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We present N-body simulations of planetary accretion beginning with 1 km radius planetesimals in orbit
about a 1 M� star at 0.4 AU. The initial disk of planetesimals contains too many bodies for any current N-
body code to integrate; therefore, we model a sample patch of the disk. Although this greatly reduces the
number of bodies, we still track in excess of 105 particles. We consider three initial velocity distributions
and monitor the growth of the planetesimals. The masses of some particles increase by more than a factor
of 100. Additionally, the escape speed of the largest particle grows considerably faster than the velocity
dispersion of the particles, suggesting impending runaway growth, although no particle grows large
enough to detach itself from the power law size-frequency distribution. These results are in general
agreement with previous statistical and analytical results. We compute rotation rates by assuming con-
servation of angular momentum around the center of mass at impact and that merged planetesimals
relax to spherical shapes. At the end of our simulations, the majority of bodies that have undergone at
least one merger are rotating faster than the breakup frequency. This implies that the assumption of com-
pletely inelastic collisions (perfect accretion), which is made in most simulations of planetary growth at
sizes 1 km and above, is inappropriate. Our simulations reveal that, subsequent to the number of particles
in the patch having been decreased by mergers to half its initial value, the presence of larger bodies in
neighboring regions of the disk may limit the validity of simulations employing the patch approximation.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The ‘‘planetesimal hypothesis” states that planets grow within
circumstellar disks via pairwise accretion of small solid bodies
known as planetesimals (Chamberlin, 1901; Safronov, 1969; Hay-
ashi et al., 1977). The process of planetary growth is generally di-
vided for convenience and tractability into several distinct stages.
In the first stage, microscopic grains collide and grow via pairwise
collisions while settling towards the midplane of the disk. If the
disk is laminar, then the solids may collapse into a layer that is thin
enough for gravitational instabilities to occur (Edgeworth, 1949;
Safronov, 1960; Goldreich and Ward, 1973; Youdin and Shu,
2002; Garaud and Lin, 2004; Johansen et al., 2007); such instabili-
ties would have produced planetesimals of �1 km radius at 1 AU
from the Sun. If the disk is turbulent, then gravitational instabilities
may be suppressed because the dusty layer remains too thick. Un-
der such circumstances, continued growth via binary agglomera-
tion depends upon (currently unknown) sticking and disruption
ll rights reserved.
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probabilities for collisions between larger grains (Weidenschilling
and Cuzzi, 1993; Weidenschilling, 1995). The gaseous component
of the protoplanetary disk plays an important role in this stage of
planetary growth (Adachi et al., 1976; Weidenschilling, 1977; Rafi-
kov, 2004).

Once solid bodies reach kilometer-size (in the case of the terres-
trial region of the proto-solar disk), gravitational interactions be-
tween pairs of solid planetesimals provide the dominant
perturbation of their basic Keplerian orbits. Electromagnetic forces,
collective gravitational effects, and in most circumstances gas drag,
play minor roles. These planetesimals continue to agglomerate via
pairwise mergers. The rate of solid body accretion by a planetesi-
mal or planetary embryo is determined by the size and mass of
the planetesimal/planetary embryo, the surface density of plane-
tesimals, and the distribution of planetesimal velocities relative
to the accreting body. The evolution of the planetesimal size distri-
bution is determined by the gravitationally enhanced collision
cross-section, which favors collisions between bodies having smal-
ler relative speeds. Runaway growth of the largest planetesimal in
each accretion zone appears to be a likely outcome. The subse-
quent accumulation of the resulting planetary embryos leads to a
large degree of radial mixing in the terrestrial planet region, with
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giant impacts probable. Growth via binary collisions proceeds until
the protoplanets become dynamically isolated from one another
(Lissauer, 1987, 1995).

Numerous groups have attempted to examine the accumulation
and dynamics of 1 km planetesimals via numerical simulations.
The statistical approach (Greenberg et al., 1978; Kolvoord and
Greenberg, 1992) came to be known as the particle-in-a-box (PIAB)
method. More recent PIAB investigations, also beginning with 1 km
planetesimals, have been performed by Weidenschilling et al.
(1997) and Kenyon and Bromeley (2006). PIAB assumes that the
velocity distribution of planetesimals is a smooth function. Each
particle effectively sees a ‘‘sea” of particles. The advantage of this
model is that one need not sum the gravity between all the bodies;
rather, the relative velocities and impact parameters of two collid-
ing particles can be randomly selected from a simple function.

Aarseth and Lecar (1984) were the first to apply N-body model-
ing to planetary growth with a simulation of 100 lunar-sized
bodies that interacted directly and accreted. Computer power
and algorithm sophistication increased through the 1990s, but
these improvements were not sufficient to enable the direct N-
body modeling of growth from 1 km planetesimals. Nevertheless,
great strides were made toward understanding the final stages of
planet formation (e.g., Agnor et al., 1999; Chambers, 2001; Kokubo
and Ida, 2002; Raymond et al., 2006; O’Brien et al., 2006; Morishi-
ma et al., 2008). The highest N (the number of particles) simulation
to date is that of Richardson et al. (2000), which modeled one mil-
lion 150 km radius particles for 103 years.

In this investigation we simulate 1 km planetesimal growth
with an N-body model. Our approach is not to consider an entire
disk of planetesimals, as calculating gravitational interactions be-
tween more than 1 trillion particles is an intractable task for the
foreseeable future. Instead we focus on small, square, shearing
patches of the disk, containing up to 105 particles. In this way,
we follow growth over several orders of magnitude, compare
self-consistent and statistical calculations, and lay the groundwork
for future investigations of direct simulations of planetesimal
growth.

In Section 2, we describe the numerical integration techniques.
In Section 3, we summarize the initial conditions of our simula-
tions. In Section 4, we present the results for our baseline model,
in which the magnitude of the initial velocity dispersion is equal
to the escape speed of 1 km planetesimals. In Section 5, we com-
pare the results of two simulations with different initial velocity
dispersions. In Section 6, we discuss some of the key results to
emerge from these simulations. Finally, in Section 7, we draw more
general conclusions, extrapolate our results to longer times and
larger orbital radii, and describe future directions of research.
Appendix A lists all symbols and abbreviations used in this article.
Appendix B reviews an analytic method for approximating plane-
tesimal accumulation. Appendix C presents three of our simula-
tions to 2000 orbits; these results have been relegated to an
appendix because they probably suffer from systematic errors
due to the small physical size of the region being simulated com-
bined with the flat slope of the size-frequency distribution of
planetesimals at this epoch.
2. Numerical techniques

We use the code PKDGRAV (Richardson et al., 2000; Stadel,
2001; Wadsley et al., 2004) to perform the integrations. This is a
parallel, highly scalable N-body algorithm, originally designed for
cosmological simulations (see, e.g., Moore et al., 1998). The code
incorporates features such as multipole expansions, multistepping,
and binary merging to increase speed (described below). Despite
these sophisticated techniques, PKDGRAV cannot integrate more
than �105 colliding 1 km planetesimals for 103 years in a reason-
able amount of CPU time with our model. Since the collision time-
scale is of order minutes (see Section 2.3), our ‘‘baseline model”,
presented in Section 4, required over 4� 108 timesteps. We de-
scribe the equations of motion of the patch in Section 2.1, our col-
lisional model in Section 2.2, the basic principles of PKDGRAV in
Section 2.3, the numerical approximations necessary to complete
these simulations in Section 2.4, and our methods of verification
in Section 2.5.

2.1. Equations of motion

Although carrying out the simulations in a patch greatly re-
duces N, it adds the new complication of simulating Keplerian
shear: we must account for the gradient in the Sun’s gravitational
field and the geometry of the disk. If we examine small patches of
the disk such that W � r, where W is the width and length of the
square patches and r is the distance from the Sun, then we may
approximate quantities, such as surface density, scale height, and
circular velocity, as varying linearly in the patch.

Two coordinate systems are used in this model: heliocentric
cylindrical and locally Cartesian. The heliocentric system is the
more physically meaningful system, as it is based on the geometry
of the disk. In these coordinates, the origin is located at the position
of the central star, and ðr; h; zÞ have their standard meanings. We
implement the Cartesian system inside the patch, with the origin
at the center of the patch. For small h, these two coordinate sys-
tems are related by the following expressions:

r ¼ rpatch þ x;

h ¼ 3
2

Xpatch
x

rpatch
t þ y

rpatch
;

ð1Þ

where rpatch is the heliocentric radius of the center of the patch and
Xpatch is the Keplerian orbital frequency of the patch. Essentially the
radial direction is mimicked by x and the tangential direction by y.
Similarly, the velocities are related by

_r ¼ _x;

_h ¼ 3
2

Xpatch
x

rpatch
þ

_y
rpatch

:
ð2Þ

The z-velocities and positions are identical in the two coordinate
systems.

