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ABSTRACT

We present results of numerical simulations that examine the dynamical stability of known planetary systems, a
star with two or more planets. First we vary the initial conditions of each system on the basis of observational data.
We then determine regions of phase space that produce stable planetary configurations. For each system we
perform 1000 ~ 10° yr integrations. We examine v And, HD 83443, GJ 876, HD 82943, 47 UMa, HD 168443, and
the solar system. We find that the resonant systems, two planets in a first-order mean motion resonance (HD 82943
and GJ 876) have very narrow zones of stability. The interacting systems, not in first-order resonance, but able to
perturb each other (v And, 47 UMa, and the solar system), have broad stable regions. The separated systems, two
planets beyond 10:1 resonance (we examine only HD 83443 and HD 168443) are fully stable. We find that the best
fits to the interacting and resonant systems place them very close to unstable regions. The boundary in phase space
between stability and instability depends strongly on the eccentricities and (if applicable) the proximity of the
system to perfect resonance. Furthermore, we also find that the longitudes of periastron circulate in chaotic systems
but librate in regular systems. In addition to 10° yr integrations, we also examined stability on ~108 yr timescales.
For each system we ran ~10 long-term simulations, and find that the Keplerian fits to these systems all contain

configurations that are regular on this timescale.

Subject headings: celestial mechanics — methods: n-body simulations — planetary systems

1. INTRODUCTION

By 2003 September 13 planetary systems had been discov-
ered (including our own solar system). The extrasolar planetary
systems (ESPSs) are, possibly because of observational biases,
markedly different from our own in several ways. In our solar
system (SS) the Jovian-mass planets all orbit at distances larger
than 5 AU, and on nearly circular orbits (e <0.05). ESPSs, on
the other hand, contain giant planets in a wide range of dis-
tances and eccentricities; some are 10 times closer to their
primary than Mercury, and others orbit with eccentricities
larger than 0.5. In this paper we attempt to categorize these
systems dynamically, constrain the errors of the orbital param-
eters, compare our SS to ESPSs, explore the long-term stability
of each planetary system, and determine the mechanism(s) that
maintain stability.

We examine these systems through numerical simulations.
The integrations begin with slightly different initial conditions
in order to probe observationally allowed configurations. This
exploration of parameter space permits a quantitative measure
of the stability of each system and hence predicts which dis-
tribution of orbital elements will most likely result in a stable
system. In addition, a comparison of stability between systems
may reveal which elements are most critical to the stability of
planetary systems in general.

A quick inspection of the known systems reveals three ob-
vious morphological classifications: resonant, interacting, and
separated. Resonant systems contain two planets that occupy
orbits very close to a 2:1 mean motion resonance. A 3:1
system, 55 Cnc (Marcy et al. 2002), has been announced, but its
dynamics will not be examined here. Interacting systems con-
tain planets that are not in mean motion resonance but are
separated by less than a 10:1 ratio in orbital period. These
systems are not dynamically locked, but the planets perturb
each other. The SS falls into this category. The final classifi-
cation is systems in which the (detected) planets’ orbits are
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beyond the 10:1 resonance. These planets are most likely dy-
namically decoupled (i.e., they can be modeled as planets on
Kepler orbits); however, some of these separated systems
warrant investigation.

We examine planetary systems on two different timescales.
First, we explore parameter space in 10° yr integrations. For
these simulations we vary initial conditions to determine stable
regions within the observed errors. Second, we continue several
stable simulations for an additional 108—10° yr. From these runs
we then learn how robust the predicted stable regions are, and
we also determine the mechanisms that lead to stability. Spe-
cifically we evaluate the hypothesis that some stable system
require secular resonance locking.

In many ways this paper performs the direct analysis that is
approximated by MEGNO (Cincotta & Simo6 2000; see also
Robutel & Laskar 2001; Michtchenko & Ferraz-Mello 2001;
Gozdziewski 2002). MEGNO searches parameter space for
chaotic and periodic regions. Our simulations show that to first-
order MEGNO’s results do uncover unstable regions. In gen-
eral, however, chaotic systems can be stable for at least 10 yr,
as shown below. Our SS also shows chaos on all timescales
(for a complete review, see Lecar et al. 2001); therefore direct
N-body integrations are the best available method for deter-
mining stability.

This work represents the largest coherent study of planetary
system dynamics to date. Our simulations show that the true
configurations of most planetary systems are constrained by
just a few orbital elements (or ratios of elements) and that sta-
ble regions can be identified with integrations on the order of
106 yr. We also find that stability, as well as constraints on stabil-
ity, are correlated with morphology. Resonant system stability
depends strongly on the ratio of the periods, interacting systems
depend on eccentricities, and separated systems are stable.

This paper is structured as follows. In § 2 we describe the
generation of initial conditions and the integration technique,
and we introduce the concept of a stability map. In § 3 we
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analyze the results of the resonant systems HD 82943 and
GJ 876. In § 4 we examine the interacting systems of 47 UMa,
v And, and the SS. In § 5 the separated systems, specifically
HD 168443 and HD 83443, are discussed briefly. In § 6 we
summarize the results of §§ 3—5. In § 7 we discuss possible
formation scenarios and inconsistencies between this work and
other work on planetary systems. Finally, in § 8 we draw general
conclusions and suggest directions for future work.

2. NUMERICAL METHODS

In this section we outline the techniques used to perform and
analyze these simulations. This paper follows the example of
Barnes & Quinn (2001, hereafter Paper I). First we describe
how the initial conditions of each of the short-term simulations
are determined. In § 2.2 we describe our integration method.
Finally in § 2.3 we describe a convenient way to visualize the
results of these simulations, the stability map.

2.1. Initial Conditions

In order to explore all of parameter space we must vary six
orbital elements (the period P, the eccentricity e, the longitude
of ascending node (2, the longitude of periastron w, the in-
clination 7, and the time of periastron passage T},) and every
mass in the system. The period and the semimajor axis a are
related by Kepler’s third law. The argument of pericenter, w, is
the difference between w and (2.

For each system we perform 1000 simulations, each with
different initial conditions. Orbital elements that are easily de-
termined via the Doppler method (P, e, @, Tpi) are varied
about a Gaussian centered on the nominal value, with a standard
deviation equal to the published error. We do not permit any
element to be more than 5 ¢ from the mean. For the i and
Q elements, flat distributions in the ranges 0° < i< 5°
and 0 < < 27 were used. Note that this distribution of i and
Q permits a maximum mutual inclination of 10°. These ran-
domized orbital elements are relative to the fundamental plane.

The Doppler method of detection does not produce a normal
error distribution. As Konacki & Maciejewski (1999) show, the
error in eccentricity can have a large tail toward unity. How-
ever, their method, or other statistical methods, such as boot-
strapping, require all the observational data (including reflex
velocity errors) to determine the shape of this error curve. As
not all the observations of multiplanet systems have been
published, we are forced to use a normal distribution in order
for comparison between systems to be meaningful. We there-
fore encourage that all the observational data be published,
as some of the results presented here (specifically comparing
the percentage of simulations that survived) are less meaning-
ful because we are unable to accurately estimate the error
distributions of the orbital elements. For completeness we
also vary the primaries’ masses, M,, based on other observa-
tions (generally determined via spectral fitting). However, as
the stars are all at least 100 times more massive than their
planetary companions, the slight variations in primary mass
should not affect stability.

The masses of the planets are determined by the following
relation

m— Mobs (1)
|sin[cos~!(sin i) cos ]|’

where m is the true mass of the planet and m, is the observed
minimum mass. By varying the mass this way, we account for
all possible orientations and connect the inclination of the

system to its inclination in the sky. Note that this scheme re-
quires the azimuthal angles in the planetary systems to be mea-
sured from the line of sight.

2.2. Integration

With initial conditions determined the systems were then
integrated with the RMVS3 code from the SWIFT suite of
programs' (Levison & Duncan 1994). This code uses a sym-
plectic integration scheme to minimize long-term errors, as well
as regularization, to handle close approaches. The initial time
step, At is approximately 1/30 of the orbital time of the inner-
most planet. In order to verify the accuracy of the integrations,
the maximum change in energy, ¢, permitted was 10~%. We
define € as

_ max |E; E0|’ 2)

Ey
where E; represents an individual measurement of the energy
during the simulation and E| is the energy at time 0. There are
two reasons for using this threshold in e. First, as the integra-
tion scheme is symplectic, no long-term secular changes will
occur, so high precision is not required. Second, the simula-
tions needed to be completed in a timely manner. If a simulation
did not meet this energy conservation criterion, it was rerun
with the time stamp reduced by a factor of 10. The minimum
time stamp we used was Pjn.,/3000. Despite this small time
stamp, a few simulations did not conserve energy and were
discarded, except that they were incorporated into the errors.
Errors and error bars include information from unconserved
simulations. Simulations that fail to conserve energy would
most likely be labeled as unstable, since the failure of energy
conservation undoubtedly results from a close encounter be-
tween two bodies, which usually results in an ejection. There-
fore the estimates for stability in the systems presented here
should be considered upper limits.

Throughout this paper we adopt the nomenclature of the
discovery papers (planets have been labeled b, c, d, etc., with
order in the alphabet corresponding to order of discovery). We
will also introduce another scheme based on mass. Planets will
be subscripted with a 1, 2, 3, etc., in order of descending mass.
This new scheme is more useful in discussing the dynamics of
the system.

The short-term simulations are integrated until one of the
following criteria is met: (1) The simulation ejects a planet.
Ejection is defined as the osculating eccentricity of one planet
reaching, or exceeding unity. (2) The simulation integrates to
completion at time 7. For these simulations, 7 is defined as

T=28x10°Py, (3)

or 280,000 times the period of the most massive planet. This
choice corresponds to 10° yr for the v And system, as was
simulated in Paper 1.

If a system ends without ejection, then the stability of the
system must be determined. There are several possible defi-
nitions of stability. In Paper I a system was stable if the oscu-
lating eccentricity of each companion remained below 1 for
the duration of the simulation. The most obvious flaw in this
definition is that a planet could suffer a close approach and be
thrown out to a bound orbit at some arbitrarily large distance.

