman 1993), whereas no analytical
criteria are available for Lagrange stability so we investigate
it through numerical simulations. Previous studies by Barnes
& Greenberg (2006, 2007) showed that Hill stability is a
reasonable approximation to Lagrange stability in the case of
two approximately Jupiter-mass planets. Part of the goal of our
present work is to broaden the parameter space considered by
Barnes & Greenberg (2006, 2007).

In this investigation, we explore the stability of hypothetical
1 M⊕ and 10 M⊕ planets in the HZ and in the presence of giant
and super-Earth planets. We consider non-zero initial eccentric-
ities of terrestrial planets and find that a modified version of the
Hill stability criterion adequately describes the Lagrange stabil-
ity boundary. Furthermore, we provide an analytical expression
that identifies the Lagrange stability boundary of two-planet,
non-resonant systems.

Utilizing these boundaries, we provide a catalog of fractions
of HZs that are Lagrange stable for terrestrial-mass planets in
all the currently known single-planet systems. This catalog can
help guide observers toward systems that can host terrestrial-
size planets in their HZ.

The plan of our paper is as follows. In Section 2, we
discuss the Hill and Lagrange stability criteria, describe our
numerical methods, and present our model of the HZ. In
Section 3, we present our results and explain how to identify
the Lagrange stability boundary for any system with one
�10 M⊕ planet and one �10 M⊕ planet. In Section 4, we
apply our results to some of the known single-planet systems.
Finally, in Section 5, we summarize the investigation, discuss its
importance for observational programs, and suggest directions
for future research.

2. METHODOLOGY

According to Marchal & Bozis (1982), a system is Hill stable
if the following inequality is satisfied:

− 2M

G2M3
�

c2h > 1 + 34/3 m1m2

m
2/3
3 (m1 + m2)4/3

+ · · · , (1)

where M is the total mass of the system, G is the gravitational
constant, M� = m1m2 + m2m3 + m3m1, c is the total angular
momentum of the system, h is the total energy, and m1, m2, and
m3 are the masses of the planets and the star, respectively. We
call the left-hand side of Equation (1) β and the right-hand side
βcrit. If β/βcrit > 1, then a system is definitely Hill stable, if not
the Hill stability is unknown.

Studies by Barnes & Greenberg (2006, 2007) found that for
two Jupiter-mass planets, if β/βcrit � 1 (and no resonances
are present), then the system is Lagrange stable. Moreover,
Barnes et al. (2008a) found that systems tend to be packed
if β/βcrit � 1.5 and not packed when β/βcrit � 2. Barnes &
Greenberg (2007) pointed out that the vast majority of two-
planet systems are observed with β/βcrit < 1.5 and hence

Table 1
Properties of Systems Considered in This Study

“Known” Planet a (AU)

10 Mjup (0.25, 4)
5.6 Mjup (0.25, 4)
3 Mjup (0.25, 4)
1.77 Mjup (0.25, 4)
1 Mjup (0.25, 4)
1.86 MSat (0.5, 2)
1 MSat (0.5, 2)
56 M⊕ (0.5, 2)
30 M⊕ (0.5, 2)
17.7 M⊕ (0.5, 2)
10 M⊕ (0.5, 2)

are packed. Recently, Kopparapu et al. (2009) proposed that
the HD 47186 planetary system, with β/βcrit = 6.13, the
largest value among known, non-controversial systems that have
not been affected by tides,5 may have at least one additional
(terrestrial mass) companion in the HZ between the two known
planets.

To determine the dynamically stable regions around single-
planet systems, we numerically explore the mass, semimajor
axis, and eccentricity space of model systems, which cover the
range of observed extra-solar planets. In all the models (listed
in Table 1), we assume that the hypothetical additional planet
is either 1 M⊕ or 10 M⊕ and consider the following massive
companions (which we presume are already known to exist): (1)
10 Mjup, (2) 5.6 Mjup, (3) 3 Mjup, (4) 1.77 Mjup, (5) 1 Mjup, (6)
1.86 Msaturn, (7) 1 Msaturn, (8) 56 M⊕, (9) 30 M⊕, (10) 17.7 M⊕,
and (11) 10 M⊕. Most simulations assume that the host star has
the same mass, effective temperature (Teff), and luminosity as
the Sun. Orbital elements such as the longitude of periastron �
are chosen randomly before the beginning of the simulation
(Equation (1) only depends weakly on them). For “known”
Saturns and super-Earths, we fix the semimajor axis a at 0.5 AU
(and the HZ is exterior) or at 2 AU (the HZ is interior). For
super-Jupiter and Jupiter mass, a is fixed either at 0.25 AU or at
4 AU. These choices allow at least part of the HZ to be Lagrange
stable. Although we choose configurations that focus on the HZ,
the results should apply to all regions in the system.