For the purpose of the integration, we use the Cartesian system,
as outlined in Wisdom and Tremaine (1988), which was based on
Hill (1878). The equations of motion inside the patch are

€x� 2Xpatch _y� 3X2
patchx ¼ � o/

ox
;

€yþ 2Xpatch _x ¼ � o/
oy
;

€zþX2
patchz ¼ � o/

oz
;

ð3Þ

where / represents the interparticle potentials in the disk. Wisdom
and Tremaine assume massless particles ðr/ ¼ 0Þ, and provide the
general solution

x ¼ xg þ A cosðXpatchtÞ þ B sinðXpatchtÞ;

y ¼ yg �
3
2

Xpatchxgt � 2A sinðXpatchtÞ þ 2B cosðXpatchtÞ;

z ¼ C cosðXpatchtÞ þ D sinðXpatchtÞ;

ð4Þ

where A, B, C, and D are arbitrary constants that correspond to the
amplitude of the excursions from a circular, planar orbit, and
xg and yg are the guiding centers of the epicycles of the particles.
The 3

2 Xpatchxg term is known as the ‘‘shear rate” and represents
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the Keplerian motion relative to that at x ¼ 0. For negative x, the
shear rate is positive, as these particles are closer to the star. The
y-motion is the tangential motion relative to the center of the patch,
not the azimuthal motion of the patch as a whole.

The equations of motion are integrated with a second-order
generalized leapfrog scheme derived via the operator splitting for-
malism of Saha and Tremaine (1992). For the case of orbits in the
patch, this integrator prevents secular changes in the guiding cen-
ter of the epicycle.

2.2. Collision model

Our model assumes perfect accretion. In our implementation,
collisions result in one perfectly spherical particle, and all particles
have the same density. To conserve angular momentum, the resul-
tant particle receives the net angular momentum of the two colli-
ders (spin plus motion relative to the center-of-mass of the
colliding particles), without dissipation (although energy is de-
creased by 20% during a collision). Our assumption of perfect
accretion allows particles to spin faster than break-up, the latter
being given by

pmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3p=Gqpl

q
: ð5Þ

(For a density of 3 g/cm3, pmin ¼ 1:9 h.) Real gravitational aggregates
do not merge completely under such circumstances, and hence this
assumption will tend to artificially increase planetesimal masses.
Conversely, spheres have the smallest possible cross-section for a
given volume, so our algorithm is suppressing growth with this
approximation. Therefore these two features of our model counter-
act each other, although we cannot say to what degree they cancel
each other out.

The assumption that the particles are always gravitational
aggregates may break down during high-energy collisions, in
which case fracturing and melting may occur. For tractability, we
ignore this possibility. We also ignore any potential radiogenic
heating, e.g., by 26Al, as the melting timescale is much longer than
the collisional timescale.

2.3. PKDGRAV

PKDGRAV is very efficient because it calculates gravitational
forces rapidly. The code works by recursively dividing the physical
space, the ‘‘domain”, into smaller cells that are organized in a tree.
The gravitational forces are then calculated by traversing this tree
(e.g., Barnes and Hut, 1986). To calculate the forces on a particle
from a given cell, the code determines the apparent size of the cell,
that is the angle the cell subtends as viewed from the particle. If
this angle is smaller than some minimum angle, H, then all mo-
ments up to hexadecapole of the particles in the cell are used to
calculate the force. Otherwise the cell is opened and the test is re-
peated on the subcells. This approximation changes the speed of
the N-body calculation from OðN2Þ to OðN log NÞ. For further details
see Stadel (2001) and Wadsley et al. (2004). For the simulations de-
scribed here, we used H = 0.7 radians.

PKDGRAV also permits the use of periodic boundary conditions,
which are required to prevent the patch from self-collapsing. To do
this, each patch is reproduced 8 times, in the form of ‘‘ghost cells”
that completely surround the actual patch in the x- and y-direc-
tions. Eq. (4), however, also requires that particles in the ghost cells
move at the appropriate shear velocity. The centers of the ghost
cells therefore move in the y-direction as prescribed by Eq. (4).

Gravity calculations per time interval are minimized by a mul-
tistepping algorithm. Multistepping divides the base timestep into
smaller intervals. For our simulations the timestep is based on the
largest acceleration a particle feels at each timestep. In this algo-
rithm isolated planetesimals move at the base timestep, tbase, set
to about 100 steps per orbit. As particles approach each other their
timesteps drop to a minimum value, until they either miss or col-
lide. Each smaller timestep is a factor of 2 shorter than the previous
in order to keep all of the base gravitational kicks commensurate.
Typically 95% of particles are on the longest timestep, but we still
resolve all collisions.

Two timescales are relevant in this problem, the orbital time
and the crossing time of two particles that just miss. The orbital
period, P, is of order one year, but the crossing time is of order min-
utes. For two particles of radius R to just miss, on a parabolic orbit,
the crossing time is

tcross ¼ r=vesc ¼
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8p
3 GqR2

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

8pGq

s
; ð6Þ

and is therefore independent of the masses. In this scenario and
with densities of 3 g/cm3, the crossing time is 772 s. P and tcross

determine tbase and tmin, the maximum and minimum possible
timesteps. To be conservative (note that the version of PKDGRAV
employed in this investigation does not integrate Eq. (3) symplecti-
cally), we set these values as

tbase ¼ gP ð7Þ

and

tmin ¼ gtcross; ð8Þ

where g is a scale factor, chosen such that the integrals of motion
are constant to a satisfactory degree. Convergence tests showed that
for the systems we consider, g ¼ 1=300 provided the necessary
accuracy. The number of available timesteps, f, is

f ¼ 1þ log2
tbase

tmin

� �
: ð9Þ

At 0.4 AU and q = 3 g/cm3, this translates to f ¼ 14.

2.4. Numerical approximations

Although PKDGRAV is fast relative to other integration tech-
niques, we must make several additional approximations in order
for the simulation to be practical, and to appropriately model equa-
tion (3). These approximations do not alter the physics appreciably,
and resulted in nearly a factor of 10 speed-up.

As mentioned above, the timestep for each particle is deter-
mined by its current acceleration, which is a function of the local
mass density. Particles on large timesteps are not close to other
particles and cannot be close to collision. We therefore set a ceiling
for timesteps to search for collisions. This small modification in-
creases speed by a factor of 2–3 depending on the surface density
of the patch (and hence the local density).

Occasionally during the evolution of the patches, binaries (grav-
itationally bound pairs of particles) form. This is a natural result of
3-body encounters. Although it is preferable to allow these binary
systems to evolve normally, they often become stuck in the short-
est timesteps, greatly diminishing the advantage of multistepping.
Therefore, we artificially merge them. In our simulations, binary
merging accounts for about 0.01% of all merging events and there-
fore this small change in the total energy of the simulation should
be negligible. Simulations of globular clusters have shown that
tight binaries tend to get tighter during a 3-body encounter, and
loose binaries tend to become looser (Heggie, 1975). To make bin-
ary merging as realistic as possible we therefore also require the
eccentricity of the particles involved to be less than 0.9, so that
wide binaries may still be disrupted.
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2.5. Verification

Given the complexity of this problem (non-inertial frame, large
range of growth, and numerical approximations), we need to quan-
tify the accuracy of our methodology. The patch framework pro-
vides some inherent tests, but we must also understand the
statistics of the problem; this patch is supposed to be a represen-
tative piece of a much larger annulus of material. At some point,
the number of particles drops to a sufficiently small number that
the results cannot be trusted. In this subsection we describe our
methodology for verifying the results presented in Sections 4 and
5.

In the shearing model, the particles are in a non-inertial frame.
Therefore the integrals of motion normally associated with dynam-
ics (momentum, energy, angular momentum), are not directly
applicable. In this formalism there are two constants of motion
we use to check the validity of these simulations. In the nomencla-
ture of Wisdom and Tremaine (1988), these conserved integrals are

u �
PN

l¼1ml
dxl
dt

Mpatch
;

w �
PN

l¼1ml
dyl
dt þ 3

2 Xpatchxl

� �
Mpatch

;

ð10Þ

where Mpatch is the total mass in the patch. These parameters essen-
tially correspond to the center of mass velocity. For this situation,
the center of mass should remain motionless; we need to verify that
u and w remain much less than the random velocities. Note that our
definition includes the masses of the particles, whereas the Wisdom
and Tremaine (1988) definition did not, as they weighted all parti-
cles equally.