! SWIFT is publicly available at http://k2.space.swri.edu/~hal /swift.html.
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TABLE 1
IniTIAL CONDITIONS FOR RESONANT SYSTEMS

Mass Period Longitude of Periastron Time of Periastron
System Planet (My) (day) Eccentricity (deg) (JD)
GJ 8761 c 0.56 30.12 £+ 0.02 0.27 £+ 0.04 330.0 £+ 12.0 2450031.4 + 1.2
b 1.89 61.02 £+ 0.03 0.10 £+ 0.02 333.0 £ 12.0 24500452 + 1.9
HD 82943 ......cooeunee. b 0.88 221.6 £ 2.7 0.54 £+ 0.05 138 £ 13 24516309 + 5.9
c 1.63 444.6 + 8.8 0.41 £+ 0.08 9 £ 7 2451620.3 + 12.0

Such a system would bear no resemblance to the observed
system and hence should be labeled unstable. Here we adopt a
more stringent definition, namely, that the semimajor axes of
all companions cannot change by more than a factor of 2.
Changes in semimajor axis represent a major perturbation to
the system; therefore this second cut is conservative and elim-
inates only systems that expel a planet to large distances
without fully ejecting it.

In addition to these short-term simulations, we completed
simulations to explore longer term stability (~10% yr). For
each system we ran ~10 simulations, chosen to cover a wide
range of stable parameter space. For these runs we started with
the final conditions of stable configurations and continued
them. These simulations therefore give us a handle on how
the system is likely to evolve on timescales closer to its age
(~10° yr). Those systems that survived these longer runs are
the best comparisons to the true system. Hence they are the
best simulations for determining the factors that lead to plan-
etary system stability.

There are two notable problems with this methodology. First,
we ignore the effects of general relativity, which may be im-
portant in some systems, specifically GJ 876 and v And.
General relativity was included in our treatment of v And in
Paper 1. In Paper I the innermost planet had a negligible effect
on the system, and we presume that general relativity will
continue to be unimportant for the systems studied here. Sec-
ond, we treat all particles as point masses. This is again espe-
cially troublesome for GJ 876 and v And, because of their
proximity to their (presumably) oblate primaries. The sphe-
ricity of the stars also prohibits any tidal circularization of
highly eccentric planets (Rasio et al. 1996). This may artifi-
cially maintain large planetary eccentricities and increase the
frequency of close encounters. However, the eccentricities must
become very large for this effect to become appreciable. We
therefore assume that this phenomenon will not adversely affect
our results. Ignoring these two issues should impact the results
minimally while speeding up our simulations considerably.

2.3. Stability Maps

When analyzing the simulations, it is useful to visualize the
results in a stability map. In general a stability map is a three-
dimensional representation of stability as a function of two
parameters. In resonant systems, we find that several param-
eters determine stability. The most important is the ratios of
the periods of the two resonant planets, which we will call R:

P outer
R= . 4
p inner ( )

In coupled systems, e; and e, are the relevant parameters. The
advantage to this visualization is that boundaries between
stability and instability are easily identified.

The disadvantage of this form of visualization is that if the
range of parameter space is not uniformly sampled (as it is
here), we cannot visualize of the errors. It is therefore important
to bear this disadvantage in mind. At the edges of stability
maps, the data are poorly sampled and the information at the
edges should largely be ignored. To aid the visualization we
have smoothed the maps. If a bin contained no data, then it
was given the weighted mean of all adjacent bins, including
diagonal bins. This methodology can produce some misleading
features in the stability maps. Most notable are tall spikes or
deep depressions in sparsely sampled regions. We comment on
these types of errors where appropriate.

The procedure as outlined overestimates the size of stable
regions in two important ways. First, the integration times
are generally less than 0.1% of the systems’ true ages. As is
shown throughout this paper, instability can arise at any time-
scale. Therefore, the stability zone will continue to shrink as
the system evolves. Second, we have chosen a very generous
cut in semimajor axis space. Other studies permit Aa to be no
larger than 10% (Chiang et al. 2001). Lowering this variation
would undoubtedly also constrict stability zones.

3. RESONANT SYSTEMS

Two systems with orbital periods in 2:1 mean motion res-
onance have been detected: HD 829437 and GJ 876 (Marcy
etal. 2001a). Table 1 lists the orbital elements and errors for the
resonant systems. For now we do not examine the 3:1 55 Cnc
system. The current best Keplerian fit to the observations put
HD 82943 and GJ 876 just beyond perfect resonance. These
planets all occupy high-eccentricity orbits and hence have wide
resonance zones. Simulations of these systems show that sta-
bility is highly correlated with the ratio of the periods, R, and to
a lesser degree on e;. These systems have the smallest stable
regions as less than 20% of simulations survived to 7.

3.1. HD 82943

Two planets orbit the 1.05 £ 0.05 M, GO star (Santos et al.
2000) HD 82943 at semimajor axis distances of 0.73 and
1.16 AU. Planet b is the inner and less massive, c, the outer and
more massive. Other research on this system has shown that this
system is most likely stable when it is in both a mean motion
and apsidal resonance (Gozdziewski & Maciejewski 2001; Ji
et al. 2003 also examined this system). They found that the
system is most likely to be stable in perfect resonance. These
simulations must run for 340,830 yr, Typ g2943. The long-term
simulations were run for 100 million years.

For this system we find that 18.8% = 4.3% of the trials were
unperturbed to Typ 82043, 17.8% survived for 10 yr, and 4.5%
failed to conserve energy. We determine the error in this number
by considering the 1000 trials as 10 suites of 100 simulations,

2 See http://obswww.unige.ch /~udry/planet/hd82943syst.html.
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Fig. 1.—Distribution of instability times for unstable configurations of
HD 82943. Most unstable systems survive for just 102-10* yr before per-
turbations change a semimajor axis by more than a factor of 2.

and calculate the standard deviation of these 10 data points.
Figure 1 shows the instability rate to 10° yr. Most unstable
simulations break our stability criterion within 10 yr, but others
survived more than 900,000 yr before ejecting a planet. The
asymptotic falloff to 10° yr implies that we have found most
unstable configurations. In 91.3% of the trials, planet b, the
inner and less massive planet, was ejected/perturbed. In order to
check the simulations, Figure 2 plots the rate of survival as a
function of energy conservation. From this figure it appears
that our limit of 10~* is reasonable, since there appears to be
no trend in stability as a function of energy conservation. The
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Fig. 2.—Survival rate as a function of energy conservation for HD 82943.
The lack of a trend implies that the results for the system are accurate.
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FiG. 3.—R-e, stability map for HD 82943. The asterisk represents the best
fit to the system as of 2002 July 31. The data are most accurate closer to the
asterisk. The system shows a clear boundary in phase space between unstable
(dark gray) and stable (white) regions. Black represents unsampled data. The
stable region at R = 2.15, ¢, = 0.52 is a bin in which 1 of 1 trials survived.

spike in survivability at 10~® corresponds to regular orbits
that were stable for our initial choice of At. The lack of a trend
with energy conservation (specifically survival probability in-
creasing with decreasing ¢), implies our cutoff value of € is
stringent enough.

Stability in this system is correlated with R, e, AM, and Az,
where AM is the difference in mean anomaly and Aw is the
difference in initial longitude of periastron. Slightly beyond
perfect resonance is the preferred state for this system. This
system also requires the eccentricity of planet ¢ to remain be-
low 0.4. These features are shown in Figures 3 and 4. In
these gray-scale images, black represents unsampled regions,
the darkest gray marks regions in which no configurations
survived, grades of stability are denoted by lighter shades of
gray, and white is fully stable. As with most stability maps in
this paper, the outer 2—3 grid points should be ignored. In
Figure 3 the R-¢. stability map, the large “plateau” at low e,
is therefore poorly sampled, as is the island at R = 2.15,
e. = 0.52. The most striking feature of this figure is that the
best fit to the system, the asterisk, places it adjacent to stabil-
ity. If R is changed by less that 5%, the system has no chance
of surviving even 1 million years. This map shows that the
current fit to the system is not correct. However, the elements
do not need to change by much (specifically e. needs to be
slightly lower) for the system to have a chance at stability.
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Fic. 4—A-AM stability map for HD 82943. The asterisk represents the
best fit to the system as of 2002 July 31. The data are most accurate closer to
the asterisk. Stability appears to follow the line represented by eq. (6). Note,
however, that the system is also constrained to A < 75° and AM > 30°. The
island at A = 80°, AM = 20° is a bin in which 1 of 1 trials survived.

The system also shows dependence on mean anomaly and
longitude of periastron. Because of the symmetry of ellipses,
we will introduce a new variable, A, defined as

AE{|w1—w2|, A<, 5)
360 — |W1 - wz|, A>T,

where the subscripts merely represent two different planets, b
and c, for this system. The order is unimportant, as we are
concerned only with the magnitude of this angle. In Figure 4 the
A-A M stability map is presented. The asterisk marks the best fit
to the system. Stability seems to follow a line represented by

4 4 T
AM_§A+120_§(A+5). (6)

This relation is purely empirical. As is shown in the following
sections, this interdependency is unusual for extrasolar plane-
tary systems. Similar plots of AM or A versus R show the
same R dependence as in Figure 3. Therefore R is clearly the
most important parameter in this system, but these other three
also play an important role in the system. As more observations
of the system are made, HD 82943 should fall into the region
defined by 1.95 < R < 2.1, e, < 0.4, and equation (6).

HD 82943 shows a wide range of dynamics. Some exam-
ples of these are shown in Figures 5—8. The initial conditions
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plitude of 60°. The dashed vertical line represents Ay, the initial value of A.
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Fic. 7—Orbital evolution of HD 82943—216, the perturbation of
HD 82943c. The parameters are averaged on 10,000 yr intervals. Top left: The
planets’ semimajor axes are stable and show no signs of close encounters until
260,000 yr. At this point planet ¢ actually crosses b’s orbit. This initial en-
counter leads to more encounters as . reaches 3 AU by 280,000 yr, tripping
the criterion for instability. 7op right: The eccentricities experience secular
change until 210,000 yr. The system then moves into a lower eccentricity
state. The eccentricity then grows to large values and remain at their final
values for another 700,000 yr. Bottom lefi: As with eccentricity the inclina-
tions show slow secular change until 210,000 yr. The inclinations then leap up
to 30° in the case of planet b. Bottom right: The A distribution function is the
sum of two motions: the preperturbation motion is circulation, the post-
perturbation motion is fixed close to 110°. The dashed line represents A,. Note
that this distribution is for the full 10° yr integration.

of these systems are presented in Table 2. Figure 5 is an
example of the evolution of a regular system, HD 82943 —348,
which shows no evidence of chaos. Note that instead of A(%),
we present the distribution function of A, P(A), the probabil-
ity of A, versus A. This representation of A shows that the
motion is like that of a harmonic oscillator; the longitudes of
periastron are librating with an amplitude of 60°.

