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ABSTRACT
Because of the high eccentricities (D0.3) of two of the possible planets about the star t Andromeda,

the stability of the system requires careful study. We present results of 1000 numerical simulations which
explore the orbital parameter space as constrained by the observations. The orbital parameters of each
planet are chosen from a Gaussian error distribution, and the resulting conÐguration is integrated for
1 Myr. We Ðnd that 84% of these integrations are stable. ConÐgurations in which the eccentricity of the
third planet is are always stable, but when the eccentricity is the system is always unstable,[0.3 Z0.45,
typically producing a close encounter between the second and third planets. A similar exercise with the
gas giants in our solar system sampled with the same error distribution was performed. Approximately
81% of these simulations were stable for 106 yr.
Subject headings : celestial mechanics È methods : n-body simulations È planetary systems È

stars : individual (t Andromedae) È stellar dynamics

1. INTRODUCTION

The recent observation of three extrasolar planets about
the F8 star t Andromedae provides a new opportunity to
study planetary system stability. The system consists of the
primary and three planets, b, c, and d, adopting the nomen-
clature of Butler et al. (1999, hereafter BMF). Planet b was
discovered in 1997 (Butler et al. 1997). The report of two
more companions was announced in BMF. This discovery
has since been conÐrmed independently (Noyes et al. 1999).

The implications of this discovery are obvious. New plan-
etary systems provide opportunities to explore planet for-
mation and nonlinear dynamics, as well as increase the
probability for both the existence and detection of life. Until
the discovery of the t And system, numerical integrations of
planetary systems around other stars were strictly hypo-
thetical (i.e., Chambers, Wetherill, & Boss 1996). Planet for-
mation scenarios must explain hot Jupiters and highly
eccentric orbits. With the explosion in the number of known
planets, these Ðelds will experience a revolution in the
coming years.

Much work has already been completed on this system,
notably a gigayear integration (Laughlin & Adams 1999,
hereafter LA99), an examination of possible planets in the
habitable zone (Rivera & Lissauer 1999), integrations of a
small sampling of parameter space (Noyes et al. 1999), and
simulations by Rivera & Lissauer, which explore numerous
possibilities in the t And system (Rivera & Lissauer 2000,
hereafter RL00). LA99 integrate only the outer two planets
of the t And system. Because the inner planet is the least
massive and is extremely close to the primary, to Ðrst order
its e†ects can be ignored. Removing it increases the dynami-
cal timescale of the system by 2 orders of magnitude,
making long-term integration feasible. LA99 compensate
for the mass-inclination degeneracy by starting the system
with a small relative inclination and set M

x
\ M

x
sin i

(x \ b, c, d). This should not a†ect the simulation as tran-
sient terms will die out, and the inclinations will approach
their natural distributions. RL00 ran seven simulations
varying time steps of planet bÏs period), method of( 120È18

integration, and mutual inclinations. As with LA99, they
found that some conÐgurations eject a planet within 105 yr,
while others are stable for 108 yr. RL00 also placed D300
test particles throughout the system to search for stable
zones where Earth-sized planets may reside. Finally, RL00
claimed that secular resonances maintain stability in the
t And system. The group of Stepinski, Malhotra, & Black
has also examined this system (Malhotra, Stepinski, &
Black 2000 ; Stepinski, Malhotra, & Black 2000). They
focused on the unconstrained parameters of inclination and
lines of node. The simulations in Stepinski et al. show no
secular resonances in the t And system. Our simulations
also suggest that there is no correlation between the longi-
tudes of periastron and the stability of the system, implying
the observed alignment is a coincidence.

Planet b is a typical hot Jupiter : it has a small semimajor
axis and a low eccentricity of 0.06 and 0.02 AU, respectively.
The new companions have highly eccentric orbits of
approximately 0.3 each. These high eccentricities make the
stability of the system suspect. The star t And is estimated
to be 2È3 Gyr old ; therefore, these planets cannot be tran-
sient entities. Rather than explore stability for the lifetime of
the star, we examine the overall probability that the system
can be stable on a 106 yr timescale, allowing a more thor-
ough study of parameter space.