We explore dynamical stability by performing a large num-
ber of N-body simulations, each with a different initial condi-
tion. For the known planet, we keep a constant and vary its
initial eccentricity, e, from 0 to 0.6 in steps of 0.05. We cal-
culate β/βcrit from Equation (1), by varying the hypothetical
planet’s semimajor axis and initial eccentricity. In order to find
the Lagrange stability boundary, we perform numerical simula-
tions along a particular β/βcrit curve, with Mercury (Chambers
1999), using the hybrid integrator. We integrate each configura-
tion for 107 yr, long enough to identify unstable regions (Barnes
& Quinn 2004). The time step was small enough that energy
is conserved to better than 1 part in 106. A system is consid-
ered Lagrange unstable if the semimajor axis of the terrestrial-
mass planet changes by 15% of the initial value or if the two
planets come within 3.5 Hill radii of each other.6 In total, we

5 See http://xsp.astro.washington.edu for an up-to-date list of β/βcrit values
for the known extra-solar multiple planet systems.
6 A recent study by Cuntz & Yeager (2009) notes that the Hill-radius
criterion for ejection of an Earth-mass planet around a giant planet may not be
valid. Our stability maps shown here are, therefore, accurate to within the
constraint highlighted by that study.

http://xsp.astro.washington.edu
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Figure 1. Comparison of Hill and Lagrange stability. Colored curves (shown also in different line styles) are contours of β/βcrit (the Hill boundary lies at β/βcrit = 1).
Points on the curve designate N-body simulations: red points were unstable, blue stable for an Earth-mass planet. The green shaded region represents the HZ and
the black point is the “known” Jupiter-mass planet. The leftmost curves with no stable configurations correspond to τu, the rightmost curves that are fully stable
represent τs . (Note that for these cases we consider eccentricities >0.9 in order to identify τu.)

(A color version of this figure is available in the online journal.)

ran ∼70,000 simulations which required ∼35,000 hr of CPU
time.

We use the definition of the “eccentric habitable zone” (EHZ;
Barnes et al. 2008b), which is the HZ from Selsis et al. (2007),
with 50% cloud cover, but assumes that the orbit-averaged flux
determines surface temperature (Williams & Pollard 2002). In
other words, the EHZ is the range of orbits for which a planet
receives as much flux over an orbit as a planet on a circular orbit
in the HZ of Selsis et al. (2007).

3. RESULTS: DYNAMICAL STABILITY IN AND
AROUND HABITABLE ZONES

3.1. Jupiter-mass Planet with Hypothetical Earth-mass Planet

In Figures 1 and 2, we show representative results of our nu-
merical simulations from the Jupiter-mass planet with hypothet-
ical Earth-mass planet case discussed in Section 2. In all panels
of Figures 1 and 2, the blue squares and red triangles repre-
sent Lagrange stable and unstable simulations, respectively, the
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Figure 2. Same as Figure 1, only now the Jupiter-mass planet is at 4 AU. The range of values of τs is approximately the same as in Figure 1: from 1.002 to 0.756.

(A color version of this figure is available in the online journal.)

black circle represents the “known” planet and the shaded green
region represents the EHZ. For each case, we also plot β/βcrit
contours calculated from Equation (1). In any given panel, as
a increases, the curves change from all unstable (all red trian-
gles) to all stable (all blue squares), with a transition region in
between.

We designate a particular β/βcrit contour as τs, beyond which
(larger values) a hypothetical terrestrial-mass planet is stable
for all values of a and e, for at least 107 yr. We tested that
τs is the first β/βcrit (close to the known massive planet) that
is completely stable (only blue squares). For β/βcrit curves
below τs, all or some locations along those curves may be
unstable; hence, τs is a conservative representation of the

Lagrange stability boundary. Similarly, we designate τu as
the largest value of β/βcrit for which all configurations are
unstable. Therefore, the range τu < β/βcrit < τs is a transition
region, where the hypothetical planet’s orbit changes from
unstable (τu) to stable (τs). Typically, this transition occurs over
10−3β/βcrit. Although Figures 1 and 2 only show the curves in
this transition region, we performed many more integrations at
larger and smaller values of β/βcrit, but exclude them from the
plot to improve readability. For all cases, all our simulations
with β/βcrit > τs are stable, and all with β/βcrit < τu are
unstable.