Figure 6 (HD 82943—382) is a stable case which is clearly
chaotic. Although the eccentricities remain close to their ini-
tial values, the inclinations jump to large values quickly. Note
that A never exceeds 75°, but its motion is slightly nonhar-
monic, another indication of chaos.

In Figure 7 the orbital evolution of simulation HD 82943 —
216 is shown. This system perturbed planet ¢ after 280,000 yr,
and, despite the high eccentricities the system reached (>0.75
for both planets), remained bound for 10° yr. The inclinations
also show large growth. Although initially A = 41°, the system
appears to become locked at just over 100°. This is misleading
since this is the A distribution for the full 10° yr. It is actually
the superposition of two modes. Initially, until perturbation at
280,000 yr, the system circulates with a slight preference to-
ward antialignment. However, after the perturbation the system
becomes locked at A =~ 100°. Although not shown, after these
initial perturbations the system settles down to a configura-
tion in which a, = 0.344 AU, ¢, =~ 0.79 and a. =~ 2400 AU,
e. =~ 0.99. At this semimajor axis the period of the orbit is
over 115,000 yr, so this system should not be considered

Fic. 8.—Long-term simulations of the HD 82943 system. These data are
averages over 50,000 yr intervals. Top left: Evolution of HD 82943—035. An
example in which the system is regular. 7op right: Evolution of HD 82943 —021,
an example of chaotic evolution. Botfom left: Evolution of HD 82943—000,
another example of chaotic motion. Bottom right: Evolution of HD 82943 —032.
A chaotic system which ejects planet b after 2.4 million years (77up 82943 )-

locked as the planet has made less than 10 periastron passages
since being flung to such a large semimajor axis.

We ran 10 simulations for 108 yr. The initial conditions and
results of these simulations are presented in Table 3. The ec-
centricity evolution of four simulations is shown in Figure 8.
These simulations show that some configurations are regular
(top left), that some are apparently chaotic (top right, bottom
left), and that instability can arise at any timescale (bottom
right). These long-term simulations show that regions exist in
phase space in which this system can survive for at least 108 yr.

Several papers have suggested that secular resonance locking
maintains stability in ESPSs with large eccentricities (Rivera &
Lissauer 2000, 2001; Chiang et al. 2001). Specifically, they
suggest that the orientation of the planets’ ellipses should be
aligned (A =~ 0). By examining A in stable, regular long-term
simulations we can determine whether the longitudes of peri-
astron remain locked. The probability distribution of A for these
same four long-term simulations is presented in Figure 9. A
is sampled once every 100 yr. The top left plot of Figure 9 is
similar to that of an harmonic oscillator; this configuration is
librating about A = 0 with an amplitude of 40°. The other plots
are systems that are not librating, but instead show more ran-
dom motion. From this figure we see that regular motion is
correlated with libration about alignment, but chaotic and un-
stable motion generally shows chaotic A behavior.

32.GJ 876

Two planets orbit the 0.32 £ 0.05 M., (Marcy et al. 2001a)
M4 star GJ 876, also known as Gliese 876. This system is very
similar to HD 82943, the major difference being that the planets
lie closer to their primary. The semimajor axes of these two
planets are 0.13 and 0.21 AU. Note that in this system planet c
is the inner and less massive planet. A substantial amount of
work has already been done on this system. The discovery
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TABLE 2
SELECTED SimuLATIONS oF HD 82943

Ao
Trial ey o eco Ry (deg) € Comments®
0.563 0.345 2.0108 422 2.6 x 1077 C, P (c, 299.9)
0.617 0.419 1.9656 13.6 1.5%x 1078 R
0.516 0.322 2.0303 324 9.2 x107° C
0.481 0.440 2.0948 68.4 1.3 x 10710 C, P (b, 7.5), E (b, 10.5)

? R = regular, C = chaotic, P = perturbed (planet, time [10> yr]), and E = ejected (planet, time [10> yr]).

paper (Marcy et al. 2001a) notes that stable configurations exist
in the system. Lissauer & Rivera (2001) show that Keplerian
fitting for this system is not precise enough to accurately de-
termine the orbits. They suggest, through N-body fitting, that
GJ 876 must actually lie in perfect resonance and that the or-
bital elements provided in the discovery paper (which are used
here) suffer from a systematic error. Because P; is so short for
this system (60 days), the evolution of the orbital elements has
been observed and has corroborated this theory. Ji et al. (2002)
also find that perfect resonance acts to stabilize this system.
This section therefore serves as a check to this hypothesis.
We ran GJ 876 for 10° yr, but 7gyg7¢ corresponds to only
47,000 yr. On 47,000 yr timescales, only 5.6% =+ 2.8% of pa-
rameter space is stable. On 10° yr timescales, 2.4% of config-
urations survived, but only 1.7% were still unperturbed, and 5%
failed to conserve energy. In unstable cases planet c, the inner
and less massive, was ejected/perturbed nearly 96% of the
time. Figure 10 shows the instability rate. GJ 876 shows the
same trend as HD 82943; most unstable configurations break up
in just a few hundred dynamical times. Again, the asymptotic
nature of this plot implies that most unstable configurations
have been identified. This system shows the same sort of trend
in € as HD 82943, which proves that our results our valid.
Unlike HD 82943, there are no obvious zones of stability. We
see only isolated islands in the R-e}, stability map presented in
Figure 11. We choose these parameters for our stability map
because they were the strongest indicators of stability in
HD 82943 and because of the suggestion that the system ac-
tually is in perfect resonance. Close to R = 2.00 we sampled
two simulations near R = 2.02 and e, = 0.7. Both of these
were stable. However, with such poor statistics and at such a
large (relative) distance from perfect resonance, we cannot
comment on the likelihood that the system would be more
stable in perfect resonance. We can, however, point out that
there are isolated configurations that may hold stable orbits,
and prolonged observations of this system should demonstrate

whether it is indeed in perfect resonance. However, this lack
of a large stable region strengthens the hypothesis that this
system lies in perfect resonance.

This system does lies very close to A = 0. However, this
proximity to alignment has no bearing on the stability of the
system; in fact, it may actually diminish its chances of sta-
bility. In Figure 12 the probability of stability as a function of
initial A is shown. Although the values for large A are poorly
sampled, four data points at 100% stability does suggest that
larger values of A may be more stable.

Similar dynamics are present in GJ 876 as in HD 82943. In
Figure 13 and 14 we show two examples of stable and unstable
configurations. The initial conditions for several simulations
are listed in Table 4. In Figure 13 we plot the orbital evolution
of simulation GJ 876—029, a stable, yet chaotic configura-
tion. Although this system was stable for 47,000 yr, planet b
was perturbed after 220,000 yr. This system, however, re-
mained bound for 10° yr. The large eccentricity oscillations
continue on to 10° yr, and planet ¢ tends to remain in a retro-
grade orbit. After 10° yr a. = 0.0515 AU, 0.06 < ¢, < 0.85,
i. = 120°, ap = 0.87 AU, e, ~ 0.77, and i, < 5°. The period
of e, oscillations remains at 3300 yr. The A evolution further
belies the chaos in this system, since it tends toward anti-
alignment but also circulates. As before, this distribution is
over 10° yr, but since the system remains in approximately
the same state from 25,000 yr to 10° yr, this plot is a fair rep-
resentation of the motion during the first 765 g76.

In Figure 14 the evolution of a system which perturbs the
outer planet in just 9000 yr is shown. The system ejects planet
b in 152,000 yr. Before reaching 7G;g76 this system experi-
ences some remarkable evolution in a, e, and i. Note, too, that
A very quickly moved to an antialigned configuration.

Long-term simulations for this system were integrated for
27.5 million years. A complete summary of the long-term
simulations for this system is presented in Table 5. Figure 15
plots the eccentricity evolution of four simulations. Some

TABLE 3
ResuLTs oF LonG-TErRM (108 yr) SmuLaTioNs oF HD 82943

Ao
Trial ep.0 €0 (deg) € Result?

0.561 0.395 2.0269 26.5 52x 1078 C

0.571 0.333 2.0615 39.0 1.0 x 108 C

0.414 0.556 2.0556 333 495 €(2.4), E (b, 2.4)
0.511 0.236 2.0322 6.7 6.8 x 1079 R

0.534 0.197 2.0080 29.5 6.1 x 10~ R

0.600 0393 2.0766 52.8 0.22 €(1.005), E (c, 1.14)
0.542 0.386 2.0223 24.8 2.4 %1078 C

0.549 0.348 2.0382 27.0 1.1 x10°8 C

0.468 0.265 2.0626 56.8 6.3 x 108 R

? R = regular, C = chaotic, ¢ = energy conservation failed (time [10° yr]), and E = ejection (planet, time [10° yr]).
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Fic. 9.—Distribution function of A (sampled every 100 yr) for four stable
cases of HD 82943. These four systems are the same as in Fig. 8. The top left
plots a system librating about A = 0. The other plots show that chaotic and
unstable motion is usually associated with a circulating A.

systems appear regular throughout (top left). Some config-
urations are chaotic for the duration of the simulation (zop right,
bottom left), and others may eject a planet after an arbitrarily
long period of time (bottom right).

Figure 16 shows the distribution function of A for the same
four systems. The regular system (top left) shows a configura-
tion that usually librates with an amplitude of 80°, but with
occasional circulation. The two chaotic examples (top right,
bottom left) have flat distribution functions. Not surprisingly,
the unstable trial shows a very peculiar distribution function.
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Fic. 10.—Ejection rate for GJ 876. In this system unstable configurations are
usually ejected within 100 yr. The rate asymptotically falls to zero by 105 yr.
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FiG. 11.—R-ey, stability map for GJ 876. The asterisk marks the best fit to
the system as of 2002 August 7, and the values for stability are more accurate
closer to the asterisk. In this system, as in HD 82943, the two relevant orbital
elements are e; and R. There are no contiguous regions of stability, only small
isolated pockets that may hold stable zones.
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Fic. 13.—Orbital evolution of GJ 8§76—029, a chaotic stable configuration
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a factor of 2 until 220,000 yr = 4.77Gy876. Top right: The remarkable eccen-
tricity evolution of this system. These oscillations persist for 10° yr. Bottom
left: The inclination of planet b varies a small amount, generally staying below
5°. Planet ¢ experiences wild fluctuations; however it does eventually settle to
120°. Bottom right: This curious A distribution function suggests that A prefers
antialignment. This implies that a protection mechanism is keeping the system
from breaking apart despite the extremely large values of ey,.

As in HD 82943, we see that regular systems tend to librate and
chaotic configurations circulate.