The studies mentioned above have examined only the
t And system. We decided to run a similar experiment on
our outer solar system to establish a Ðducial point. Because
we know that the solar system is stable for 5 ] 109 yr, it
provides a useful comparison system. The results of this
experiment may allow our stability assessments of t And to
be extrapolated to longer timescales.

Our methodology and results are summarized in the fol-
lowing sections. Section 2 is a description of the methods for
generating initial conditions and integrating the orbits. In
° 3 we present the results of the simulations of t And, as well
as the results of the simulations of our own planetary
system. Approximately 84% of t And conÐgurations proved
stable, while 81% were stable in our outer solar system.
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Most unstable conÐgurations ejected planet c, with stability
highly correlated to the eccentricity of planet d. We draw
some general conclusions about these results in ° 4.

2. NUMERICAL METHODS

The initial conditions were determined on the basis of the
nominal value and error for each orbital parameter as
derived from observations. For each of the 1000 simula-
tions, all the orbital elements for each planet and the mass
of the primary are varied. For each planet the initial period
(and hence semimajor axis), eccentricity, longitude of perias-
tron, and time of periastron are determined from a Gauss-
ian distribution. The masses and inclinations of each planet
are degenerate. The value has been measured, butM

x
sin i

no estimate of the errors in inclination can be made. There-
fore, the inclinations are chosen from a uniform distribution
between 0¡ and 5¡, and from this the mass is determined.
This inclination distribution is purely arbitrary and was
chosen to encourage stability while still providing an ade-
quate sampling of parameter space. This range is in contrast
to LA99, who give planet d a slight inclination and allow
the inclination to dynamically evolve, and RL00, who start
their simulations at 0¡, 30¡, and 60¡. The longitude of
ascending node also has no nominal value or error ; hence it
is picked from a uniform distribution between 0 and 2n. The
nominal values and their associated errors (as of 1999 Sep-
tember 8) are listed in Table 1 (G. W. Marcy 1999, private
communication). As of 2000 August 21, the eccentricities of
planets c and d are 0.23 and 0.35, respectively.1 In the note
added in proof to RL00 is a short discussion of the impor-
tance of the starting date. For these simulations the starting
date is not varied and is always JD 2,450,000.00. The Ðnal
piece of information is the mass of t And. This parameter is
chosen from a Gaussian about 1.28 ^ 0.2 (Gonzalez &M

_Laws 2000).
The choice of a 106 yr integration timescale was made to

allow a reasonable search through parameter space with
limited computational resources and is at least 3 orders of
magnitude less than the lifetime of the system. The choice
corresponds to 80 million orbits for the interior planet and
280,000 orbits for the outer planet. Future work will
perform longer integrations. Integrations for the age of the
system, in a study such as this, are still beyond current
computational capabilities.

For comparison, simulations of the outer planets of our
outer solar system were also performed. The orbital param-
eters of the gas giants were varied in the same manner as for
t And. The forms of each Gaussian distribution for these
runs was such that the mean is the current value, and the

1 http ://exoplanets.org/esp/upsandb/upsandb.html.

standard deviation was equal to that of the largest standard
deviation in the observations of t And (typically planet d).

In all cases the simulations were terminated when an
ejection occurred, deÐned by an osculating eccentricity
greater than 1. Note that this condition could be satisÐed
during a close encounter without an actual ejection imme-
diately ensuing. Nevertheless, such a close encounter bodes
ill for the overall stability of the system, hence our decision
to terminate it at that point.

The code uses a second-order mixed variable symplectic
method as described in Saha & Tremaine (1994 ; see also
Wisdom & Holman 1991). Individual time steps are used
for each planet, which made the computation much more
efficient given the large di†erence in orbital times between
planet b and the other planets. The step size for planet b
was set to 0.215 days, and the ratio of the time steps of
the other plants was 1:50 :200. This corresponds to a ratio
of steps per orbit of 21 :22 :30. The code also includes a
Hamiltonian form of general relativity in the parametrized
post-Newtonian approximation, which allowed accurate
modeling of the inner planet. This code has been previously
used in theoretical examinations of the stability of our solar
system (Quinn 1998).