These figures show that the Lagrange stability boundary sig-
nificantly diverges from Hill stability boundary, as the eccen-
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Table 2
Best-fit Properties for Equation (2)

Coefficients 1 M⊕ 10 M⊕

τs τu τs τu

c1 1.0018 1.0098 0.9868 1.0609
c2 −0.0375 −0.0589 0.0024 −0.3547
c3 0.0633 0.04196 0.1438 0.0105
c4 0.1283 0.1078 0.2155 0.6483
c5 −1.0492 −1.0139 −1.7093 −1.2313
c6 −0.2539 −0.1913 −0.2485 −0.0827
c7 −0.0899 −0.0690 −0.1827 −0.4456
c8 −0.0316 −0.0558 0.1196 −0.0279
c9 0.2349 0.1932 1.8752 0.9615
c10 0.2067 0.1577 −0.0289 0.1042
R2 0.996 0.997 0.931 0.977
σ 0.0065 0.0061 0.0257 0.0141
Max. dev. 0.08 0.08 0.15 0.05

tricity of the known Jupiter-mass planet increases. Moreover,
τs is more or less independent (within 0.1%) of whether the
Jupiter-mass planet lies at 0.25 AU or at 4 AU. If an extra-solar
planetary system is known to have a Jupiter-mass planet, then
one can calculate β/βcrit over a range of a and e, and those
regions with β/βcrit > τs are stable. We show explicit examples
of this methodology in Section 4.

We also consider host star masses of 0.3 M� and perform
additional simulations. We do not show our results here, but
they indicate that the mass of the star does not effect stability
boundaries.

3.2. Lagrange Stability Boundary as a Function of Planetary
Mass and Eccentricity

In this section, we consider the broader range of “known”
planetary masses discussed in Section 2 and listed in Table 1.
Figures 1 and 2 show that as the eccentricity of the “known”
planet increases, τs and τu appear to change monotonically. This
trend is apparent in all our simulations and suggests that τs and
τu may be described by an analytic function of the mass and
eccentricity of the known planet. Therefore, instead of plotting
the results from these models in a–e space, as shown in Figures 1
and 2, we identified these analytical expressions that relate τs and
τu to mass m1 and eccentricity e1 of the known massive planet.
Although these fits were made for planets near the host star, these
fits should apply in all cases, irrespective of its distance from
the star. In the following equations, the parameter x = log[m1],
where m1 is expressed in Earth masses and y = e1. The stability
boundaries for systems with hypothetical 1 M⊕ and 10 M⊕ mass
companion are

τj = c1 +
c2

x
+ c3y +

c4

x2
+ c5y

2 + c6
y

x
+

c7

x3

+ c8y
3 + c9

y2

x
+ c10

y

x2
, (2)

where j = s, u indicates stable or unstable and the coefficients
for each case are given in Table 2.

The coefficients in the above expression were obtained by
finding a best-fit curve to our model data that maximizes the R2

statistic,

R2 = 1 −
∑n

i

(
τmodel
i − τ fit

i

)2

∑n
i

(
τmodel
i − τmodel

)2 , (3)

where τmodel
i is the ith model value of τ from numerical

simulations, τ fit
i is the corresponding model value from the curve

fit, τmodel is the average of all the τmodel values, and n = 572 is the
number of models (including mass, eccentricity, and locations
of the massive planet). Values close to 1 indicate a better quality
of the fit. In Figure 3, the top panels (a) and (b) show contour
maps of τs as a function of log[m1] and e1 between model data
(solid line) and best fit (dashed line). The R2 values for 1 M⊕
companion (Figure 3(a)) and 10 M⊕ companion (Figure 3(b))
are 0.99 and 0.93, respectively, for τs. In both the cases, the
model and the fit deviate when the masses of both the planets
are near terrestrial mass. Therefore, our analysis is most robust
for more unequal mass planets. The residuals between the model
and the predicted τs values are also shown in Figure 3(c) (1 M⊕
companion) and Figure 3(d) (10 M⊕ companion). The standard
deviation of these residuals is 0.0065 and 0.0257 for 1 M⊕ and
10 M⊕, respectively, though the 1 M⊕ case has an outlier which
does not significantly effect the fit. The maximum deviation is
0.08 for 1 M⊕ and 0.15 for 10 M⊕ cases.

The expression given in Equation (2) can be used to identify
Lagrange stable regions (β/βcrit > τs) for terrestrial-mass
planets around stars with one known planet with e � 0.6 and
may provide an important tool for the observers to locate these
planets.7 Once a Lagrange stability boundary is identified, it is
straightforward to calculate the range of a and e that is stable
for a hypothetical terrestrial-mass planet, using Equation (1). In
the next section, we illustrate the applicability of our method
for selected observed systems.