Although the evidence is compelling that GJ 876 does in
fact lie in perfect resonance, our work demonstrates that sta-
ble, regular systems do exist close to the observed Keplerian
fit. More observations of this system will demonstrate whether
the system is in perfect resonance. This work clearly dem-
onstrates that stable regions do exist for a system like GJ 876
just beyond perfect resonance. Should this system lie in per-
fect resonance, then this work shows that unstable regions lie
very close to its configuration.

New astrometric data has confirmed the mass of the outer
planet in this system (Benedict et al. 2002). This is therefore
the only ESPS with a known mass. The plane of b’s orbit is
inclined by 6° to the line of sight. Benedict et al. confirm
the mass and semimajor axis of this planet to be statistically
identical to those presented in Table 1. However, for this paper,
the lack of data for planet ¢ precludes any new insights into
the dynamics of the system. At best, if the system is approxi-
mately coplanar, then the variations used here are indeed rep-
resentative of the true system, and our results are more robust.

4. INTERACTING SYSTEMS

Four known systems meet the interacting system criterion:
v And (Butler et al. 1999), 47 UMa (Fischer et al. 2002), the
SS,* and HD 12661 (Fischer et al. 2003). In this paper we will
limit ourselves to the first three. The number, placement, and
sizes of the planets in each system are quite different, but all
have at least two planets that lie in between the 2:1 and 10:1

3 See hitp://ssd.jpl.nasa.gov/elem_planets.html.
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Fic. 14—Orbital evolution of GJ 876—858, the perturbation of GJ 876b.
Planet b was eventually ejected after 152,000 yr. Top lefi: The semimajor axes
evolve quiescently for 9000 yr, until a close approach increases a, marked by
the p. Although ay, returns to its initial value by 765 876, just prior to ejection ay,
reached 750 AU. Top right: The eccentricities immediately jump to very large
values. Values of e, vary wildly between 0.6 and 0.99. After b is kicked out to
large a, the oscillations become much smaller. For nearly 10,000 yr e}, remains
above 0.98, but it does not reach unity until 152,000 yr. Bottom left: As with
eccentricity, the inclination of ¢ jumps wildly for 9000 yr, even reaching 162°
just prior to perturbation. Bottom right: As with the e and i, A immediately
moves from its starting position. However, A remains very close to anti-
alignment for the duration of the simulation.

resonances. v And was the first known ESPS and was the
subject of Paper I. The experiment in Paper [ is the procedure
for this paper, and the simulations have been performed again.
47 UMa was announced in 2001 and, at first glance, appears
more like the SS than v And. Performing this experiment on
the SS is problematic. The errors in the orbital elements of the
SS are drastically smaller than for the ESPSs, and therefore
fitting the SS into the procedure requires inflating the SS orbital
element errors to values comparable to those of the ESPSs.
Essentially we are asking what would we observe if we took
radial velocity measurements of our Sun. We will compare the
ESPSs to both the gas giant system (§ 4.3) and the Jupiter-
Saturn system (§ 4.4). These three coupled systems’ orbital
elements are summarized in Table 6. Interacting systems show
broad regions of stability that are correlated with eccentricity.

4.1. v Andromedae

The v And system is a combination of a separated system
and an interacting system. Three planets orbit the 1.02 +
0.03 M., (Gonzalez & Laws 2000) F8 star v And. The inner
planet, b, orbits at 0.04 AU. The other planets, ¢ and d, or-
bit at larger distances (0.8 and 2.5 AU, respectively) but are
significantly more eccentric. The outer planet is the most mas-
sive; therefore T, ang corresponds to 10° yr.

The v And system was the subject of Paper I and has been
the focus of intense research since its discovery. The apparent
alignment of the apses of planets ¢ and d has sparked the most
interest, with several groups claiming that the system must be
secularly locked, or at least librate about A = 0 (Rivera &
Lissauer 2000; Lissauer & Rivera & 2001; Chiang & Murray
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TABLE 4
SELECTED SIMULATIONS oF GJ 876

Ao
Trial €0 €b.0 Ry (deg) € Comments®
0.177 0.073 2.0241 11.6 4.6 x 1073 C
0.239 0.122 2.0247 3.65 22% 108 C, P (b, 5.1), E (b, 5.3)
0.338 0.107 2.0255 13.1 6.2 x10°° C, P (c, 149), E (c, 151.9)
0.351 0.072 2.0303 51.0 2.7 x 1072 R?

® R = regular, C = chaotic, P = perturbed (planet, time [103 yr]), and E = ejected (planet, time [10° yr]).

2002), while others suggest that this alignment may be a
chance occurrence (Paper I; Stepinski et al. 2000). However,
these groups and others (Laughlin & Adams 1999) all agree
that this system, as presented, can be stable for at least 10% yr.

On a 10° yr timescale, 86.1% =% 3.3% of simulations sur-
vived, and 0.4% failed to conserve energy. This value is less
than 1 o from the value published in Paper I, 84.0% =+ 3.4%.
Figure 17 shows the perturbation rate as a function of time.
Once again we see that most unstable configurations eject a
planet immediately, and the rate falls to 4% by 10° yr. The fact
that ejections occur right up to 10° yr implies that we have not
detected all unstable situations and that the stability map for
this system contains more unstable configurations, and hence
the plateau is smaller and/or the edge is steeper after 10° yr.

There is one notable difference between the results of
Paper I and those reported here: the frequency of ejections of
each planet is different. In Paper I planet b was ejected 10%
of the time, ¢, 60%, and d, 30%. The SWIFT runs ejected planet
b 39% of the time, ¢, 54%, and d, 7%. Figure 18 plots the
survival probability in this system as a function of energy
conservation. Stability peaks at € = 10~% but quickly drops.
Although this plot is qualitatively different from Figure 2, we
again note that this implies that the simulations are valid. This
plot is typical for the interacting systems, confirming our hy-
pothesis that we need only maintain e < 10~* for the duration
of every simulation.

In Paper I a stability map in e, and ¢4 was presented in
Table 2. This table showed that ¢4 and, to a lesser degree,
e. determined the stability of the system. In Figure 19 the v
And stability map is presented, which is nearly an exact match
to that in Paper I. However, the best fit to the system® has
changed since then and the system has moved away from the

4 See http://exoplanets.org/upsandb.html.

edge slightly. From Figure 19, it is clear that v And lies close
to instability but not right on the edge. The edge of stability
in v And, however, is fundamentally different from in reso-
nant systems. In this interacting system, a large region of phase
space is fully stable (the “plateau’’), but there is a sharp bound-
ary in eccentricity space (the “edge”), beyond which the sys-
tem quickly moves into a fully unstable region (the “abyss”).
Although it appears that both morphologies are on the edge
of stability, they are different types of edges.

As previously mentioned, there are some unusual features
of this system; the lines of node are nearly aligned, and the
system lies close to the 11:2 mean motion resonance. This is
a weak perturbation, but between these two massive planets,
this may be important. However, a quick inspection of plots of
stability versus A (Fig. 20) and R, not presented, shows that
there is no statistically significant affect caused by these two
(potential) resonances. We do note that our integration time
may not be long enough to detect the importance of the 11:2
resonance.

As has been shown in other papers, this system exhibits both
apparently regular and chaotic motion. In Figures 21 and 22 we
present examples of orbital evolution of this system. Table 7
lists the initial conditions and results of several configura-
tions. In Figure 21 the orbital evolution of a regular, stable
configuration is plotted. However, this plot actually demon-
strates the breakdown of our model. Planet b’s eccentricity
oscillates with an amplitude of 0.3 and a period of 120,000 yr.
Unfortunately, v And b is tidally locked by its parent star with
a period of 0.011 yr. The timescale for tidal circularization
is 8 x 107 yr (Trilling 2000). We address this potential incon-
sistency in § 7. A for this system librates with an amplitude
of 50°, an indicator of regular motion.

In Figure 22 we show the orbital evolution of a system that
perturbs planet d but ejects planet c. The behavior of the

TABLE

5

REsuLTs oF LoNG-TERM (27.5 x 109 yr) SimuLaTioNs oF GJ 876

Ao

Trial €0 €p.0 Ry (deg) € Result®
0.0884 0.248 2.02353 453 24 %1077 C
0.108 0.161 2.02641 15.2 0.5 €(4.06), E (b, 4.08)
0.124 0.366 2.02624 29.3 2.6x 108 R
0.121 0.246 2.02548 46.43 0.6 €(17.6), C
0.0875 0.241 2.02342 53.5 2.5%107° R
0.110 0.256 2.02601 13.9 0.19 €(11.2), P (b, 24.0)
0.105 0.208 2.02778 33.1 0.18 «2.4), E (c, 2.4)
0.107 0.273 2.02726 31.2 0.02 €(1.4), E (b, 1.4)
0.0816 0.228 2.02242 19.4 23 %1078 C
0.0628 0.204 2.02803 4.80 41x%x10* €(0.25), C

? R = regular, C = chaotic, ¢ = energy conservation failed (time [10® yr]), P = perturbed (planet, time [10° yr]), and

E = ejected (planet, [10° yr]).



504 BARNES & QUINN

1 [T T T e e e T

T
Inner |

o

©
LI e e

|
——
L

T
]
I
1

0.6

T
I
I
1

0.4

T

Eccentricity

T

0.2

L

T

T
]
I
1

0.8

T T
P

T
]
I
1

0.6

04 - T N

Eccentricity

02—~ ]
[ F

0 o b b b b b0l b b b b a b

0 5 10 15 20 25 0 5 10 15 20 25

Time (108 Yr) Time (108 Yr)

Fic. 15.—Eccentricity of four long-term simulations of GJ 876. Top
left: Evolution of GJ 876—362, an apparently regular configuration. Zop
right: Evolution of GJ 876—290, a chaotic, yet stable configuration. Bottom left:
Evolution of GJ 876—895, a chaotic, stable configuration. Bottom right: Evo-
lution of GJ 876—300 which ejects planet b after four million years.

ejecting planet reaching very large semimajor axis distances
and subsequently returning, only to be ejected, was also seen
in GJ 876 (see Fig. 14). Note, too, that the peak in ¢, corre-
sponds with the peak in 7,

Long-term simulations run for 100 million years. Figure 23
is the eccentricity evolution of four simulations. In one case
(Fig. 23, bottom right) the inner planet is ejected after 55 million
years. The top left panel shows a system undergoing chaotic
evolution. The other two panels show regular motion.