Eq. (10) would be sufficient if we were integrating particles
without growth, which we are not. The patch model at least re-
quires that no particle is dominant. Therefore a zeroeth order
requirement is that no particle reaches a mass equal to that of
the sum of the remaining particles. This constraint, however, fails
to take into account how the most massive particles alter the
dynamics of the disk. As a typical particle passes by the largest
mass particle, it receives a kick, and energy associated with Keple-
rian motion may be transformed into the random motions of the
swarm, increasing the velocity dispersion, i.e., ‘‘viscous stirring”
(Wetherill and Stewart, 1989). Afterward that increase in random
velocity should be damped down by subsequent interactions with
other typical particles. To verify that no particles grow so large as
to dominate the stirring in the patch, we consider the ratio of the
gravitational stirring of the largest particle to the sum of all other
particles:

S � m2
maxP

l6lmax
Nlm2

l �m2
max

ð11Þ

(Lissauer and Stewart, 1993). Exactly how large S can grow is not
clear a priori, but values below �0.1 should be satisfactory.

Should the mass distribution in the patch suggest that signifi-
cantly massive planetesimals are present in the disk, but not pres-
ent in a patch, then the patch is not modeling a large enough region
of the disk. We check this possibility by plotting m2Nk as a function
of m, where Nk is the number of particles in mass bin k � m=m1.
We will see in Section 4.4.2 and Appendix C that unmodeled large
bodies are likely to become a problem as our model evolves.

A final point of concern is the size of the epicycles of particles
compared to the size of the patch. Should the eccentricity of a par-
ticle grow large enough that the radial excursions (2ae, where a is
semi-major axis, e is eccentricity) exceed the size of the patch, then
we may not be sampling the region appropriately. We parameter-
ize this effect as
b � 2rpatche
W

; ð12Þ

where W is the patch width. The equations of motion do not depend
on eccentricity, so there are no numerical problems if this occurs,
only concerns about the physical interpretation of this phenome-
non. Our choice of W is very small compared to the size of the ter-
restrial annulus. As long as b remains less than or close to unity, the
radial mixing throughout the disk is negligible, and our interpreta-
tions are independent of the particles’ eccentricity. Only if b grows
to large values is there cause for alarm. We focus on the second
largest b value, as occasional strong kicks could temporarily result
in large eccentricities for one particle.
3. Initial conditions

We assume a surface density of 37:2 g=cm2 at 0.4 AU, 30% high-
er than predicted by the minimum mass solar nebula model (Hay-
ashi, 1980), but consistent with previous studies (Richardson et al.,
2000). The bulk density of the planetesimals, qpl, is taken to be 3 g/
cm3. The mass of a planetesimal with R = 1 km is thus

mpl ¼
4p
3

qplR
3 ¼ 1:26� 1016 g: ð13Þ

Assuming the surface density of the disk scales as R / a�1, the num-
ber of planetesimals in the annulus 0.4 AU 6 a 6 2.5 AU is

N ¼ Mann

mpl
¼ 3:5� 1012: ð14Þ

As we are unable to directly integrate trillions of particles, we must
reduce N to a tractable value by dividing the disk into patches.

Most of our simulations begin with the root mean squared
(RMS) velocity dispersion, vRMS, set to the escape speed of 1 km
planetesimals, vesc (Safronov, 1969; Stewart and Wetherill, 1988).
This relationship assumes that the system is relaxed, which may
or may not be the case depending on the processes and timescales
to form planetesimals. This RMS speed is the magnitude of the ran-
dom motion of the particles, but it is not distributed isotropically
due to the 2:1 axis ratio of the epicycle; instead the distributions
are described by

vx ¼
ffiffiffi
2
3

r
vesc;

vy ¼ vz ¼
1ffiffiffi
6
p vesc

ð15Þ

(Binney and Tremaine, 1994). For a radius of 1 km and qpl = 3 g/cm3

particles, vesc is 1.29 m/s.
From this velocity distribution, we calculate the equilibrium

vertical density profile of the disk. To do this we assume the disk
is in a state of hydrostatic equilibrium; the ‘‘pressure” of the verti-
cal component of the velocity distribution maintains its thickness.
The vertical component of solar gravity increases linearly with dis-
tance from the midplane, therefore the density follows a Gaussian
profile,

q ¼ q0e
� z2

2Z2
0 ; ð16Þ

where q is the density, q0 is the density at the midplane, and Z0 is
the scale height of the disk. The (Gaussian) scale height is deter-
mined by the z-velocity distribution, the mass of the central star
and the orbital radius. Hydrostatic equilibrium allows a calculation
of the scale height:

Z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

z r3

2GM�

s
¼

ffiffiffiffiffiffiffiffiffi
v2

z

2X2
z

s
: ð17Þ



Table 2
Results of 1 km planetesimal growth at 0.4 AU at t1=2.

ID t1=2 (orbits) mmax ðm1Þ vRMS ðm s�1Þ Fg Ppeak (h)

L1 354 276 1.93 20.2 1.05
M1 349 142 1.89 13.7 1.05
S1 361 73 1.95 9.2 1.05
M0.5 253 202 1.86 17.8 1.65
M2 542 47 2.41 4.8 0.65
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The scale height also depends on the self-gravity of the planetesi-
mal disk. To compensate for this, we implement a ‘‘vertical fre-
quency enhancement” to simulate an infinite plane sheet of
matter so that

Xz ¼ Xpatch þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pGMpatch

W3

s
: ð18Þ

The second term in Eq. (18) is an analytic restoring force that sim-
ulates the disk’s self-gravity and reduces Z0. For our baseline model
(Simulation L1 presented in Section 4), Xz is 0.2% larger than Xpatch.

Our nomenclature for simulations is based on the relative size
and the initial dynamical state. L stands for ‘‘large”, M for ‘‘med-
ium” and S for ‘‘small”. The subscript is the ratio of the initial veloc-
ity dispersion to the escape speed of a 1 km planetesimal. In Table
1, we present the initial conditions for these simulations.

We assume that scattering is very effective, and that gas drag is
negligible. Simulations L1, M1 and S1 presume the planetesimals
are in a form of equilibrium. However, there remain many un-
knowns in the formation of these planetesimals and variations of
a factor of 2 are plausible. We therefore ran two integrations with
non-equilibrium initial conditions. We integrated one system that
began with vRMS ¼ 0:5vesc (Simulation M0.5), and one with
vRMS ¼ 2vesc (Simulation M2). In these simulations the scale height
was set by Eq. (17). These two simulations are presented in Section
5.

Each of the simulations was run at least until the number of
bodies in the patch has been halved, t1=2. This time is related to
the mean free time, s, between collisions, which can be approxi-
mated as

s � m1

q0rplvRMS
� t1=2; ð19Þ

where rpl is the gravitational cross-section, rð1þ v2
esc=v2

RMSÞ, and q0

is given by

q0 ¼
Rffiffiffiffiffiffi

2p
p

Z0
: ð20Þ

Eq. (19) is only valid at the midplane at time t ¼ 0. The density
changes with z, and vRMS change with time. Nonetheless, this simple
model provides valuable insights into the dynamics. For the initial
conditions we use, s � 500 orbits.

Richardson et al. (2000) modeled a planetesimal disk with 106

particles, but they simulated a later stage of planetary growth in
which the collision rate was much lower than it is here. Therefore,
our integrations proceed slower, even with the advanced method-
ologies described in Section 2.3. If we set Npatch � 105, then the
simulations are large, but we may still examine several different
initial conditions. We choose a square patch of width
W ¼ 10�3rpatch for our largest simulation, L1. In our model, this
choice corresponds to an initial N of 106,130, a small enough num-
ber to be tractable, but large enough to be statistically significant.
Note, however, that the medium-sized simulations have dimen-
sions W ¼ 5� 10�4r, and the small one W ¼ 2:5� 10�4r. These
cases run faster, and are included to test various assumptions in
the baseline case.
Table 1
Initial conditions of the patch simulations.