4. APPLICATION TO OBSERVED SYSTEMS

The expressions for τs given in Section 3.2 can be very useful
in calculating the parts of HZs that are stable for all currently
known single-planet systems. In order to calculate this fraction,
we used orbital parameters from the Exoplanet Data Explorer
maintained by the California Planet Survey consortium8 and
selected all 236 single-planet systems in this database with
masses in the range 10 Mjup–10 M⊕ and e � 0.6.

Table 3 lists the properties of the example systems that we
consider in Sections 4.1–4.4 along with the orbital parameters
of the known companions and stellar mass. The procedure to
determine the extent of the stable region for a hypothetical
1 M⊕ and 10 M⊕ is as follows. (1) Identify the mass (m1) and
eccentricity (e) of the known planet. (2) Determine τs from
Equation (2) with coefficients from Table 2. (3) Calculate β/βcrit
over the range of orbits (a and e) around the known planet
using Equation (1). (4) The Lagrange stability boundary is the
β/βcrit = τs curve.

4.1. Rho CrB

As an illustration of the internal Jupiter + Earth case, we
consider the Rho CrB system. Rho CrB is a G0V star with a
mass similar to the Sun, but with greater luminosity. Noyes et al.
(1997) discovered a Jupiter-mass planet orbiting at a distance
of 0.23 AU with low eccentricity (e = 0.04). Since the current
inner edge of the circular HZ of this star lies at 0.90 AU, there is
a good possibility for terrestrial planets to remain stable within
the HZ. Indeed, Jones et al. (2001) found that stable orbits may

7 Note that a more thorough exploration of the mass and eccentricity
parameter space may indicate regions of resonances on both sides of the
stability. Hence, we advice caution in applying our expression in those regions.
8 http://exoplanets.org/

http://exoplanets.org/
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Figure 3. In the top panels, we show contours of τs from numerical simulations (solid line) compared to the best fit (dashed line) in log[m1]—e space, for 1 M⊕
(panel (a)) and 10 M⊕ (panel (b)) companions. The expression for the best fit is given in Equation (2) with appropriate coefficients given in Table 1. The bottom panels
show residuals between the numerical results and the best fit, with a standard deviation of 0.0065 for 1 M⊕ companion (panel (c)) and 0.0257 for 10 M⊕ companion
(panel (d)).

(A color version of this figure is available in the online journal.)

Table 3
Observed Parameters of Example Systems Presented in Section 4

System M sin i a (AU) e M�(M�)

Rho CrB 1.06 Mjup 0.23 0.06 (±0.028) 0.97
HD 164922 0.36 Mjup 2.11 0.05 (±0.14) 0.94
GJ 674 12 M⊕ 0.039 0.20 (±0.02) 0.35
HD 7924 9.26 M⊕ 0.057 0.17 (±0.16) 0.832

be prevalent in the present day circular HZ of Rho CrB for
Earth-mass planets.

Figure 4(a) shows the EHZ (green shaded) assuming a 50%
cloud cover in the a–e space of Rho CrB. The Jupiter-mass planet
is the blue filled circle. Corresponding τs, values calculated from
Equation (2) for 1 M⊕ companion (0.998, dashed magenta line)
and 10 M⊕ companion (1.009, black solid line) are also shown.
These two contours represent the stable boundary beyond which
an Earth mass or super-Earth will remain stable for all values of
a and e (cf. Figures 1(a) and (b)). The fraction of HZ (FHZ) that
is stable for 1 M⊕ is 72.2% and for 10 M⊕ is 77.0%. Therefore,
the Lagrange stable region is larger for a larger terrestrial planet.
We conclude that the HZ of rho CrB can support terrestrial-mass
planets, except for very high eccentricity (e > 0.6).

These results are in agreement with the conclusion of Jones
et al. (2001) and Menou & Tabachnik (2003), who found that a
planet with a mass equivalent to the Earth–moon system, when
launched with e = 0 within the HZ of Rho CrB, can remain
stable for ∼108 yr. They also varied the mass of Rho CrB b
up to 8.8 Mjup and still found that the HZ is stable. Our models

also considered systems with 3 Mjup, 5 Mjup, and 10 Mjup and
our results show that even for these high masses, if the initial
eccentricity of the Earth-mass planet is less than 0.3, then it is
stable.

To show the detectability of a 10 M⊕ planet, we have also
drawn an RV contour of 1 m s−1 (red curve), which indicates
that a 10 M⊕ planet in the HZ is detectable. A similar contour
for an Earth-mass planet is not shown because the precision
required is extremely high.

4.2. HD 164922

Butler et al. (2006) discovered a Saturn-mass planet
(0.36 Mjup) orbiting HD 164922 with a period of 1150 days
(a = 2.11 AU) and an eccentricity of 0.1. Although it has a low
eccentricity, the uncertainty (0.14) is larger than the value itself.
Therefore, the appropriate Saturn-mass cases could legitimately
use any e in the range 0.0 < e < 0.25, but we use e = 0.1.