Figure 24 shows the A distribution of these configurations.
Several different modes of stability exist for the apses in this
system. The panels in Figure 24 correspond to those in Fig. 23,
and therefore the top left is the regular case. The apparently
chaotic systems (fop right, bottom left) show the A distribution
signature of chaos, as does the example which ejects planet b
(bottom right). In Table 8 we present a summary of all long-
term simulations for v And.

4.2.47 UMa

The 47 UMa system consists ofa 1.03 £ 0.03 M, (Gonzalez
1998) star and two interacting companions: b and c, at 2.09
and 3.73 AU, respectively. The initial eccentricities in this
system are substantially lower than v And at 0.06 and 0.1,
respectively. More recent measurements place e, much closer
to 0. However, “e. = 0.3 provides almost as good a fit to the
radial velocity data as does e, = 07005 (Laughlin et al. 2002).
Should e, < 0.1 then, of all the systems examined in this paper,
47 UMa most closely resembles our own. Planet b is the larger
planet and hence determines 747 yma = 840, 000 yr.

Overall, 80.3% 4 4.7% of simulations were stable to
T47 UMa. This is less than a 2 ¢ difference from v And. In un-
stable configurations planet ¢, the less massive planet, was
ejected every time. This is similar to v And, in which the most

3 See http://exoplanets.org.
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Fig. 16.—A evolution of the same four simulations in Fig. 19. Chaotic
systems (fop right, bottom left) show no signs of libration, while regular
systems (top left) are librating, but with occasional circulation. The unstable
example (bottom right) shows a very strange distribution, which only dem-
onstrates the chaos of this system.

massive planet perturbed the smaller planets. The instability
rate as a function of time is presented in Figure 25. The rate
for 47 UMa is similar to the other systems in that most unsta-
ble configurations perturb a planet past stability on relatively
short timescales, but with a tail to longer times. The rate does
not reach zero, however, and suggests that more unstable con-
figurations exist.

The 47 UMa stability map is presented in Figure 26. The
overall structure of stability in eccentricity space is qualita-
tively the same as in v And, with one major exception: stability
is correlated with e, (e.), not e; (ep). The errors for e, are
substantial. The main difference between 47 UMa and v And is
that the more massive companion is the interior planet. This
configuration makes it more difficult for the exterior planet to
perturb the interior planet, which is more tightly bound to the
parent star.

This stability map is in good agreement with other work
done on this system. Using MEGNO, Gozdziewski (2002)
determined the maximum value for e, to be approximately
0.15. A stability analysis in Laughlin et al. (2002) also shows a
similar dependence on e.. For nearly coplanar systems, such as
those presented here, they determined the maximum value for
e to be less than 0.2. Although the exact maximum value for e,
is different for all three studies, it is clear that the value of ¢,
determines stability for 47 UMa.

When comparing Figure 26 with Figure 19, we see that the
edge in the v And system is much cleaner than in 47 UMa.
One possible reason for this is the system’s proximity to the
5:2 mean motion resonance. To examine this possibility, in
Figure 27 we plot stability as a function of R in this system.
Although there appears to be some increase in stability be-
yond 5:2, and a decrease inside 5: 2, the errors are too large to
confirm whether this is a real effect.

In Figure 28 and 29 we present two possible orbital evolu-
tions for 47 UMa. Some sample simulations from the suite of
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IniTIAL CONDITIONS FOR INTERACTING SYSTEMS

TABLE 6

Mass Period Longitude of Periastron Time of Periastron
System Planet (My) (day) Eccentricity (deg) (JD)

SS e Jupiter 1.000 4331.6 £ 433 0.0484 + 0.1 14.8 +90.0 2449896.3 + 25.0
Saturn 0.297 10759.7 £ 107.8 0.0542 £ 0.1 92.4 £+ 90.0 2450411.1 £+ 25.0

Uranus 0.0459 30704.9 + 307.0 0.0472 £ 0.1 171.0 £ 90.0 2447230.0 + 25.0

Neptune 0.0541 60197.2 £ 602.0 0.0086 £ 0.1 45.0 £ 90.0 2442071.3 £ 25.0

U AN .o b 0.69 4.61706 £ 0.0003 0.015 £+ 0.015 32.0 + 243.0 2459991.588 + 3.1

c 1.96 241.1 £ 1.1 0.25 £ 0.11 251.0 £ 33.0 2450160.1 + 20.8

d 3.98 1309.0 £ 30.0 0.34 + 0.11 255.0 £ 17.0 2450044.0 + 40.5

47 UMa........... b 2.54 1089.0 £ 3.0 0.06 £+ 0.014 172.0 £ 15.0 2453622.0 + 34.0
c 0.76 2594.0 £+ 90.0 0.1 +0.1 127.0 £+ 56.0 2451363.5 + 493.0

1000 are listed in Table 9. First, in Figure 28, is a stable regular
configuration. Over 50% of all configurations for this system
are regular. In this case the eccentricities, and inclinations show
very small oscillations (10%) and A librates with an amplitude
of 45°.

In Figure 29 we present an example of the ejection of
planet c. This system appears to evolve regularly for 10,000 yr,
then experiences 25,000 yr of chaotic evolution, culminating in
the ejection of the outer planet. For this configuration A cir-
culates during the first 30,000 yr, both regular and chaotic
epochs, but with different angular velocities in each stage.
During the final 10,000 yr, however, when e. becomes very
large, A becomes locked at 155°.

Long-term simulations of 47 UMa were integrated for
10° yr. Table 10 is a summary of all long-term simulations for
47 UMa. Figure 30 shows the eccentricity evolution of four
systems. The top right panel of this figure is fascinating. The
system is very chaotic for the first 350 million years, then
enters a short (~20 million years) period of quiescence, only
to return again to a similar chaotic state. The other config-
urations all appear regular. Figure 31 plots the A evolution.

In 47 UMa no secular resonance locking occurs. However,
these plots confirm the results of Laughlin et al. (2002). They
show that for low values of e, (<0.1) the system should librate
in an aligned configuration, but above 0.1 the system should be
antialigned. The chaotic case, as expected, has a flat distribu-
tion function.

4.3. Gas Giants

Perhaps the most interesting aspect of the new ESPSs is their
comparison to the SS. The procedure outlined in § 2 permits a
comparison of the ESPSs and the SS. We must first, however,
determine how to vary the initial conditions of the gas giants.
As can be seen in Table 6, the “error” associated with each
planet is arbitrary. We have given a spread in initial conditions
that is roughly similar to the percent error as listed in the ESPSs.
For example, the periods are allowed to vary by approximately
10%, but the eccentricities have a standard deviation of 0.1
for all planets. This procedure will allow us to create a stability
map for the SS but will make a comparison of the probabil-
ities of survival less meaningful.

The outer SS consists of four gas giants located between
5.2 and 40 AU. The gas giants are on much more circular orbits
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Fic. 17.—Ejection rate of unstable configurations in v And. Configurations
may eject planets right up to 10° yr. It is therefore unclear how many more
configurations might become unstable.

0

Fic. 18.—Survival probability as a function of energy conservation in v
And. The instability at low e implies that the results for v And are robust.
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Fic. 19.—Stability map for v And. Stability in this system depends on eq4
and, to a smaller degree, on e.. As in resonant system stability maps, precision
is correlated with distance from the asterisk, which marks the best fit to the
system as of 2002 September 24. v And lies near the edge of stability.

than the ESPS planets (Saturn has the largest eccentricity at just
over 0.05). Because of the large semimajor axes, 7gg corre-
sponds to 3.32 x 10° yr. Compared to known ESPSs, the gas
giants are relatively low-mass planets. In fact Uranus and
Neptune could not be detected via the Doppler method at the
precision level currently achieved (see § 4.4).

Chaos in the SS is well documented (e.g., Sussman &
Wisdom 1988, 1992; Varadi et al. 1999; Lecar et al. 2001). In
fact, Varadi et al. (1999) show that the Jupiter-Saturn system
lies very near chaotic regions. They vary the semimajor axes of
these two planets slightly (less than 1%) and find that this is
enough to identify broad chaotic regions. Below we show that
by enlarging this variation, the system moves into total insta-
bility; ejections are inevitable.

For the gas giants 85.3% =+ 4.3% of the trials were unper-
turbed for 3.3 x 10° yr. Paper I integrated 32 gas giant con-
figurations, and 81% of these survived. As in § 4.1, we again
recover the results of Paper I. In this system Jupiter was never
ejected; it always removed the other planets from the system.
Saturn was ejected in 14% of the simulations, Uranus (the least
massive) in 62%, and Neptune in 24%. In the SS therefore, the
ejection rate is tightly coupled to mass, as was observed in the
other ESPSs. It therefore seems that the SS behaves like other
interacting systems.
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Fic. 20.—Stability as a function of A in v And. Although the best fit to the
system places it very close to alignment, marked by the dashed vertical line,
there is no significant trend with A.

Figure 32 shows the instability rate. Most configurations
survive for 103 yr. Once again it appears the perturbation rate
does not fall to zero, and we note that this means that we have
not found all the unstable systems. The last bin in this plot
contains only 20,000 yr worth of data. It is therefore unclear
whether the ejection rate might still be rising with larger time.
Should that be the case, our choice for 7gg is too small, sug-
gesting that we have not identified all unstable configurations.
Figure 33 is the stability map for the gas giants. The gas giants
show a plateau as in 47 UMa and in v And; however, the edge
is much less dramatic. The actual values for our gas giants
show that our system lies quite far from the stability edge. We
also note that the stability plateau shows many depressions
and that the abyss contains many spires. This apparent dif-
ference between the SS and other interacting systems may
result from not identifying all unstable configurations. Perhaps
longer integrations would sharpen the edge and broaden the
instability abyss. Dynamically, the major difference between
the SS and other interacting systems is that the SS has a much
broader range of orbital times. Jupiter orbits 13 times more
quickly that Neptune. Perhaps instability is more relevant on
the timescale based on the orbit of Neptune (see § 6). How-
ever, these features may also arise from the system’s proximity
to the 5: 2 resonance, the so-called great inequality. We address
this possibility in § 4.4.