ID N vRMS ðm s�1Þ Z0 (km) q0 (10�7 g/cm3)

L1 106,130 1.29 475 3.1
M1 26,532 1.29 475 3.1
S1 6633 1.29 475 3.1
M0.5 26,532 0.65 237 6.3
M2 26,532 2.6 950 1.6
4. The baseline model

The simulations of our baseline model (those with subscript 1)
begin with 1 km radius particles with an RMS velocity equal to that
of the escape speed of 1 km particles with a density of 3 g/cm3.
From this dispersion the initial scale height is set by Eq. (17). The
simulation with the most particles, L1, required 354 orbits (89.6
years) to halve the total number of particles. The M1 and S1 simu-
lations required 349 and 361 orbits, respectively, to reach t1=2. In
this section we describe the results of these three simulations. Ta-
ble 2 summarizes some of the results of our simulations at t1=2. At
this time, the patch is nearing a condition in which it is too small to
correctly model the velocity distribution (see Section 4.4.2); results
of these simulations beyond t1=2 are presented in Appendix C.

4.1. Mass growth

The mass spectra of Simulations L1, M1, and S1 at 100, 200, 300
and 354 orbits (t1=2 for L1) are plotted in Fig. 1. Fig. 2 shows the
(differential) mass distributions with logarithmic bins of size
2lm1, l = 1,2,3, . . ., i.e., the first bin contains all particles of mass
m1, the second bin contains particles of 2m1 and 3m1, the third
bin contains particles in the range 4m1 6 m 6 7m1, etc. The histo-
grams shown in Fig. 2 appear to follow a power law size distribu-
tion. The one apparent exception is the single particle in the largest
bin for L1 at t1=2, which is detached by one bin from the remaining
particles (the ‘‘swarm”). However, upon closer inspection, this par-
ticle has a mass of 275 m1, whereas the second and third largest
particles have masses of 122 and 116 m1, respectively. All three
of these particles just miss being members of the 128–255 m1
Fig. 1. The semi-log (differential) mass distributions for Simulations L1 (solid line),
M1 (dashed line) and S1 (dotted line) after 100 orbits (top left), 200 orbits (top
right), 300 orbits (bottom left) and 354 orbits (bottom right).



Fig. 2. The log–log (differential) mass distributions of Simulations L1 (solid line), M1

(dashed line) and S1 (dotted line) at 100 orbits (top left), 200 orbits (top right), 300
orbits (bottom left), and 354 orbits (bottom right). Note that the M1 simulation data
have been offset to the right by 0.1 and the S1 data by 0.2 in order to improve
readability.

Fig. 3. Comparison of the mass distributions at t1=2 for the baseline simulations. The
histograms represent the mass distribution at each model’s value of t1=2 and the
straight lines are the power law fits, solid includes the first bin, dashed does not.

Table 3
Fit parameters of the mass distributions at t1=2.

ID b v2
b b0 v2

b0
c v2

c c
0 v2

c0

L1 2.39 1693 2.62 376 1.3 6224 1.9 1690
M1 2.39 894 2.64 168 1.2 1400 1.9 853
S1 2.38 492 2.65 107 1.3 1073 1.9 308
M0.5 2.4 307 2.59 74 1.2 1723 2 466
M2 2.38 489 2.61 154 1.3 1440 1.7 189

Fig. 4. The evolution of the merger rate of Simulation L1. The solid line is that
observed in the patch (sampled once per orbit), and the dashed line is that
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bin. Therefore, the distributions presented in Fig. 2 suggests that
runaway growth has not occurred.

To further examine the nature of the mass distribution, we
matched the mass distribution to single parameter fits. We con-
sider a power law,

NðkÞ / k�b
; ð21Þ

and an exponential,

NðkÞ / e�k=c: ð22Þ

We fit the constants b and c by using the line method to minimize
v2 (Press et al., 1996) with one sigma uncertainties assumed to beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nk þ :75
p

þ 1. For small Nk this gives a better approximation to
the distribution of v2 for sparsely sampled data (Gehrels, 1986),
e.g., some bins at large k have zero particles. The fits are constrained
so that the total mass is the same as in the simulation, and the num-
ber of degrees of freedom is approximately equal to mmax=m1. We
must take into consideration the fact that the first bin is unusual
in that all the particles were originally in that bin. Therefore we also
consider fits that exclude the data at m ¼ m1. These fit parameters
are denoted with a prime. We found that exponential fits are always
poor, so we will focus on the power law fits.

In Fig. 3 we show the mass distributions of Simulations L1 (top),
M1 (middle) and S1 (bottom), with the analytic fits for comparison
at each simulation’s t1=2. The values of all the fit parameters are
presented in Table 3. In that table we see that the values of unre-
duced v2 are all significantly better when the first data point is ex-
cluded. All fits include the large-mass particles and we conclude
that these largest particles do not represent a new class (i.e., run-
away growth has not occurred). Note that forcing the fitted distri-
bution to contain the same total mass as the simulation forces the
exponential cases to converge to poor fits.

In Fig. 4 we compare the merger rate ð�dN=dtÞ of Simulation L1

with that predicted by the mean free time of the patch. The predic-
tion comes from the following relation
predicted by the mean free time of the patch (recalculated each orbit from the
instantaneous values of vRMS; hrpli; q0 and hmi) in Simulation L1.



Fig. 6. A comparison of the distribution of masses in Simulation L1 with those
predicted by coagulation theory for 6 different mass ranges: k ¼ 1 (bottom left),
k ¼ 10 (bottom right), 20 6 k < 50 (middle left), 50 6 k < 100 (middle right),
100 6 k < 200 (top left) and 200 6 k < 300 (top right).
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dN
dt
¼ �Nq0hrplivRMS

hmi ; ð23Þ

where the brackets indicate quantities averaged over the entire
swarm. We assume the cross-section to be the gravitationally en-
hanced area of two particles with the average radius. The right-
hand side of Eq. (23) is the number of particles divided by the mean
free time. Initially the mean free time argument underpredicts the
merger rate and later it is about right. Overall this simplified esti-
mate of the merger rate remains near the actual value. The rate is
dropping because the total number of particles in the patch is
decreasing due to merging.

Next we compare our results to that of the constant, linear, and
product solutions to the coagulation equation (Wetherill, 1990; see
also Appendix B) in Simulation L1. These three solutions are
relatively simple compared to more recent derivations (see e.g.,
Kenyon and Luu, 1998; Kenyon and Bromley, 2004). However,
the recent models do not provide analytic solutions for the number
of particles in each mass bin (see Eqs. (B9), (B10) and (B12)). We
find the three collisional probability coefficients (see Eqs. (B6)–
(B8)) have values of m1 ¼ 5:3� 10�8, m2 ¼ 1:84� 10�8, and
m3 ¼ 2:65� 10�8 for Simulation L1.

In Fig. 5 we plot the growth of some of the largest masses in
Simulation L1 through 354 orbits. Also shown are the predicted
largest masses from the three solutions to the coagulation equa-
tion, with collisional probabilities that are constant as a function
of time, and equal to the values listed above. The growth in our
N-body model follows the product solution to the coagulation
equation for about 250 orbits, but then the two diverge as the N-
body model predicts faster growth. This divergence is probably a
result of the product solution’s failure to conserve mass for
t > t1=2. At t1=2 the largest particle has a mass of 276 m1. Nonethe-
less, the agreement over the majority of the simulation suggests
that even the Wetherill (1990) product coagulation model is a rea-
sonable representation of early growth of planetesimals.

In Fig. 6 we further compare Simulation L1 to the Wetherill
(1990) models. The six panels examine six different ranges of k.
For mass ranges, the predicted number of particles is determined
by summing all mass bins in that range. From this figure we see
that no solution to the coagulation fits the data over all values of
Fig. 5. The evolution of the largest, second largest, fifth largest and tenth largest
masses in Simulation L1. The solid red line corresponds to mmax in the product
solution to the coagulation equation, green to the linear, and blue to the constant.
k. At low masses (k [ 10), the linear solution is the best-fit to
the data, but at larger masses the product solution is better. How-
ever, at these larger values of k, the product solution still differs
from the actual distribution by more than a factor of 2.
4.2. Velocity dispersion

Fig. 7 shows the evolution of the RMS velocity of all particles,
the escape speed of the largest particle, and the escape speed of
the average-mass particle in Simulation L1. The velocity dispersion
slowly grows to a value of �2 m s�1 at t1=2 (which is evidence of
viscous stirring), while the escape speed of the largest particle
grows to a value of 8.4 m s�1. At t1=2 the largest body has a mass
Fig. 7. The evolution of the RMS velocity of the patch (solid line), the escape speed
of the largest particle (dashed line) and the escape speed of the mean particle
(dotted line) in Simulation L1.
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of mmax ¼ 276m1 and a radius of 6.5 km. From these values we can
identify the gravitational focusing factor for the largest body, the
ratio of its gravitational cross-section to its geometrical cross-sec-
tion. This factor is

Fg ¼ 1þ 2Gmmax

v2
RMSRmax

¼ 1þ vesc

vRMS

� �2

: ð24Þ

The final values of Fg for Simulations L1, M1, and S1 are 20.2, 13.7,
and 9.2, respectively (see Fig. 8).
Fig. 8. Evolution of the gravitational focusing factor of the most massive particle in
Simulations L1 (solid line), M1 (dashed line), and S1 (dotted line). In larger
simulations the focusing grows larger because the biggest particles are more
massive, but the velocity dispersions are about equal in the three simulations (see
Table 2).