Figure 4(b) shows the stable regions in the EHZ (green
shaded) of HD 164922 for hypothetical Earth (magenta) and
super-Earth (black) planets. The Saturn-mass planet (blue filled
circle) is also shown at 2.11 AU. About 28% of the HZ in
HD 164922 is stable for a 10 M⊕ planet (for eccentricities �0.6),
whereas for Earth-mass planets only 10% of the HZ is stable.
We again show the detection limit for a 10 M⊕ case.

4.3. GJ 674

GJ 674 is an M dwarf star with a mass of 0.35 M� and an
effective temperature of 3600 K. Bonfils et al. (2007) found
a 12 M⊕ with an orbital period and eccentricity of 4.69 days
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Figure 4. Comparison of Lagrange stable regions and HZs for four known systems. The magenta curves represent τs for a 1 M⊕ planet, black 10 M⊕ (cf. Figure 3). For
panels (a), (c), and (d), stable orbits lie to the right of these curves, but lie to the left in panel (b). The red solid line shows the 1 m s−1 RV amplitude of a hypothetical
terrestrial planet on a circular orbit. The green region is the HZ.

(A color version of this figure is available in the online journal.)

(a = 0.039 AU) and 0.20, respectively. Figure 4(c) shows
the EHZ of GJ 674 in a–e space. Also shown are the known
planet GJ 674 b (filled blue circle), EHZ (green shaded), and
detection limit for an Earth-mass planet (red curve). The values
of τs for 1 M⊕ and 10 M⊕ planets, from Equation (2), are
0.973 (magenta) and 1.0 (black), respectively. Note that the
FHZ that is stable for 1 M⊕ is slightly greater (79.1%) than
10 M⊕ planet (78.8%), which differs from the previous systems
we considered here. A similar behavior can be seen in another
system (HD 7924) that is discussed in the next section. It seems
that when the planet mass ratio is approaching 1, the HZ of
a 10 M⊕ mass planet offers less stability at high eccentricities
(>0.6) than a 1 M⊕ planet. But as noted in Section 3.2, this
analysis should be weighted with the fact that our fitting
procedure is not as accurate for a 10 M⊕ planet than a 1 M⊕
planet.

4.4. HD 7924

Orbiting a K0 dwarf star at 0.057 AU, the super-Earth
HD 7924 b was discovered by NASA-UC Eta-Earth survey
by the California Planet Search group (Howard et al. 2009), in
an effort to find planets in the mass range of 3–30 M⊕. It is
estimated to have an M sin i = 9.26 M⊕ with an eccentricity of
0.17. Figure 4(d) shows that τs values for hypothetical 10 M⊕
(magenta) and 1 M⊕ (black line) planets are 1.00 and 0.98,

respectively. Unlike GJ 674, where only part of the HZ is stable,
around 94% of HD 7924’s HZ is stable for these potential
planets. Furthermore, we have also plotted an RV contour of
1 m s−1 arising from the 10 M⊕ planet (red curve). This indicates
that this planet may lie above the current detection threshold and
may even be in the HZ.

Howard et al. (2009) do find some additional best-fit period
solutions with very high eccentricities (e > 0.45), but combined
with a false alarm probability of >20%, they conclude that these
additional signals are probably not viable planet candidates.
Further monitoring may confirm or forbid the existence of
additional planets in this system.

4.5. Fraction of Stable HZ

For astrobiological purposes, the utility of τs is multi-fold.
Not only it is useful in identifying stable regions within the HZ
of a given system, but it can also provide (based on the range
of a and e) what FHZ is stable. We have calculated this fraction
for all single-planet systems in the Exoplanet Data Explorer as
of 2010 March 25. The distribution of fractions of currently
known single-planet systems is shown in Figure 5 and tabulated
in Table 4. A bimodal distribution can be clearly seen. Nearly
40% of the systems have more than 90% of their HZ stable and
38% of the systems have less than 10% of their HZ stable. The
total FHZ that is stable in all known single-planet systems is
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Table 4
Lagrange Stable (τs) and Unstable (τu) Boundaries, and the Corresponding FHZ Stable for Terrestrial-mass Planets in Known Single-planet Systems

System m1(Mjup) a (AU) e τs τu FHZ τs τu FHZ
(1 M⊕) (1 M⊕) (1 M⊕) (10 M⊕) (10 M⊕) (10 M⊕)