Several example simulations are shown in Figures 34-36.
The initial conditions and outcomes of these simulations are
shown in Table 11. The best fit to e, eg, and R is simulation
SS-183. The orbital evolution of this system is shown in
Figure 34. Note, however, that A, differs substantially from its
standard value of 68°5. This difference is responsible for the
chaotic evolution of ¢; and eg. Curiously, though, the evolu-
tion of ey and ey are regular. Unlike the eccentricities, all
the inclinations evolve regularly. The nodes of Uranus and
Neptune librate about antialignment, but with occasional cir-
culation. Note that in e and i Uranus oscillates from two modes,
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TABLE 7
SELECTED SIMULATIONS OF U AND

Trial €c,0 ed,o Ry Ag (deg) Comments®
0.276 0.486 5.583 38.3 C, P (c, 218), E (b, 218)
0.177 0.470 5.509 20.2 C, P (d, 219), E (d, 219)
0.299 0.532 5.207 21.7 C, P (d, 10.1), E (c, 31.3)
0.394 0.375 5.566 11.1 R
0.168 0.428 5.386 81.0 C

* R = regular, C = chaotic, P = perturbed (planet, time [10 yr]), and E = ejected (planet, time [103 yr]).

whereas Neptune experiences three modes. We also note than
an examination of the Fourier power spectrum of Poincaré’s
h and k variables shows that Jupiter and Saturn’s motion is the
result of numerous short, broad peaks. Their motions are
therefore best described as chaotic.

In Figure 35 a fully chaotic, yet stablen configuration is
shown. The semimajor axes show obvious signs of encounters
but never change by more than 20%. The eccentricities are
very chaotic, but rarely reach 0.3. The inclinations, too, are ex-
tremely chaotic, but never surpass 12°. The double-peaked A
distribution function is another clear indicator of chaos.

The ejection of Uranus is shown in Figure 36. The semimajor
axes of Jupiter and Saturn remain nearly constant throughout
the simulation, but Neptune and Uranus are clearly interacting.
The eccentricities are chaotic but remain near the starting
values, except for Uranus, which steadily increases until it is
ejected after 2 x 10° yr. The inclinations are also chaotic.
Jupiter and Saturn appear quasi-periodic, while Neptune and
Uranus are fully chaotic. The longitudes of periastron tend to
remain near alignment, but the three peaks clearly belie the
chaos in the system.

We ran no long-term simulations on the SS. The orbital
elements for the SS are well determined, and many long-term
simulations have already been performed on this system (see
Duncan & Quinn 1993; Lecar et al. 2001).

4.4. Jupiter and Saturn

As mentioned above, Uranus and Neptune do not provide
enough reflex velocity, K, motion in the Sun to be observable
by current technology (K ~3 m s~'). Should any planet of
Uranus or Neptune mass exist in the observed ESPSs they
would not be detected. Therefore we followed the same pro-
cedure with just Jupiter and Saturn. This suite of simulations
can also provide clues as to how other ESPSs will behave if
they have additional, distant companions.

Not surprisingly, this three-body system is more stable than
the five-body system, as 96.3% =+ 2.4% of the trials remained
stable. In this system Jupiter was ejected 6.9% of the time, and
Saturn 93.1%. It seems as though instability is being passed
through Saturn and into the smaller planets. We can therefore
apply this result to the other ESPSs. This Jupiter-Saturn system
is analogous to the 47 UMa system. The mass ratio of the planets
are about the same, as is R. The only substantial difference is
that the masses are higher and the orbits closer in 47 UMa.
However, our simulations of 47 UMa used e, = 0.1. This is
about twice as high as eg. This decrease in eccentricity is clearly
important as the Jupiter-Saturn system is substantially more
stable than 47 UMa. This again demonstrates that the eccen-
tricities of the planets are key in determining stability.

Figure 37 is the stability map for the Jupiter-Saturn system.
This plot is similar to Figure 33. There is a boundary at approx-
imately the samelocationin eccentricity space; however, the drop

is not so sharp or so deep as in the gas giant system. Further, an
additional plateau rises at larger eccentricities. This last phe-
nomenon is not observed in any other system in this paper.

As mentioned in § 4.3, stability might be correlated with
the 5:2 resonance. Figure 38 shows stability as a function
of R for the SS. There is a hint that as the system moves
out of this third-order resonance, stability increases, but the
errors on these distant configurations are too large to con-
firm this possibility. In 47 UMa R = 2.38, while in the SS,
R =2.48. Although there are no statistically meaningful
points in Figures 27 and 38, the same trend appears in both,
namely, that interior to 5:2 instability is more prevalent. As
has been shown throughout this paper, the eccentricities de-
termine the overall stability, and the statistics are too poor to
claim any trend with R in either system; note that no point
differs by more than 1 o from the mean instability rate.

Comparing the gas giants with Jupiter-Saturn provides
us with an excellent opportunity to explore completeness. As
mentioned above, the Jupiter-Saturn system is similar to
47 UMa, yet the stability maps are quite different. The Jupiter-
Saturn system is the only system examined with no instability
abyss, and it is the only system we know to be incomplete.

5. SEPARATED SYSTEMS

By the end of 2002 three separated systems had been an-
nounced: HD 83443.° HD 168443 (Marcy et al. 2001b), and
HD 74156.7 The values and errors for these systems are
reproduced in Table 12. HD 83443 consists of two Saturn-mass
planets in very tight orbits. HD 168443 consists of two very
large companions (m; > 17Mj, my > 7.5Mj). In fact, planet ¢
should be considered a brown dwarf, and if the system is more
inclined than 35°, planet b would also be a brown dwarf. For
this system R = 30.5. HD 74156 contains two bodies of
slightly more than a Jupiter mass, with R = 44.6. We examined
only HD 168443 and HD 83443. Evidence is mounting that
HD 83443 is not a multiple system (Butler et al. 2002);
therefore we stopped the simulations on this system after 847
trials had been completed. For HD 168443 and HD 83443,
all simulations survived to 7. HD 74156 has a larger R and
smaller masses than HD 168443. It therefore seems highly
doubtful that any simulation of HD 74156 would produce an
unstable configuration.

Although all simulations were stable, the dynamics of
HD 168443 are still interesting. The eccentricities and incli-
nations of this system show a weak planet-planet interac-
tion. Although no evidence of chaos is evident, the planets
apparently are close enough that they feel each other. This
system may be fully stable, but it appears to lie close to the

© See http://obswww.unige.ch/~udry/planet/hd83443_syst.html.
7 See http://obswww.unige.ch/~udry/planet/hd74156.html.
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Fig. 21.—Orbital evolution of v And-076, a stable, regular configuration,
smoothed on 25,000 yr intervals. Top lefi: The semimajor axes show no
evidence of perturbations. Top right: The eccentricities experience simple si-
nusoidal variations. The period of planet b oscillations is 100,000 yr, while ¢
and d oscillate on a 7000 yr period. The large amplitude of e, is most likely
unphysical due to tidal locking with the parent star. The apparently irregular
behavior of ey, is an artifact of its long cycle. Bottom left: The inclinations are
also regular, although planet b’s inclination is affected by both planets on its
20,000 yr period. Planets ¢ and d oscillate in inclination on a 4000 yr period.
As in eccentricity, the slightly chaotic appearance of #, is an artifact of the
sampling time convolved with the physical period. Bottom right: The A dis-
tribution librates with an amplitude of 50°.
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Fig. 22.—Orbital evolution of v And-020, the ejection of v And c.
Top left: The semimajor axes evolve quiescently for 10,000 yr before per-
turbing planet d, marked by the p. 10,000 yr later planet c is perturbed to over
120 AU. The planet then returns to low a, but is quickly ejected after another
encounter with planet d. Top right: This configuration experiences wild os-
cillations from the very beginning. Bottom left: The inclinations also suffer
large, chaotic fluctuations. Shortly after planet d is perturbed, planet b expe-
riences a short period of retrograde motion. Bottom right: Although poorly
sampled, this graph clearly shows that A evolves chaotically.
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Fic. 23.—Long-term eccentricity evolution of four simulations of v And.
Top left: Eccentricity evolution of v And-006. This is an example of regular
evolution. Top right: Eccentricity evolution of v And-054. This is a chaotic
configuration. The chaos has been mostly smoothed over, though, since the
data represent 10,000 yr averages. Bottom left: Eccentricity evolution of
simulation v And-288. Another chaotic configuration. Bottom right: Eccen-
tricity evolution of v And-192. A chaotic system which ejects the inner planet
after 55 million years. This evolution is suspect since the effects of tidal
circularization undoubtedly play a role in the evolution of ey,
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TABLE 8
ResuLts oF LoNG-TERM (108 yr) SIMULATIONS OF v AND

Trial €c,0 €d.0 Ry Ag (deg) € Result®
0.302 0.345 5.351 43.6 2.1 x107° R
0.438 0.371 5.375 7.8 0.093 C, €2.6), E (b, 2.7)
0.145 0.201 5.559 56.6 1x10-8 C
0.392 0.411 5.28 43.4 0.32 C, €3.2), E (c, 79.4)
0.253 0.348 5.378 48.2 2.1 x10°8 R
0.0938 0.128 5.422 46.4 9.5%x 107 R
0.252 0.342 5.448 51.8 3.9% 1073 C, E (b, 54.8)
0.348 0.389 5.227 66.2 1.2x10°¢ C
0.256 0.349 5.369 1.1 52 %107 R
0.242 0.343 5.138 16.7 1.6 x 10-8 R
0.245 0.305 5.431 26.0 1.075 x 1074 C, €(77.3)

? R = regular, C = chaotic, € = energy conservation failed (time [10° yr]), P = perturbed (planet, time

[10° yr]), E = ejected (planet [10° yr]).

boundary between interacting and separated systems. We hy-
pothesize that this proximity to interacting systems is due to the
large planetary masses in this system.

6. SUMMARY

In this paper we have described the dynamics of three dif-
ferent morphological classifications of planetary systems. We
find that the systems in each of the classifications have similar
stable regions. In resonant systems very small stability zones
exist in phase space, and stability is tightly coupled with R
and, to a lesser degree, e, where e; is the eccentricity of the
most massive companion. In interacting systems, the zones
are larger but are correlated with e, and e,, where e, is the ec-
centricity of the second most massive companion. In these
systems we see a correlation with eccentricity and the location
of the most massive planet. Large interior planets are almost
impossible to eject (47 UMa, the gas giants), whereas large

o
N
T
1

e
o
a
T
1

©
T
|

Fraction of Unstable Systems
T
1

loglc(tstable/yr)

Fic. 25.—Instability rate in 47 UMa. Most ejections occur at 10,000—
100,000 yr. In this system, even unstable configurations generally survive for
at least 10,000 yr.

exterior planets can be ejected sometimes (v And). Separated
systems are completely stable as observed.