The advantage of symplectic integrators is that the trun-
cation error is equivalent to a Hamiltonian perturbation : it
exactly conserves approximate integrals of motion. There-
fore, although we are not integrating the true system, we are
integrating a Hamiltonian system that is very similar and
which has similar stability properties. In particular, no
secular changes in the orbits will be introduced which could
drastically a†ect stability. The integrator does have two
shortcomings. First, the error in the integration increases
for larger eccentricity. Our Ðxed step integrator has no
mechanism to control this error. To examine this e†ect, Ðve
unstable conÐgurations were examined with the time step
reduced by and We found no correlation between step14 18.size and the lifetime of the system. For several trials the
simulation at the time step survived longer but at pro-14 18duced an ejection sooner. We attribute this to the very
chaotic nature of the system; the di†erent time stepping
created a di†erent traversal of phase space. In all these
cases, the time to ejection did not change by more than 1
order of magnitude. From the lack of correlation between
step size and lifetime and the consistency of the ejection
timescale, we conclude that our time step does not artiÐ-
cially lower the lifetimes of the systems. The second possible
problem is that the error in the integration can get very
large with a close encounter between two planets. This
should be irrelevant since either our termination criterion
will be tripped during the close encounter or the errors
introduced during the close encounter will most likely make
an ejection imminent, and we presume that in reality close

TABLE 1

OBSERVATIONAL VALUES AND ERRORS FOR t ANDROMEDA

Period Longitude of Periastron Time of Periastron M sin i
Planet Eccentricity (days) (deg) (JD) (MJupiter)

b . . . . . . 0.025^ 0.015 4.6171 ^ 0.0003 83.0^ 243.0 2,450,001.0^ 3.1 0.71
c . . . . . . 0.29^ 0.11 241.02 ^ 1.1 243.6^ 33.0 2,450,159.8^ 20.8 2.11
d . . . . . . 0.29^ 0.11 1306.59 ^ 30.0 247.7^ 17.0 2,451,302.6^ 40.6 4.61
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encounters will also cause ejections. However, we have
made no quantitative estimate of this e†ect.

3. RESULTS

3.1. t Andromedae
Of the 1000 trials, 84.0% ^ 3.4% were stable. Three times

a planet was ejected (according to the above criterion) in
less than 103 yr, 24 between 103 and 104 yr, 66 between 104
and 105 yr, and 67 between 105 and 106 yr. Because the
conÐgurations were chosen from a Gaussian distribution,
these percentages should reÑect the absolute probability
that the system is stable for each timescale. This is, of
course, true only if the observational errors are also Gauss-
ian. Of the 160 unstable conÐgurations, planet b was ejected
four times, planet c 120 times, and planet d 36 times. Of the
seven simulations LA99 ran, one ejected planet c. Therefore,
they suggested the Lyapunov exponent should be calcu-
lated on the basis of the motion of planet c. Our larger study
supports this hypothesis but also reveals that the system is
fully chaotic and the motion of planet d in particular must
also be considered. Because of the huge volume of output of
these simulations (D200 Gbyte), time-resolved information
was saved for only Ðve trials. Only the initial and Ðnal
conditions were stored for the remaining simulations.
Therefore, we attempt no estimate of the Lyapunov time-
scale. However, planets c and d are coupled, and we expect
planet d to have a similar Lyapunov time of 340 yr as
reported by LA99.

Because the integration time in these simulations is much
shorter than the age of the star, one would like to extrapo-
late these numbers to the order of a gigayear. Our results
show an equal number of ejections in the last two logarith-
mic bins. This implies a constant ejection rate per decade
and that 200 more cases would eject one planet within a
gigayear. One stable case was completely chaotic ; we
encourage the reader not to draw any quantitative conclu-
sions about the long-term stability of t And on the basis of
this study.