HD 142b 1.3057 1.04292 0.26 0.9347 0.9323 0.000 0.9552 0.9320 0.000
HD 1237 3.3748 0.49467 0.51 0.7407 0.7401 0.213 0.7549 0.7450 0.000
HD 1461 0.0240 0.06352 0.14 0.9920 0.9780 0.976 1.0200 0.9200 0.959
WASP-1 0.9101 0.03957 0.00 1.0022 0.9990 0.990 1.0200 0.9980 0.991
HIP 2247 5.1232 1.33884 0.54 0.7138 0.7111 0.000 0.7490 0.7387 0.000

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and
content.)
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Figure 5. Distribution of fraction of stable HZ for hypothetical 1 M⊕ planet
(panel (a)) and 10 M⊕ planet (panel (b)), in currently observed single-planet
systems. Of the total systems (236) that we considered, nearly 40%(95) of
the systems have �90% of their HZ stable (peak near 1). About 38%(91) of the
systems have less than 10% of their HZ stable (peak near 0). We do not consider
systems that have planetary masses >10 Mjup or if e > 0.6.

(A color version of this figure is available in the online journal.)

∼50%. Note that if we include systems with masses >10 Mjup
and also e > 0.6 (which tend to have a ∼ 1 AU; Wright et al.
2009), the distribution will change and there will be relatively
fewer HZs that are fully stable.

5. SUMMARY

We have empirically determined the Lagrange stability
boundary for a planetary system consisting of one terrestrial-
mass planet and one massive planet, with initial eccentricities
less than 0.6. Our analysis shows that for two-planet systems
with one terrestrial-like planet and one more massive planet,
Equation (2) defines Lagrange stable configurations and can

be used to identify systems with HZs stable for terrestrial-
mass planets. Furthermore, in Table 4 we provide a catalog
of exoplanets, identifying the FHZ that is Lagrange stable for
terrestrial-mass planets. A full version of the table is available
in the electronic edition of the journal.9

In order to identify stable configurations for a terrestrial
planet, one can calculate a stability boundary (denoted as τs in
Equation (2)) for a given system (depending on the eccentricity
and mass of the known planet) and calculate the range of
a and e that can support a terrestrial planet, as shown in
Section 4. For the transitional region between unstable and
stable (τu < β/βcrit < τs), a numerical integration should be
made. Our results are in general agreement with previous studies
(Menou & Tabachnik 2003; Jones et al. 2006; Sándor et al.
2007), but crucially our approach does not (usually) require a
large suite of N-body integrations to determine stability.

We have only considered two-planet systems, but the possibil-
ity that the star hosts more currently undetected planets is real
and may change the stability boundaries outlined here. How-
ever, the presence of additional companions will likely decrease
the size of the stable regions shown in this study. Therefore,
those systems that have fully unstable HZs from our analysis
will likely continue to have unstable HZs as more companions
are detected (assuming that the mass and orbital parameters of
the known planet do not change with these additional discover-
ies). The discovery of an additional planet outside the HZ that
destabilizes the HZ is also an important information.

As more extra-solar planets are discovered, the resources
required to follow-up grows. Furthermore, as surveys push to
lower planet masses, time on large telescopes is required, which
is in limited supply. The study of exoplanets seems poised to
transition to an era in which systems with the potential to host
terrestrial-mass planets in HZs will be the focus of surveys.
With limited resources, it will be important to identify systems
that can actually support a planet in the HZ. The parameter τs

can therefore guide observers as they hunt for the grand prize in
exoplanet research, an inhabited planet.

Although the current work focuses on terrestrial-mass planets,
the same analysis can be applied to arbitrary configurations
that cover all possible orbital parameters. Such a study could
represent a significant improvement on the work of Barnes
& Greenberg (2007). The results presented here show that
β/βcrit = 1 is not always the Lagrange stability boundary,
as they suggested. An expansion of this research to a wider
range of planetary and stellar masses and larger eccentricities
could provide an important tool for determining the stability
and packing of exoplanetary systems. Moreover, it could reveal
an empirical relationship that describes the Lagrange stability

9 Updates to this catalog are available at http://gravity.psu.edu/∼ravi/planets/.

http://gravity.psu.edu/~ravi/planets/
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boundary for two-planet systems. As new planets are discovered
in the future, the stability maps presented here will guide future
research on the stability of extra-solar planetary systems.

R.K. gratefully acknowledges the support of National Sci-
ence Foundation Grants PHY 06-53462 and PHY 05-55615,
and NASA Grant NNG05GF71G, awarded to the Penn-
sylvania State University. R.B. acknowledges funding from
NASA Astrobiology Institute’s Virtual Planetary Laboratory
lead team, supported by NASA under cooperative agreement
NNH05ZDA001C. This research has made use of the Exoplanet
Orbit Database and the Exoplanet Data Explorer at exoplan-
ets.org. The authors acknowledge the Research Computing and
Cyberinfrastructure unit (http://rcc.its.psu.edu) of Information
Technology Services at the Pennsylvania State University for
providing HPC resources and services that contributed to the
research results reported in this paper.