Fig. 9. Evolution of eRMS= sin iRMS for Simulations L1 (solid line), M1 (dashed line),
and S1 (dotted line). The values drop from �2.35 to �2.15 over �200 orbits. At that
time the ratios level out, which suggests the initial conditions were not in
equilibrium.
We evaluate the ratios of eRMS to sin iRMS in Fig. 9. (Note the
inclinations are in a regime such that the difference between sin
i and i is about 1 part in 1010.) The ratios begin at 2.35 but drop
to �2.15, similar to previous results (Greenzweig and Lissauer,
1990; Kokubo and Ida, 1996).

We investigate the role of dynamical friction by examining
eRMS and iRMS as a function of mass at t1=2. For each populated
bin, we computed these values (if only one body occupied a bin
we used its e and i values), and show the results in Fig. 10. As ex-
pected, larger masses are dynamically colder than smaller masses,
nonetheless, they have greater energy, implying that equipartition
of energy is not achieved.
Fig. 10. The values of eRMS and iRMS as a function of mass at t1=2 for the three
equilibrium simulations. Filled squares represent eccentricity, open triangles
inclination. In the L1 simulation, the largest mass planetesimal ð275m1Þ is not
shown; its values are e ¼ 2:6� 10�6 and i ¼ 1:8� 10�7. For reference, the dashed
line represents equipartition of energy in e, dotted in i, normalized to the values for
k ¼ 10.

Fig. 11. The final spin (at t1=2) periods for the planetesimals in Simulation L1. The
dashed vertical line represents the minimum period of a gravitational aggregate.
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4.3. Rotation rates

We plot the rotation periods of all planetesimals in Simulation
L1 with m > m1 at t1=2 in Fig. 11. Only 14 bodies had periods longer
than 1 day. Recall that initially all planetesimals have no spin. We
plot the spin distribution over three mass ranges: m ¼ 2m1,
3m1 6 m < 10m1, and m P 10m1. The peak period is at 1.05 h,
which is less than the minimum period for a spherical gravitational
aggregate of density 3 g/cm3, see Eq. (5). Thus, this distribution
suggests that our assumption (which is the standard one) of com-
pletely inelastic collisions resulting in mergers overestimates plan-
etesimal growth rates.
4.4. Accuracy tests

In this subsection we quantify the accuracy of our results (see
Section 2.5). Section 4.4.1 measures the numerical accuracy of
our code, and Section 4.4.2 describes the statistical accuracy of
our method.
Fig. 13. The growth of the five largest values of b in Simulation L1 as a function of
time. All values lie well below unity, indicating that no particle’s epicycle is larger
than the width of the patch.
4.4.1. Numerical accuracy
In Fig. 12 we examine the validity of Simulation L1 by plotting u

and w. These parameters measure the center-of-mass motion of
the patch. Both u and w remain less than 0.1 cm s�1, about 1000
times smaller than the typical random velocities in the patch and
about 105 times smaller than the shear rate across the patch,
XW ¼ 4720 cm s�1. We therefore conclude that this variation is
tolerable (Wisdom and Tremaine, 1988).
4.4.2. Statistical accuracy
Although Simulation L1 contains a large number of particles

(relative to modern N-body simulations), it still represents a very
small fraction of the terrestrial annulus. We therefore must charac-
terize the robustness of our results. The most critical aspect of this
experiment is the mass of the largest particle. Should a particle
reach a large enough mass that it inappropriately dominates the
dynamics of the patch, then our assumptions have broken down.

First we consider b, Eq. (12), which measures the radial excur-
sions of particles, see Section 2.5. We find that after 354 orbits of
Simulation L1 that bmax-1 (the second largest value) is still well be-
Fig. 12. The evolution of the constants of motion in Simulation L1. The values of u
and w vary at a level 3 orders of magnitude below that of the random motions.
low unity (Fig. 13). Therefore, the patch size for Simulation L1

passes this requirement.
In Fig. 14, we plot the evolution of the stirring efficiency S (Eq.

(11)) in the three baseline simulations. At t1=2 the largest particle is
about one-eighth as effective at stirring as the rest of the swarm in
Simulation L1, about one-seventh in M1, and nearly one-fifth in S1.
These values suggest we are nearing a situation in which the statis-
tical accuracy of this simulation cannot be confirmed, but such a
situation has not occurred yet.

Next we evaluate the distribution of m2
kNk as a function of mass.

This quantity measures how effective each mass bin is at stirring
the patch. As described in Section 2.5, the distribution can reveal
the possibility of large-mass bodies beyond the boundaries of the
patch that could significantly change the dynamical character of
the planetesimal swarm. For this model, after about t1=2 there is
Fig. 14. The stirring efficiency of the largest particles in Simulation L1 (solid line),
M1 (dashed line), and S1 (dotted line) relative to the rest of their respective swarms.



Fig. 15. The stirring power of particles as a function of mass at 100 orbits (top left),
200 orbits (top right), 300 orbits (bottom left), and 354 orbits (t1=2 for Simulation L1;
bottom right). The solid line represents Simulation L1, dashed M1, and dotted S1.
After 354 orbits, the slopes are roughly flat; this shows that our patches might not
be large enough to contain a statistically significant number of particles. Note that
the Simulation M1 data are offset by 0.1, and the S1 data by 0.2.

Fig. 16. The mass functions of the non-equilibrium runs as a function of time. The
earliest time is offset to the right by 0.05, the next time is offset by 0.1, etc. Larger
initial velocity dispersion suppresses runaway growth. These plots can be compared
to Fig. 2.
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a significant chance that large perturbers are close enough to affect
the patches’ dynamics. In Fig. 15 we plot m2Nk vs. logm at four
times. If m2Nk is decreasing as a function of mass near the upper
end of the mass distribution, then the patch is large enough to
be a statistically representative piece of the annulus, and the veloc-
ity distribution of the patch should be close to that of the disk. If,
alternatively, the distribution is increasing, then there exist nearby
large particles that could dominate the stirring. We see at t1=2 the
distribution is flat, suggesting we have reached the limit of our
model. These curves suggest that results at later times may be
inaccurate, hence our decision to exile those data in Appendix C.
Fig. 17. Comparisons of the mass distributions at t1=2 for Simulations M2 (top) and
M0.5 (bottom) and the best power law fits to the data, Eq. (21). The histograms are
the mass distributions from the simulations, the straight lines are the fits (solid
includes first bin, dashed does not).
5. Alternative velocity distributions

In this section we describe the results of two simulations that
begin with different initial velocity dispersions than the baseline
model. The results of these simulations may be important since
the initial velocity dispersion of planetesimals is ill-constrained.
Earlier growth may occur too rapidly for the velocity dispersion
to equilibrate ðvRMS ¼ vescÞ. We thus explore a range of initial veloc-
ity dispersions. These simulations also show how sensitive the re-
sults of Section 4 are to variations in the initial velocity dispersions.
In Simulation M0.5 the initial velocity dispersion is set to 0:5vesc, in
Simulation M2 it is set to 2vesc.

For Simulations M0.5 and M2, t1=2 occurred after 253 and 542 or-
bits, respectively. Figs. 16 and 17 show the mass distributions at
t1=2 for each of these models. As expected, when the velocity dis-
persion is smaller, accretion proceeds faster, due to the increased
gravitational focusing. Moreover, the largest particles have a great-
er accretion advantage and so are more massive at t1=2 in M0.5 than
in M2.