Table 13 summarizes the results of this paper. In this table
Jstable 18 the fraction of configurations that were stable and
Jfi»J=1,2,3,...1is the fraction of unstable systems that per-
turbed/ejected that planet. Note that the subscripts correspond
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Fig. 26.—Stability map for 47 UMa. The relevant orbital elements are e,
and e.. For this system the value of e, determines stability. The current best fit
to this system, as of 2002 November 1, is marked by the asterisk (Laughlin
et al. 2002). Note that although this system appears to lie far from the edge,
the observational error for e, is +0.115.
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close to the 5:2 mean motion resonance. There is some indication of more
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Fic. 28 —Orbital evolution of 47 UMa-032, a stable, regular configuration
of 47 UMa. The data are smoothed on 25,000 yr intervals. Top left: The
semimajor axes show no hint of perturbations. 7op right: The eccentricities
vary on a 4800 yr timescale for the duration of the simulation. This oscillation
is not visible because of the smoothing timescale. Botfom left: This system
never deviates more than 5° from coplanarity. The inclinations oscillate on a
4400 yr period. Bottom right: In this configuration A is aligned, but it librates
with an amplitude of 45°.

BARNES & QUINN

Vol. 611

L I L LA

100 p i L1 o - T i
- 3 08 [ ]
» SRR Outer > r 1
2 2 L ]
2 - s r ]
B Inner 506 [ i
g 10F 308 ]
= F S - —
i E m 04 [ ]
g Foreercenramesets™ ™ + g
13 r 4
2 . 0.2 7

P S AN I B A T
0 104 2x104 3x10* 4x10* 0 104 2x10% 3x10% 4x10*
Time (Yrs) Time (Yrs)

g T TR B I o e
I . ..p 1 [ ]

01 [ 7

O ] 0.08 [~ ]

g T 1

g : :0.06 r !

£ 4 1 3 r b

S & 004 B

> ] 0.02 [~ !
o L FLE A N I b o T T S e
0 10*  2x10% 3x10* 4x10* 0 50 100 150
Time (Yrs) A ()

Fic. 29.—Orbital evolution of 47 UMa-006, a chaotic, unstable configu-
ration of 47 UMa. The p marks the time that our perturbation criterion is met.
Top lefi: The semimajor axes evolve quiescently for 10,000 yr, then a. begins
its slow trek to upward of 200 AU. The system is not perturbed, however, until
21,500 yr. Note that the y-axis is logarithmic in this example. Top right: After
10,000 yr, the system suddenly becomes chaotic, eventually pushing e, to
unity in 40,000 yr. Bottom lefi: As with the eccentricities, the inclinations
evolve regularly for 10,000 yr but then become chaotic. Bottom right: In this
configuration A circulates, but eventually becomes fixed at 155° for the final
10,000 yr.

to mass, not semimajor axis (1 being the most massive com-
panion). We therefore strengthen the hypothesis suggested in
Paper I: all interacting planetary systems lie near the edge of
stability.

There are some obvious similarities among the systems.
One particularly intriguing result is the similarity in fgpe
between systems in the same classification. Resonant systems
have survival probabilities less than 20%, whereas interacting
systems lie close to 80% and the separated systems are com-
pletely stable. Of the interacting systems, 47 UMa stands out
as being far from the stability edge.

The choice of 7=2.8x10°P, appears to identify most
unstable configurations. For both resonant systems 7 < 10° yr,
but since these simulations were integrated to 10° yr we may
estimate the usefulness of this arbitrary value. For both GJ 876
and HD 82943 approximately 2%-3% of configurations
ejected a planet after 7. For the v And system, 1.5% of un-
stable systems were ejected in the last bin of Figure 17. For
47 UMa the rate was over 10%, and for the SS the rate was
4%. However, as was noted in § 4.3, this low rate for the
SS may be the result of poor sampling in the last bin. Although

TABLE 9
SELECTED SIMULATIONS OF 47 UMa

Trial €b,0 €c0 Ry Comments®

0021 0211 2384  C,P(c,2L.5), E (c, 38.1)
0.043 0077  2.503 C
0.065  0.105  2.405 R

* R =regular, C = chaotic, P = perturbed (planet, time [103 yr]), and
E = ejected (planet, time [10° yr]).
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TABLE 10
ResuLts oF Long-TErRM (10° yr) SmmuLaTions oF 47 UMa

Ao
Trial €b.0 ec.o Ry (deg) € Result®
0.0587 0.0809 2.4006 124.0 4%x10°° R
0.0637 0.0169 2.3737 57.7 3.7x10°¢ R
0.0594 0.115 24312 122.6 1.9x 1076 R
0.0577 0.0887 2.4332 64.3 42 %x10°° R
0.0607 0.111 2.4498 40.8 3.4x%x10°° R
0.063 0.113 2.3402 6.1 43 %x10°° R
0.0595 0.118 2.5513 164.5 3.4 %107 C
0.0583 0.0900 2.4872 94.3 4x10°° R
0.062131 0.0897 2.3957 88.2 2% 107 R

? R = regular, and C = chaotic.

all these systems reached a maximum ejection rate before 7,
the nonzero rate at 7 demonstrates that our choice for 7 was
slightly too short. In GJ 876 some ejections occurred right up to
106 yr, but by 10* yr (0.257G5876) over 90% of unstable cases
had been identified. The situation is nearly the same for HD
82943; 90% of unstable cases were identified by 30,000 yr
(0.171p 82943), but ejections continued for 10° yr. Given these
statistics, a better choice for 7 would be 7 = 10°P, ;. How-
ever, it is important to note that instability can arise after this, as
is shown in Figures 8, 15, and 23. The simulations presented
here clearly demonstrate the unpredictable behavior of chaotic
systems; no choice of 7 would identify all unstable config-
urations. One should therefore note that all the global results
presented here are upper limits. The probability of survival and
extent of stable phase space are smaller than what is shown
here.

Long-term simulations (>108 orbits) show that all systems
have regular configurations on this timescale. However, only
one simulated configuration of GJ 876 showed this behavior.
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FiG. 30.—Eccentricity evolution of four long-term simulations of 47 UMa.
Top left: Evolution of 47 UMa-624. Top right: Evolution of 47 UMa-307.
Bottom lefi: Evolution of 47 UMa-238. Bottom right: Evolution of 47 UMa-
257. Most systems are regular for the duration of the simulation. However, the
top right is clearly chaotic, yet it still survives for 10° yr.

Some configurations may show a large degree of chaos for up
to 10 yr (see Fig. 30, top left), eject a planet after an arbi-
trarily long period of time (Fig. 23, bottom right), in addition
to quiescent, regular evolution. Regular orbits tend to librate
about A = 0, but this is not necessary for stability (see Figs. 9,
16, 24, and 31). This agrees with other work that has shown
that apsidal libration is not necessary for stability in the
HD 12661 planetary system (Zhou & Sun, 2003).

7. DISCUSSION

Ideally, this research provides insights into planet forma-
tion. In particular, the current distribution of orbits may give
clues to the formation scenario. Two features of ESPSs are par-
ticularly interesting: the apsidal alignments and the large ec-
centricities. As e and w are coupled, these two phenomena are
likely the result of the same mechanism. There are two generic
ways to pump up eccentricities: adiabatically or impulsively,
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Fic. 31.—Distribution of A for four stable long-term simulations of
47 UMa. The chaotic system (fop left) shows a nearly flat distribution in A.
This suggests that A is behaving chaotically as well. Two regular systems (fop
right, bottom left) show libration about antiparallel configurations, whereas the
bottom right librates about A = 0.
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Fic. 32.—Rate of instability in the SS. Instability requires at least 30,000 yr
to develop and continues through 7gg.

Fic. 33.—Stability map for the gas giants. In eccentricity space, the SS lies
near a small depression. The edge in the gas giant system is not nearly as clean
as in other interacting systems. This may because our choice of 7 is too low to
find most unstable configurations.
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TABLE 11
SELECTED SIMULATIONS OF THE GAS GIANTS
Trial 50 es.0 Ry Comments®

157 e 0.155 0.042 2.40 C, E (N, 2.8)
180.....ciierenas 0.155 0.0.095 2.45 C,E (U, 2.1)
183 0.056 0.055 2.48 R/C
278 e 0.0944 0.223 2.45 C, E (S, 0.66)
306 0.124 0.230 2.46 C
402, 0.093 0.203 2.55 R

* R = regular, C = chaotic, and E = ejected (planet, time [10° yr]).

with respect to the secular timescale (2103 yr). Our variation of
orbital elements provides a unique view into the effects of these
mechanisms on the dynamics and stability of actual planetary
systems. Several groups have examined this problem, and in this
section we interpret our results in the context of theirs.

Of adiabatic scenarios, a remnant planetary disk is the most
likely candidate (Chiang & Murray 2002; Goldreich & Sari
2003). For at least the v And system, a remnant disk external
to planet d can provide a mechanism to pump up e, and e4 to
their current observed values (Chiang & Murray 2002). This
method also predicts libration of A about 0, which is ob-
served in this work. Conversely, an impulsive force may also
drive eccentricities to values significantly higher than zero
(Malhotra 2002). The impulsive scenario also perturbs A. In
adiabatic schemes the libration amplitude is small, whereas
in impulsive cases it can be quite large (>45°). Throughout
this paper we have shown configurations with libration
amplitudes larger than 45° (i.e., Figs. 5 and 31) and smaller
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Fic. 34.—Orbital evolution of SS-183, a stable configuration of the gas
giants in which some elements evolve regularly, others chaotically. Top left:
The semimajor axes do not change for the duration of the simulation. Top
right: The eccentricities of Jupiter and Saturn evolve chaotically, but Neptune
and Uranus appear to be regular. Bottom left: All inclinations evolve regularly,
although the number of modes is different; Jupiter, Saturn, and Neptune have
two modes, but Uranus has three. Bottom right: A shows the typical distri-
bution function of libration about antialignment and circulation. This alter-
nating results in the chaotic evolution of e; and eg through e-w coupling.
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FiG. 35.—Orbital evolution of SS-306, a stable, chaotic configuration of the
gas giants. Top left: The semimajor axes begin migrating immediately, but a
change greater than 20% does not occur for the duration of the simulation. Top
right: All eccentricities undergo chaotic oscillations, but the amplitudes are
small. No eccentricity ever reaches 0.35. Bottom lefi: The inclinations also
evolve chaotically with low-level oscillations. The system remains close to
coplanarity, as ig never exceeds 12°. Bottom right: This A distribution is
clearly chaotic as the two peaks and circulation demonstrate.
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Fic. 36.—Orbital evolution of SS-180, the ejection of Uranus. Top left: The
semimajor axis of Jupiter does not change, and Saturn changes by less than
0.1 AU at the very end of the simulation. Uranus and Neptune are clearly
interacting, but the fluctuations of ey and ey are small until 1.75 x 10 yr. Top
right: While the eccentricities of Jupiter, Saturn, and Neptune remain low,
Uranus’s eccentricity gradually grows until it is ejected after 2 x 10° yr.
Bottom left: The inclinations all also show chaos, but Jupiter and Saturn
appear to have a regular 3000 yr mode superposed on small chaotic fluctua-
tions. Bottom right: The A distribution for this configuration is quite unusual
and also indicates that the system is chaotic. Note, however, that the system is
experiencing a generic form of libration, since A never exceeds 60°.