REFERENCES

Barnes, R., & Greenberg, R. 2006, ApJ, 665, L163
Barnes, R., & Greenberg, R. 2007, ApJ, 665, L67
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Sándor, Zs., Suli, Á., Érdi, B., Pilat-Lohinger, E., & Dvorak, R. 2007, MNRAS,

375, 1495
Selsis, F., et al. 2007, A&A, 476, 1373
Williams, D. M., & Pollard, D. 2002, Int. J. Astrobiol., 1, 61
Wisdom, J. 1982, AJ, 87, 577
Wittenmyer, R. A., Endl, M., Cochran, W. D., Levison, H. F., & Henry, G. W.

2009, ApJS, 182, 97
Wright, J. T., et al. 2007, ApJ, 657, 533
Wright, J. T., et al. 2009, ApJ, 693, 1084

http://rcc.its.psu.edu
http://dx.doi.org/10.1086/507521
http://adsabs.harvard.edu/abs/2006ApJ...647L.163B
http://adsabs.harvard.edu/abs/2006ApJ...647L.163B
http://dx.doi.org/10.1086/521144
http://adsabs.harvard.edu/abs/2007ApJ...665L..67B
http://adsabs.harvard.edu/abs/2007ApJ...665L..67B
http://dx.doi.org/10.1086/589712
http://adsabs.harvard.edu/abs/2008ApJ...680L..57B
http://adsabs.harvard.edu/abs/2008ApJ...680L..57B
http://dx.doi.org/10.1088/0004-637X/700/1/L30
http://adsabs.harvard.edu/abs/2009ApJ...700L..30B
http://adsabs.harvard.edu/abs/2009ApJ...700L..30B
http://dx.doi.org/10.1086/421321
http://adsabs.harvard.edu/abs/2004ApJ...611..494B
http://adsabs.harvard.edu/abs/2004ApJ...611..494B
http://dx.doi.org/10.1089/ast.2007.0204
http://adsabs.harvard.edu/abs/2008AsBio...8..557B
http://adsabs.harvard.edu/abs/2008AsBio...8..557B
http://dx.doi.org/10.1051/0004-6361:20077068
http://adsabs.harvard.edu/abs/2007A&A...474..293B
http://adsabs.harvard.edu/abs/2007A&A...474..293B
http://dx.doi.org/10.1086/504701
http://adsabs.harvard.edu/abs/2006ApJ...646..505B
http://adsabs.harvard.edu/abs/2006ApJ...646..505B
http://dx.doi.org/10.1006/icar.1996.0019
http://adsabs.harvard.edu/abs/1996Icar..119..261C
http://adsabs.harvard.edu/abs/1996Icar..119..261C
http://dx.doi.org/10.1046/j.1365-8711.1999.02379.x
http://adsabs.harvard.edu/abs/1999MNRAS.304..793C
http://adsabs.harvard.edu/abs/1999MNRAS.304..793C
http://dx.doi.org/10.1088/0004-637X/697/2/L86
http://adsabs.harvard.edu/abs/2009ApJ...697L..86C
http://adsabs.harvard.edu/abs/2009ApJ...697L..86C
http://dx.doi.org/10.1038/nature03427
http://adsabs.harvard.edu/abs/2005Natur.434..873F
http://adsabs.harvard.edu/abs/2005Natur.434..873F
http://dx.doi.org/10.1006/icar.1993.1169
http://adsabs.harvard.edu/abs/1993Icar..106..247G
http://adsabs.harvard.edu/abs/1993Icar..106..247G
http://dx.doi.org/10.1051/0004-6361:20011189
http://adsabs.harvard.edu/abs/2001A&A...378..569G
http://adsabs.harvard.edu/abs/2001A&A...378..569G
http://dx.doi.org/10.1016/0019-1035(78)90021-0
http://adsabs.harvard.edu/abs/1978Icar...33...23H
http://adsabs.harvard.edu/abs/1978Icar...33...23H
http://dx.doi.org/10.1088/0004-637X/696/1/75
http://adsabs.harvard.edu/abs/2009ApJ...696...75H
http://adsabs.harvard.edu/abs/2009ApJ...696...75H
http://dx.doi.org/10.1086/340350
http://adsabs.harvard.edu/abs/2002ApJ...572.1041J
http://adsabs.harvard.edu/abs/2002ApJ...572.1041J
http://dx.doi.org/10.1051/0004-6361:20000078
http://adsabs.harvard.edu/abs/2001A&A...366..254J