In Fig. 17 we show how our power-law fits (both with and with-
out the k ¼ 1 data) to the log–log mass distribution, Eq. (21), com-
pare to the actual distributions at each simulation’s t1=2. As with
the baseline models (see Fig. 3), the exponential fit has a much lar-
ger unreduced v2 value. The best fit parameters for these two sim-
ulations at time t1=2 are listed in Table 3.
We continue by plotting the evolution of the largest mass par-
ticle for each non-equilibrium run in Fig. 18. As in Fig. 5, we also
include the predictions of the Wetherill (1990) model. The linear
solution is a good fit to the distribution of Simulation M2, while
the product solution appears to be a good fit to that of Simulation
M0.5.

In Fig. 19 we plot the evolution of the velocity dispersions. In
the top panel (Simulation M2), we see that the velocity dispersion
actually drops initially, but then increases similarly to the other
runs. This decrease results from the inelastic nature of the colli-
sions, as well as, to a lesser degree, the deposition of translational
kinetic energy into rotational kinetic energy. However, we inter-
pret this result with caution due to potential inconsistencies in



Fig. 18. The growth of the largest mass in each model as a function of time, and the
predictions of the constant, linear, and product solution of the coagulation equation.

Fig. 19. The evolution of the velocity dispersions in the non-equilibrium simula-
tions. In Simulation M2 (top panel), the dispersion actually drops toward equilib-
rium. The final values of vRMS are close to 2 m s�1, as in the baseline case.

Fig. 20. The final spin distributions for merged particles for the non-equilibrium
simulations. The vertical dashed line is the minimum period as defined by Eq. (5).
For Simulation M2 very few particles have periods in excess of 10 h, but Simulation
M0.5 has several long-period planetesimals.
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the perfect accretion model (see Section 2.2). When the initial
velocity dispersion is too low, the dispersion quickly rises (com-
pare to Fig. 7). The final values of Fg are 17.8 and 4.8 for Simula-
tions M0:5 and M2, respectively. As with the baseline models,
equipartition of energy has not occurred in these simulations.

In Fig. 20 we plot the final spin distributions for the non-equi-
librium patches. The peaks lie below the minimum gravitational
aggregate period. Simulation M2 consists of especially fast rotators,
due to a larger amount of kinetic energy of random motion avail-
able for transformation into rotational energy.
6. Discussion

Several results stand out in Sections 4 and 5. First is that run-
away growth has not begun to occur for any particle in any simu-
lation. Second, the velocity dispersions of the patches remain close
to the escape speed of the average-mass particle. Third, the growth
rate is moderately sensitive to the initial velocity dispersion;
changes of a factor of 2 in the initial RMS velocity can excite or re-
tard the early growth rate of the most massive particles. Fourth,
our collision model (Section 2.2) is too simplified in that it assumes
spherical particles experiencing perfect accretion. Fifth, some as-
pects of the coagulation equation model the growth well, but dis-
crepancies of at least a factor of 2 are present, and the best model
(linear or product) appears to depend on the initial value of vRMS.
Sixth, the power law fits represent a realistic model of the actual
mass distribution.

We present a summary of the results in Tables 2 and 3. Compar-
ing Simulation M1 to the alternate-RMS velocity trials, we see that
its final properties lie between those of Simulations M0:5 and M2.
Therefore, mmax and t1=2 depend upon the initial velocity disper-
sion in a systematic manner.

Growth proceeds easily in all our models, despite no initial seed.
There is some indication from the final mass distributions that the
annulus will develop particles with a mass in excess of 104m1 by
t1=2. By considering the stirring effects as a function of mass we
have found that by t1=2 such large bodies could significantly modify
the dynamical properties of our patches. Therefore, in order to con-
tinue our integrations further, we must consider a larger patch,
such that the curve of S vs. m turns over. Our simulations do not
show how much larger the patch must be, or indeed if any patch
is adequate and N-body simulations at later times must model a
full annulus. Inconsistencies between our N-body integration and
the Wetherill (1990) model rule it out to estimate the mass distri-
bution. We note, however, that more complicated models (e.g.,
Kenyon and Bromley, 2004) may make a better match to our calcu-
lations, but the development and implementation of such models
was beyond the scope of this investigation. We encourage future
statistical researchers to use our results to verify their collision
kernels.

In Fig. 21 (see also Figs. 7 and 19) we examine the different evo-
lutions of the RMS velocity dispersion for all our simulations. In
each case, viscous stirring increases the velocity dispersion. More-
over, all have vRMS � 2 m s�1 at t1=2. Note that at t1=2 the average
mass is 2m1, which corresponds to an escape speed of 1.7 m s�1.



Fig. 21. Evolution of all RMS velocities.
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This equivalence suggests that, at least early on, the velocity dis-
persion grows at approximately the same rate as the escape speed
of the typical mass particle.

The perfect accretion model has produced several results that
may be spurious. The sum of all these issues, in our implementa-
tion, is that orbital angular momentum is too easily transferred
into rotational angular momentum, and produces spin rates that
are too high (see Figs. 11 and 20). Therefore the spin distributions
presented here should not be regarded as physically realistic, and
the mass distributions of our simulations should be considered
upper bounds.

Assuming the initial swarm of planetesimals is composed of
gravitational aggregates, we need larger simulations with a more
realistic collisional model (see Leinhardt and Richardson, 2005)
in order to determine the true nature of the post-collision particles.
Presumably angular momentum is lost by shedding rubble from
the surface. Three possibilities await this freed rubble: collision
with other planetesimals, orbital migration via gas drag into the
central star, or recollapse into 1 km planetesimals (Goldreich
et al., 2004). Given the number density of planetesimals at this
stage of growth, the former seems the most likely. This limitation
of our model demonstrates the need to perform similar simula-
tions with a more realistic collisional model (e.g., Leinhardt and
Richardson, 2005; Leinhardt et al., 2009).

Our analytic fits to the mass distributions show that exponen-
tial fits do not match the data (see Table 3). However, a power
law does provide a reasonable fit for most of our models. Removing
the k ¼ 1 bin from our fits results in a significant decrease in the
unreduced v2 values, as shown in Table 3. We conclude that run-
away growth has not begun in our simulations.

All of our simulations show that growth from 1 km planetesi-
mals can proceed quickly. In fact, it proceeds so rapidly that our
model breaks down in just a few hundred orbits (see Section
4.4.2, Fig. 15). Therefore the only way to realistically proceed be-
yond t1=2 is to enlarge our patches. As we expand our patches,
the number of particles increases. Given that Simulation L1 re-
quired �30,000 node hours to complete on the Columbia Super-
computer at NASA Ames, and computation time scales as Nlog N,
we may not be able to expand our patches such that they are both
statistically accurate and computationally tractable. Our results
therefore suggest that the patch model may be inadequate to mod-
el later stages of terrestrial planet formation.
7. Conclusions

We have performed the first N-body simulations of growth from
1 km planetesimals. The initial conditions of our runs were chosen
to be similar to those believed to have existed in our protosolar
disk; substantially different parameters may be appropriate for
the initial stages of growth in extreme exoplanetary systems (Lis-
sauer and Slartibartfast, 2008). These simulations required hun-
dreds of thousands of node hours of supercomputer time, using
an advanced N-body code designed specifically to examine systems
with large N. Although numerous shortcuts and approximations
were incorporated in our model, we believe that our results pro-
vide insights into planetesimal growth and lay a foundation for fu-
ture investigations.

Planetesimal growth from a uniform swarm of 1 km-sized
planetesimals proceeds in a stochastic fashion. Our results have
confirmed some of the trends seen in the semi-analytical research
(Greenberg et al., 1978; Wetherill, 1990; Weidenschilling et al.,
1997) into the growth of 1 km planetesimals. Until more realistic
models of fragmentation can be implemented in N-body codes, sta-
tistical methods are the only feasible approach to address
fragmentation.