In general, with 16 variables a principle component
analysis should be performed. However, a quick inspection
reveals that the eccentricity of planet d is the primary
parameter that determines the short-term stability. Figure 1
shows how stability depends on the eccentricities. All con-
Ðgurations in which the eccentricity of planet d is less than
0.30 are stable, and all conÐgurations in which the eccen-
tricity is greater than 0.47 are unstable. Table 2 shows the
likelihood of stability as a function of the eccentricities of
both planets c and d. The entries in this table are the per-
centage of conÐgurations that were stable in the eccentricity
range. The current best Ðt to the system is footnoted. This
table shows that in the region between 0.27 and 0.47 the
eccentricity of planet c plays a role in stability of the system.
Higher eccentricities in either c or d lead to a higher prob-
ability for ejection.

The eccentricity of planet d also determines the length of
stability of the system up to 106 yr. Higher eccentricities
lead to quicker ejections. For ejections between 0 and 103 yr
the eccentricity of the third planet lay between 0.45 and 0.55
or ]1.5 to ]2.4 standard deviations from the mean. In this
regime planet c had eccentricities between 0.3 and 0.45, also
above the mean. There is a continuous progression toward
stability as the eccentricity approaches the mean. For orbits

FIG. 1.ÈDependence of stability on eccentricity. This histogram shows
the fraction of stable orbits binned by the initial eccentricity of each planet.
Binning by planet bÏs eccentricity is represented by crosses, planet c by
open triangles, and planet d by squares joined by a line. Bin sizes vary by
planet because of di†erent ranges of possible values, but all are normalized
based on the mean and standard deviation. The bin size is 0.004 for planet
b, 0.034 for c, and 0.033 for d. Note that the points are uncorrelated, i.e., if
the eccentricity of planet d is 0, the other eccentricities could be any value.

stable up to 105 yr, planet dÏs eccentricity lay between 0.27
and 0.57.

Although the eccentricity seems the critical variable, the
other parameters were also analyzed. Because of the mass-
inclination degeneracy, the e†ect of initial inclination
requires particular attention. Since the inclinations are
totally unconstrained, they were chosen from a Ñat distribu-
tion with a maximum of The inclination determines the5¡.0.
mass of each planet in our code and, hence, could be the
most important variable of all, but stability is independent
of initial inclination. Therefore, the decision to include incli-
nations up to 5¡ did not impact the simulation.

Mean motion resonances appear to have little e†ect. The
lowest order resonances in t Andromeda are near 5 :1,
which occur in both stable and unstable conÐgurations.
RL00 reported that stability is highly dependent on the
secular resonance locking of the longitudes of periastron of
planets c and d. We believe that the primary parameter that
determines stability is therefore RL00Ïs hypothesis is note

d
;

supported by the results presented here, nor the results in
Stepinski et al. We reran Ðve stable trials and saved all the
time-resolved data of the orbital parameters to examine any
possible locking mechanisms in Fourier space. SpeciÐcally,
we examined the power spectrum of the h and kPoincare�
orbital elements. Two of the trials do, in fact, show a reso-
nance, but these examples resided in an antialigned conÐgu-
ration. One such system is presented in Figure 2. Figure 3
shows two other trials whose longitudes of periastron are
not in resonance. The motion of the top plot shows motion
that results from the superposition of two modes well
separated in frequency and a lower amplitude e†ect due to
the inner planet. The bottom is a very chaotic system which
showed very broad band power in Fourier space. There is
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FIG. 2.ÈStable secular resonant conÐguration in t And. Top : The
power spectrum of h and k parameters with a resonance atPoincare� Ïs
approximately 4500 yr. Bottom : The absolute value of the di†erence in the
longitudes of periastron for planets c and d (for the same conÐguration).
The di†erences cluster around n, indicating the system is locked in an
antiparallel conÐguration. The structure in the band results from the
smaller peaks in the power spectrum.