http://adsabs.harvard.edu/abs/2001A&A...366..254J
http://dx.doi.org/10.1086/506557
http://adsabs.harvard.edu/abs/2006ApJ...649.1010J
http://adsabs.harvard.edu/abs/2006ApJ...649.1010J
http://dx.doi.org/10.1006/icar.1993.1010
http://adsabs.harvard.edu/abs/1993Icar..101..108K
http://adsabs.harvard.edu/abs/1993Icar..101..108K
http://dx.doi.org/10.1088/0004-637X/695/2/L181
http://adsabs.harvard.edu/abs/2009ApJ...695L.181K
http://adsabs.harvard.edu/abs/2009ApJ...695L.181K
http://dx.doi.org/10.1038/338237a0
http://adsabs.harvard.edu/abs/1989Natur.338..237L
http://adsabs.harvard.edu/abs/1989Natur.338..237L
http://dx.doi.org/10.1086/319847
http://adsabs.harvard.edu/abs/2001ApJ...551L.109L
http://adsabs.harvard.edu/abs/2001ApJ...551L.109L
http://dx.doi.org/10.1007/BF01230725
http://adsabs.harvard.edu/abs/1982CeMec..26..311M
http://adsabs.harvard.edu/abs/1982CeMec..26..311M
http://dx.doi.org/10.1143/PTPS.158.24
http://adsabs.harvard.edu/abs/2005PThPS.158...24M
http://adsabs.harvard.edu/abs/2005PThPS.158...24M
http://dx.doi.org/10.1086/345359
http://adsabs.harvard.edu/abs/2003ApJ...583..473M
http://adsabs.harvard.edu/abs/2003ApJ...583..473M
http://dx.doi.org/10.1086/310754
http://adsabs.harvard.edu/abs/1997ApJ...483L.111N
http://adsabs.harvard.edu/abs/1997ApJ...483L.111N
http://adsabs.harvard.edu/abs/1998SPIE.3352...34R
http://adsabs.harvard.edu/abs/1998SPIE.3352...34R
http://dx.doi.org/10.1126/science.274.5289.954
http://adsabs.harvard.edu/abs/1996Sci...274..954R
http://adsabs.harvard.edu/abs/1996Sci...274..954R
http://dx.doi.org/10.1088/0004-637X/696/1/L98
http://adsabs.harvard.edu/abs/2009ApJ...696L..98R
http://adsabs.harvard.edu/abs/2009ApJ...696L..98R
http://dx.doi.org/10.1111/j.1365-2966.2006.11414.x
http://adsabs.harvard.edu/abs/2007MNRAS.375.1495S
http://adsabs.harvard.edu/abs/2007MNRAS.375.1495S
http://dx.doi.org/10.1051/0004-6361:20078091
http://adsabs.harvard.edu/abs/2007A&A...476.1373S
http://adsabs.harvard.edu/abs/2007A&A...476.1373S
http://dx.doi.org/10.1017/S1473550402001064
http://adsabs.harvard.edu/abs/2002IJAsB...1...61W
http://adsabs.harvard.edu/abs/2002IJAsB...1...61W
http://dx.doi.org/10.1086/113132
http://adsabs.harvard.edu/abs/1982AJ.....87..577W
http://adsabs.harvard.edu/abs/1982AJ.....87..577W
http://dx.doi.org/10.1088/0067-0049/182/1/97
http://adsabs.harvard.edu/abs/2009ApJS..182...97W
http://adsabs.harvard.edu/abs/2009ApJS..182...97W
http://dx.doi.org/10.1086/510553
http://adsabs.harvard.edu/abs/2007ApJ...657..533W
http://adsabs.harvard.edu/abs/2007ApJ...657..533W
http://dx.doi.org/10.1088/0004-637X/693/2/1084
http://adsabs.harvard.edu/abs/2009ApJ...693.1084W
http://adsabs.harvard.edu/abs/2009ApJ...693.1084W

	1. INTRODUCTION
	2. METHODOLOGY
	3. RESULTS: DYNAMICAL STABILITY IN AND AROUND HABITABLE ZONES
	3.1. Jupiter-mass Planet with Hypothetical Earth-mass Planet
	3.2. Lagrange Stability Boundary as a Function of Planetary Mass and Eccentricity

	4. APPLICATION TO OBSERVED SYSTEMS
	4.1. Rho CrB
	4.2. HD164922
	4.3. GJ 674
	4.4. HD7924
	4.5. Fraction of Stable HZ

	5. SUMMARY
	REFERENCES