Some of the assumptions of our model broke down relatively
quickly, demonstrating the limits of the patch approximation in
modeling planetary accretion. Nonetheless, our results suggest
new directions of research for this epoch of planet formation. In
particular, a more realistic collisional model (one in which addi-
tional small particles carry away excess angular momentum, i.e.,
fragmentation) seems most important. Such a model may suppress
growth (as well as eliminating unphysical spins), and hence plane-
tesimals would not grow so quickly. However, this approach is
considerably more complex and numerically intensive than those
presented here. Until these modifications can be made, our results
represent the most accurate model of 1 km planetesimal growth
available.
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Appendix A. List of symbols and abbreviations

A arbitrary constant
Alj collisional probability coefficient in coagulation theory
a semi-major axis
B arbitrary constant
b power law fit parameter
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b0 power law fit parameter with m ¼ m1 bin excluded
C arbitrary constant
c exponential fit parameter
c0 exponential fit parameter with m ¼ m1 bin excluded
D arbitrary constant
e eccentricity
eRMS root mean square eccentricity of particles in a patch
Fg gravitational focusing factor
f fraction of particles relative to initial number
G Newton’s gravitational constant
i inclination
iRMS root mean square inclination of particles in a patch
j counter in coagulation equations
k ratio of particle mass to mass of 1 km planetesimal
kR mass of a runaway particle relative to a 1 km planetesimal
L1 Largest baseline simulation
l counter in coagulation equations
lmax largest value of counter l
M0.5 simulation with the initial velocity dispersion magnitude

set to half that of Simulation L1

M1 medium-sized baseline simulation
M2 simulation with the initial velocity dispersion magnitude

set to twice that of Simulation L1

Mann mass in an annulus of the protoplanetary disk
Mpatch total mass inside a patch
M� mass of the Sun
M	 mass of the Earth
m mass
m1 mass of 1 km planetesimal
mcrit particle mass at which, in one orbit, it collides with an

equal mass of gas
mmax largest mass in a simulation
mmax-1 second largest mass in a simulation
mmax-4 fifth largest mass in a simulation
mmax-9 tenth largest mass in a simulation
mpl mass of planetesimal
hmi average mass of planetesimals
N number of bodies in a simulation
N0 initial number of planetesimals in a simulation
Npatch number of bodies in a patch
Nk number of bodies in a mass bin
nk number density of particles in mass bin k
P orbital period
Ppeak peak of the spin period distribution
S1 Simulation with same initial properties as L1, but only 1/16

the size
PIAB particle-in-a-box
R planetesimal radius
Rmax radius of largest planetesimal
r heliocentric radius
rpatch heliocentric radius of the center of a patch
S stirring power of largest mass relative to that of all other

bodies
S1 smallest-sized baseline simulation
t time
t1=2 the time required to reduce the total number of particle at

distance r by 2
tbase longest timestep in a simulation
tcross crossing time for two planetesimals
tmin minimum timestep in a simulation
u center-of-mass speed of a patch in the x-direction
V volume
v velocity
vesc escape speed of a planetesimal
vRMS root mean square speed of a patch
vx speed in x-direction
vy speed in y-direction
vz speed in z-direction
W size scale of a patch
w center-of-mass speed of a patch in the y-direction
x Cartesian coordinate that mimics heliocentric distance
xg x position of guiding center of a planetesimal’s epicycle
y Cartesian coordinate that mimics azimuthal position
yg y position of guiding center of a planetesimal’s epicycle
z height above/below midplane
Z0 scale height of planetesimal disk
b radial excursions of a planetesimal due to eccentricity
bmax largest radial excursion of a particle in a patch
bmax-1 second largest radial excursion in a patch
bmax-2 third largest radial excursion in a patch
bmax-3 fourth largest radial excursion in a patch
bmax-4 fifth largest radial excursion in a patch
f number of rungs in a simulation
g scale factor to determine timesteps
H maximum apparent size of a cell for PKDGRAV to only use

the hexadecapole moment
h azimuthal position of a planetesimal in heliocentric coordi-

nates
m1 collisional probability coefficient in constant solution of

coagulation equation
m2 collisional probability coefficient in linear solution of coag-

ulation equation
m3 collisional probability coefficient in product solution of

coagulation equation
q volume mass density
q0 volume mass density at midplane
qpl mass density of a planetesimal
R surface density
R0 coefficient that scales surface density of planetesimal disk
r physical cross-section of a planetesimal
rpl gravitationally enhanced cross-section of a planetesimal
hrpli average gravitationally enhanced cross-section of plane-

tesimals
s mean free time between planetesimal physical collisions
/ gravitational potential
v2

b unreduced v2 value for power law fit to mass distribution
v2

b0
unreduced v2 value for power law fit to mass distribution
with m ¼ m1 mass bin excluded

v2
c unreduced v2 value for exponential fit to mass distribution

v2
c0 unreduced v2 value for exponential fit to mass distribution

with m ¼ m1 mass bin excluded
Xpatch Keplerian orbital frequency of a patch
Xz vertical frequency due to Keplerian motion and the mass of

the disk

Appendix B. The coagulation equation

Here we summarize the basics of the coagulation equation as
presented by Wetherill (1990). The discrete form of the coagula-
tion equation is

dNk

dt
¼ 1

2

X
lþj¼k

Aljnlnj � nk

X1
l¼1

Alknl; ðB1Þ

where the generic indices j, k and l are just the ratio m=m1. In Eq.
(B1), Nk is the number of particles in bin k, Ajl is the probability of
collision, nj is the total number density of particles of mass j, m is
the mass, and m1 is the mass of a 1 km planetesimal. The first term
is the collision probability of all combinations of particles of mass l
and j that sum to equal the current mass bin k. The mass bin is the
quantum of the mass spectrum. The factor of 1/2 prevents the sum-
mation from counting all collisions twice (when l ¼ j). The second
term is the loss of particles from mass bin k to larger mass bins.



Table 4
Results of 1 km planetesimal growth at 0.4 AU after 2000 orbits.

ID mmaxðm1Þ vRMS ðm s�1Þ Fg Ppeak (h)

L1 5879 7.94 9.69 0.85
M1 4117 7.89 7.95 0.75
S1 773 6.00 4.95 0.85

Fig. 23. The mass function of Simulations L1 (top), M1 (middle) and S1 (bottom) and
the associated power-law fits to the data; see Eq. (21) and Table 5.

Fig. 22. Mass spectrum at various times during the evolution of the baseline
patches in log–log format. Note that the M1 simulation has been offset by 0.1 and S1

by 0.2.
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Note that, despite the discrete nature of Eq. (B1), for t > 0, it can
predict a fractional number of particles in each bin.

The collisional probability coefficient, Alj, is a function of the rel-
ative velocity of particle l to j, their masses, the number density of
each bin, and the volume being considered. Therefore

Alj ¼ Aljðvrel;ml;mj; nl; njÞ; ðB2Þ

where nl ðnjÞ is the number density of particles with mass l (j). Three
forms of this function have been examined. The simplest solution is

Alj ¼ m1; ðB3Þ

a constant. For linear dependence we assume

Alj ¼ m2ðlþ jÞ; ðB4Þ

a constant times the sum of the masses, and the dependence on
velocities and densities has been subsumed into m2. These two pos-
sible solutions both fall under the category of orderly growth. A
third solution, which is proportional to the product of the masses,
assumes

Alj ¼ m3lj: ðB5Þ

At any given orbit, Wetherill also gives equations for the collisional
probabilities as a function of time:

m1 ¼
2ð1� f Þ

N0ft
; ðB6Þ

m2 ¼ �
log f
N0t

; ðB7Þ

and

m3 ¼
2ð1� f Þ

N0t
: ðB8Þ

The solutions to the constant and sum forms are

Nk ¼ N0f 2ð1� f Þk�1; ðB9Þ

and

Nk ¼ N0
kk�1

k!
f ð1� f Þk�1e�kð1�f Þ; ðB10Þ

respectively, where N0 is the initial number of particles, and f is just
the fraction of the number of particles remaining at time t,

f ¼ NtotðtÞ
N0

¼
P1

l¼1Nl

N0
: ðB11Þ

The product solution to the coagulation equation is

Nk ¼ N0
ð2kÞk�1

k!k
ð1� f Þk�1e�2kð1�f Þ; ðB12Þ

and yields runaway growth. This, however, leads to the natural
problem that a runaway particle is a special particle, and it should
not be treated as typical. This marks the breakdown of the PIAB
model. These solutions to the coagulation equation are used in Sec-
tion 4. In the text we refer to Eq. (B9) as constant coagulation, Eq.
(B10) as linear coagulation, Eq. (B12) as product coagulation.

Appendix C. The baseline model to 2000 orbits

In the spirit of Icarus’ flight to the Sun, we present results for the
baseline simulations from t1=2 to 2000 orbits here. As shown in Sec-
tion 4.4.2, after t1=2 larger mass bodies may significantly alter the
velocity dispersion in the patches. However, the locations of such
particles relative to the patch are unknown. The synodic period
across the radial width of the patch is about 2400 orbits. We
may therefore presume that by 2000 orbits, a large mass has en-
tered the patch and significantly altered the dynamics, but the time
and magnitude of the changes are unknown. Although the results
in this appendix suffer from significant inconsistencies, we none-
theless present them here, as they represent the only N-body sim-
ulation of growth from 1 km planetesimals to date. Table 4 lists
some of the properties of the baseline models at 2000 orbits. Re-
sults in this appendix should not be regarded as physically realistic
simulations of planetesimal growth beyond t1=2!