some indication that this system was slightly locked in the
antiparallel conÐguration ; however, this conÐguration is
best described as purely chaotic. These latter situations are
clearly not stable owing to resonance locking. The two reso-
nant examples had initial of 0.030 and 0.137,e

d
-values

respectively, and are hence much lower than the expected

FIG. 3.È Stable nonresonant conÐgurations in t And. These two plots
are also of the h and k Fourier spectrum. Top : An example inPoincare�
which the motion is the superposition of eigenmodes of the three planets.
Bottom : A fully chaotic conÐguration with no resonance or modes. Note
that the broad power spectrum occupies prograde and retrograde space.

value. In contrast, the cases with two well-separated modes
began with of 0.364 and 0.318, which are close toe

d
-values

the current value. It is also worth noting that the simulation
with also had The chaotic examplee

d
\ 0.318 e

c
\ 0.480.

began with and From these few cases,e
c
\ 0.504 e

d
\ 0.275.

it is apparent that resonance locking can occur, but we
conclude that the current alignment of the longitudes of
periastron of planets c and d is coincidence and not relevant
to the overall stability of the system.

3.2. Outer Solar System
Although our outer solar system is of a very di†erent

morphology than t And, a comparison may put the
dynamics of the two planetary systems in perspective. For
the comparison simulations of the gas giants in our own
solar system, the initial orbital parameters were determined
from errors equal to the largest absolute errors in the t And
planets. For most of the orbital parameters, planet d has the
largest errors.

Assuming the orbital times for Jupiter and planet d are
the respective dynamical times, our solar system must be
integrated for approximately 1.5 Myr. This duration corre-
sponds to 280,000 Jupiter orbits, the same as planet d in
1 Myr. On this timescale 81% of outer solar system conÐgu-
rations are stable, which is statistically identical to t And.
Every ejection occurred when JupiterÏs initial eccentricity
was greater than 0.12 (more than ]1 standard deviation)
and also followed the same inverse eccentricity-stability
timescale trend. From these two observations, it appears
that the eccentricity of the most massive planet in a planet-
ary system determines stability. Of course, future obser-
vations may discredit this supposition. Our solar system is
stable for at least 5 Gyr, yet only 81% of the simulations
were stable. This reinforces earlier results that our solar
system lies on the edge of chaos (Quinn 1998 ; Varadi, Ghil,
& Kaula 1999) and also suggests that t And lies near this
boundary. It is not correct to presume that these two results
imply that t And is also stable for 5 Gyr, but it does demon-
strate that stable conÐgurations do exist in the parameter
space allowed for this system.

4. CONCLUSIONS

Although we show that the t And planetary system for-
mally has an 84% probability of being stable, the most
important conclusion is that the current observations do
not provide much of a constraint on the stability of the
system. This point is made explicit by the experiments on
our own outer solar system, which we show has only an
81% chance of being stable given the same distribution of
orbital elements. The key parameter that determines stabil-
ity of t And is the eccentricity of planet d. Should the eccen-
tricity of planet d be measured to be larger than 0.47 then
the system cannot be stable under any circumstance, and
the interpretation that this is a planetary system must be
rejected. Conversely, if the eccentricity is below 0.30, the
system is very likely stable for at least 1 Myr, and longer
integrations should be made to determine if the system is
stable for the lifetime of the primary. These results are in
agreement with other studies (Noyes et al. 1999 ; BMF;
LA99 ; RL00). The current values for and given in ° 2,e

c
e
d
,

still place the system in a stable regime as deÐned by this
study.

An intriguing aspect of this study is that the best value for
the eccentricities of planets c and d corresponds to the edge
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of stability. Should the eccentricities be any larger, the
system moves into an unstable regime. This situation is
similar to what is seen in our own solar system, in both the
sense that our planetary system may be unstable on time-
scales comparable to its age (Laskar 1994) and that rela-
tively small changes to the planetary orbital parameters can
lead to instability on much shorter timescales (Varadi et al.
1999 ; Quinn 1998). Now that we have two data points,
there is a suggestion that, in general, planetary systems
reside on this precipice of instability. Clearly at this stage
this is only a suggestion, but it is a possibility that could
give new insights into the nature of planet formation. This
suggestion will need to be examined both as better con-

straints on the orbital parameters of t And become avail-
able and as more multiple planet systems are discovered.
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