Fic. 37.—Stability map for the Jupiter-Saturn system. This map shows
some similarities to that for the gas giants (see Fig. 33). The line demarcating
the plateau follows approximately the same diagonal line. We still see a few
depressions in the plateau as well.

than 45° (i.e., Figs. 9 and 24). This work therefore finds
examples of systems that may result from either mechanism.

This impulsive scenario is difficult to reconcile with reso-
nant systems. These systems most likely form as a result of
resonance capture during the orbital migration epoch of planet
formation (Snellgrove et al. 2001), which assumes adiabatic
migration. This phenomenon seems qualitatively similar to the
external disk model of Chiang & Murray. Their model, based
on torques produced by Lindblad and corotation resonances, is
very similar to planetary migration. However, current orbital
migration theory predicts that a Jupiter-mass planet at 5 AU
in a plausible minimum mass solar nebula should migrate on
a timescale of order 2500 (Tanaka et al. 2002) to 5000 yr
(Lufkin et al. 2004), which is a factor of 5—10 times shorter
than the typical secular timescale for planetary systems. This
suggests that the planetary disk model might actually be
impulsive, but only marginally so. However, Lufkin et al. also
point out that the migration might be very impulsive in heavier
disks. Understanding the rates of migration will be a major step
toward resolving this issue of high eccentricities and apsidal
alignment. All we can say now is that we are too limited in the
number of resonant and interacting systems to determine
whether their eccentricities result from similar processes.

The results presented here, coupled with those of Malhotra
(2002), support the theory that the eccentricities of planets in
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Fic. 38.—Stability as a function of R for the Jupiter-Saturn system. As in
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data point lies more than 1 ¢ from the mean rate of stability (96%). It therefore
appears that this resonance has minimal impact on the system. The dashed
vertical line represents the true value of R in the SS.

interacting systems result from planet-planet scatterings. This
possibility has been investigated substantially (Rasio & Ford
1996; Ford et al. 2001; Marzari & Weidenschilling 2002;
Malhotra 2002). The proximity of these systems to the edge of
stability might imply that planet formation is an efficient
process. Perhaps too efficient. As planets form, they are con-
stantly perturbing each other with ever greater force. It is well
known that ejections are common during planet formation. In
fact, some research predicts that the ejection of a fifth terres-
trial planet may be needed to explain the period of heavy
bombardment in the SS (Chambers et al. 2001). So it is not too
surprising that we find systems near instability because they
form in an unstable state and eject massive bodies until they
arrive in resonance or reach the stability plateau. Some work
has shown that if planet formation is very efficient (i.e., ini-
tially 10 Jupiter-mass planets), then the subsequent scattering
and ejections can produce distributions of @ and e that are
similar to those observed (Adams & Laughlin, 2003). Clearly
this scenario is appealing and will be verified in the next
several years as simulations become more sophisticated and
more multiple planet systems are detected.

Beyond the origin of large eccentricities and apsidal align-
ment, we find some inconsistencies in the theory of the origin
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of the very short period (P < 10 days) planets. As mentioned in
88 2 and 4.1, the effects of tidal circularization were not in-
cluded in this model. For v And the timescale for circulari-
zation is 80 million years (Trilling 2000), but we see that the
eccentricity of v And b can oscillate on 103 yr timescales with
an amplitude of 0.3. At this point is unclear whether the tidal
damping will always overwhelm the perturbations of other
companions. It could be that we have detected v And b at a
point in time in which its orbit is nearly circular. Perhaps we
will discover planetary systems in which a close planet is
being perturbed by external companions and the tidal circu-
larization cannot compensate. However, it seems more likely
that the circularization is a stronger effect as we have yet to
detect any planet inside the circularization radius on an ec-
centric orbit. Future numerical work should resolve this issue.

We observe that in general there is good agreement between
our results and those performed with MEGNO. The sizes of
stable regions appear to be overestimated in those papers, but
that is most likely due to their choice for 7, usually 10 yr. The
shortcomings of MEGNO are most clearly demonstrated in the
long-term integrations of 47 UMa. The top left of Figure 30
shows a stable but chaotic system that persists for 10° yr. The
uniqueness of systems such as this is unknown, but under-
standing the dynamics of chaotic, yet long-lasting, systems
could yield new insights into planetary dynamics. Our own SS
is another example of a system that displays weak chaos yet
can survive for very long periods of time (Laskar 1994).

This research is the first to examine the origin of high ec-
centricities and apsidal alignment with known systems. Most
other work in this field is purely hypothetical. That type of
research has the benefit of being unconstrained by statistics;
they may integrate as many systems as they wish, with arbi-
trary initial conditions. This work, conversely, is the first at-
tempt to coherently and consistently compare known systems
in order to understand their dynamics and origins. At this
point, with so few known systems, the two methods are
complimentary, but as we discover more ESPSs, the method
described in this paper will become more valuable as it uses
true ESPSs as a starting point.

8. CONCLUSIONS

We have shown that this type of experiment can indeed
constrain the observed orbital elements of planetary systems.
Further, we see that in almost all interacting and resonant
systems the current best fits to the system place them near the
boundary between stability and instability. The fact that no
system is completely unstable implies that the observations of
these systems are reliable and that the errors in the system are
probably conservative. That is, all systematics have been re-
moved, and statistical fluctuations are being overestimated.

TABLE 12
INtTIAL CONDITIONS FOR SEPARATED SYSTEMS

Mass Period Longitude of Periastron Time of Periastron
System Planet (My) (day) Eccentricity (deg) JD)
HD 168443 ......... b 7.73 58.1 £ 0.006 0.53 £+ 0.003 1729 £ 0.4 2450047.58 + 0.2
c 17.15 1770 £ 25 0.20 £+ 0.01 629 £32 2450250.6 + 18
HD 74156 ........... b 1.56 51.619 £ 0.053 0.649 £ 0.022 183.7 £33 2451981.4 + 0.57
c 7.3 2300(Fixed) 0.395 £+ 0.074 240 + 12 2450819 + 75
HD 83443 ........... b 0.34 2.9853 £ 0.0009 0.079 £ 0.033 300.25 £ 17.05 2451386.5 + 0.14
c 0.16 29.83 + 0.18 0.42 £ 0.06 337.42 £+ 10.42 2451569.59 £+ 0.73
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TABLE 13
THE STABILITY OF PLANETARY SYSTEMS

T

SyStem R (XIOS yr) N, good .f;table fl fi f% f4

2.03 0.47 950 0.056 0.04 0.96
2.01 3.4 955 0.188 0.09 0.91
2.38 8.4 997 0.803 0.00 1.00 o .
2.48 332 996 0.857 0.00 0.14 0.24 0.62
2.48 332 992 0.963 0.07 0.93 AN
5.4 10 996 0.861 0.07 0.54 0.39

30.5 13.6 1000 1.0 n/a n/a
9.99 0.023 847 1.0 n/a n/a

Note that our estimates of the instability of these systems is
in some sense an underestimate because of the possible pres-
ence of yet undetected lower mass companions. For example, it
may turn out that 47 UMa may have an undetected planet that
would put it closer to the edge. On the other hand, the very
existence of these systems shows that they are not unstable.
As unsettling as it may be, it seems that a large fraction of
planetary systems, including our own, lie dangerously close to
instability. As more and different types of systems are detected,
we will discover whether all planetary systems are on the edge.

This method has shown that, dynamically, the SS is not a
unique system. In fact, it lies in the middle stability category.
Some systems lie nearer instability, others further away. As the
radial velocity searches continue and astrometric searches be-
gin, a SS analogue (circular orbits, large semimajor axes) will
undoubtedly be discovered and we will finally be able to de-
termine how the SS fits in with other planetary systems. But
this experiment has shown that, with regard to its (close) prox-
imity to unstable regions, the SS is a typical planetary system.

Recently, more systems were announced; HD 38529 (Fischer
etal. 2003), a separated system, HD 12661 (Fischer etal. 2003),
an interacting system, and 55 Cnc, a three planet system with
interior planets in 3:1 resonance and a distant companion
(Marcy et al. 2002). The planets in HD 38529 have masses less
than HD 168443, and comparable values for R; therefore it
seems likely that they are fully stable. 55 Cnc, however, might
demonstrate different dynamics and edges as it is in a different
mean motion resonance. Future planetary systems will most
likely fall into the categories outlined in this paper. The results
presented here suggest that f;,,1c for 55 Cnc would lie between
resonant and coupled systems. HD 12661 is very similar to
v And, so we expect this system to show similar edges, prob-
abilities, and dynamics.

Future work will address many of the issues brought up in
§ 7. If planet formation is an efficient phenomenon, then we

might suspect that additional companions lie in separated
systems. Further, we should be able to determine that the ec-
centricity distribution of ESPSs result from a late scattering
event. We also need to determine the origin of the edges pre-
sented here. A mathematical relationship probably exists, which
would make the classification of planetary systems trivial. The
categories as defined here may be the result of small number
statistics. Two systems, HD 169830 and HD 37124, in which
R =~ 10 have been announced (Mayor et al. 2004; Butler et al.
2003). These system may reveal the boundary between
interacting and separated systems. An analysis of these two
systems and 55 Cnc will help sharpen our classification of
planetary systems.

Future work, both observational and theoretical, must ad-
dress these issues. These systems as they are observed now
reflect their histories and hence provide us with the best path to
unlocking the secrets of planet formation. As more and more
observations of these planetary systems, additional planetary
systems, and (hopefully) protoplanets are made, numerical
studies such as this, and those cited here, should provide a
deeper understanding of planet formation and dynamics.

The authors wish to thank Chance Reschke for his help in
completing these simulations. This manuscript was greatly
clarified after an edit by Derek C. Richardson. We would also
like to thank Renu Malhotra and Nader Haghighipour for
useful discussions and suggestions. This work was funded by
grants from NASA, NAI, and the NSF, and was simulated on
computers donated by the University of Washington Student
Technology Fund. These simulations were performed under
CONDOR.*

8 CONDOR is publicly available at http:/www.cs.wisc.edu/condor.
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