Fig. 25. Evolution of the escape speed of the largest particle (dashed line), RMS
velocity (solid line), and escape speed of the average mass particle (dotted line) for
Simulation L1.
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Fig. 22 presents the mass distribution of particles in a format
similar to Fig. 2. At 2000 orbits, three particles in L1 and one in
M1 have reached masses larger than 5000 m1. By comparison, the
fourth largest planetesimal in L1 is one-sixth as massive, 814 m1,
see Fig. 24.

Fig. 23 presents the mass functions at 2000 orbits, along with
the associated analytic fits to the data. At 2000 orbits the power
law has become a better fit to the data than at t1=2. Table 5 lists
the fit parameters (and corresponding measures of goodness of
fit) at 2000 orbits. The values of the key parameters b and b0 all
cluster near 1.9. At 2000 orbits the exclusion of the k ¼ 1 bin does
not cause dramatic changes in the unreduced v2 values, which is
not surprising since only 10% of the particles remain at k ¼ 1.

Fig. 24 shows the evolution of some of the largest particles in
the L1 patch. At 713 orbits, the two largest particles in the patch
merge to form a 1610 m1 mass object. This merger has important
consequences for our assumptions about the statistical accuracy
of our patch, as shown below.

In Fig. 25 we show the evolution of vRMS compared to the escape
speed of the largest and typical particle in Simulation L1. After 500
orbits, vRMS appears to grow linearly, while vmax

esc begins to level off
(except for the major merger event at 716 orbits). These qualita-
tively different growth rates suggest that the larger particles are
beginning to significantly heat the patch. Note that even this
dynamical heating is probably an underestimate, as particles out-
side the patch with larger mass should have sheared into this patch
by 700 orbits.

We compare RMS velocity and mass growth for the three base-
line runs in Fig. 26. The RMS velocities remain close to each other
up to �t1/2 (top panel), but subsequently diverge. This divergence
corresponds with the masses of the largest particles in L1 and M1
Table 5
Fit parameters of the mass distributions at 2000 orbits.

ID b v2
b b0 v2

b0
c v2

c c
0 v2

c0

L1 1.88 486 1.93 253 8.0 11,562 10.2 4511
M1 1.89 141 1.96 71 7.4 2783 9.8 1029
S1 1.85 31 1.91 20 7.9 560 10.0 206

Fig. 24. Evolution of some of the most massive particles in the L1 run. Note the
merger of two �800m1 objects at 713 orbits. The three largest particles end up with
masses in excess of 5000 m1.

Fig. 26. Top: Evolution of the RMS velocities for the three baseline models. The
values for Simulations L1 and M1 stay relatively close to each other, but the S1 value
remains lower. Middle: Comparison of the growths of the largest particles in the
baseline simulations. The largest particles in L1 and M1 remain within about a factor
of 2 of each other, while the largest particle in S1 lags by about an order of
magnitude after 1000 orbits. Bottom: Fraction of the patch mass absorbed into the
largest particle. At all times, the fractions remain within a factor of a few of each
other.
reaching 100 m1. Note that Simulation M1 has the highest velocity
dispersion from 615 to 1939 orbits. This feature occurs because the
largest particle in M1 is nearly as large as that in L1 (middle panel),
but since the M1 patch is smaller than L1, the largest particle in M1

contains a larger fraction of the patch mass (bottom panel), and is
therefore a more effective stirrer (see below). Although the largest
particle in Simulation S1 contains approximately the same fraction
of the total mass as the particles in the other patches, its actual
mass is considerably smaller, and, hence, the velocity dispersion
in S1 remains lower than the others.



Fig. 27. Evolution of Fg as a function of time for the three baseline simulations. Fig. 29. The values of eRMS and iRMS as a function of mass at 2000 orbits for the three
baseline simulations. Filled squares are eccentricity, open triangles are inclination.
For reference, the dashed line represents equipartition of energy in e, dotted in i,
normalized to values at k ¼ 10.
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In Fig. 27 we see the evolution of the three gravitational focus-
ing factors in the baseline simulations. All appear to grow, reach a
maximum, and then decrease. The peak is at about 300 orbits for S1

and 600 for M1. The largest run L1 is double-peaked, at 400 orbits
and 700 orbits. The turnover at 400 orbits in L1 may be a statistical
fluke that is dramatically corrected at 716 orbits, or it may be that
the turnover at 400 orbits is real, and that the event at 716 orbits is
anomalous. The curves in Fig. 24 suggest the former. At t ¼ 200 the
largest particle in L1 begins to grow significantly faster than the
second largest, even though the two have approximately the same
mass. Then at t ¼ 400, the difference between the two begins to
decrease suddenly. The two are almost identical at t ¼ 700 when
two large particle merge at 716 orbits. At this point, the largest
particle once again becomes significantly larger.

In Fig. 28 we show the evolution of eRMS= sin iRMS. After initially
dropping from 2.35 (see Fig. 9), the value in L1 remains close to 2.1
Fig. 28. The ratio of eRMS to sin iRMS as a function of time. The ratio in L1 remains
slightly over 2 for the duration of the simulation, but the ratio for M1 and S1 trends
down.
for the duration of the simulation, suggesting the initial drop is a
transient effect. However, in M1 and S1, the evolution is steady
from 200 to 600 or 900 orbits, respectively, and then appears to
drop monotonically at later times. The overall drop represents
about a 10% change.

In Fig. 29 we examine dynamical friction in the baseline runs at
2000 orbits. We saw in Fig. 10 that there was a general trend of
decreasing velocity with increasing mass, although the slope of this
trend is so shallow that kinetic energies trend higher with increas-
ing mass. The same general pattern is seen at 2000 orbits for large
masses ðm J 100m1Þ, but velocity is independent of mass for smal-
ler masses. Note as well that the mean values for the small-mass
particles are larger at 2000 orbits than at t1=2.
Fig. 30. Evolution of u and w in Simulation L1. The values grow quickly after the
merger at 713 orbits.
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Next we examine the validity of the L1 patch from t1=2 � 2000
orbits. First we plot the evolution of u and w in Fig. 30. Both values
remain small until the major merger event at 713 orbits. At that
time, the values grow significantly, finally reaching u = �7 cm s�1,
about two orders of magnitude larger than its value at t1=2. This
velocity means that the center-of-mass velocity is roughly 1/70
the total shear across the patch, and that certainly by the end of
the simulation our assumptions have broken down.

Next we look at how effective different mass bins are at stirring
the patches at different times in Fig. 31. We saw in Fig. 14 that by
t1=2 the distribution of m2Nk was flat, and in Fig. 31 we see that the
slope is positive at all times after t1=2 for all simulations. These po-
sitive slopes indicate that the patch is not large enough since very
Fig. 31. Distribution of stirring power as a function of mass at four separate times
in all baseline simulations. By the end of the simulation, each of the three largest
particles in L1 (solid line) are an order of magnitude more effective at stirring the
patch than all the other particles combined. Note that the Simulation M1 data
(dashed line) are offset by 0.1 and the S1 data (dotted line) by 0.2.

Fig. 32. Evolution of S as a function of time for the three baseline models.
large particles not in the patch can substantially affect the velocity
distribution in the patch (see Section 4.4.2).

Finally, we examine the value of S in Fig. 32. The value in L1

stays below 0.15 until 713 orbits, indicating the largest-mass par-
ticle is not dominating the stirring in the patch. However, the mer-
ger at 713 orbits creates a particle whose stirring is about equal to
the stirring of the sum of all other particles in the patch. Therefore
at this point, the assumptions of the patch framework break down,
and we cannot expect the simulation to be providing reliable re-
sults. As other large particles appear in L1, S slowly drops. In M1,
the value nearly reaches unity at 700 orbits, and then grows
quickly to a final value of 17.5. In S1, S remains below unity for
the duration of the simulation, but note the sudden jump at
1600 orbits.

The results presented in this appendix reveal the numerous
ways in which our patch model breaks down after t1=2. The
assumptions of small center-of-mass motion, no dominant mass
inside the patch, and no outside perturbers have all failed in the
three baseline models.
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