
L67

The Astrophysical Journal, 665: L67–L70, 2007 August 10
� 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.

STABILITY LIMITS IN RESONANT PLANETARY SYSTEMS

Rory Barnes1 and Richard Greenberg1

Received 2007 April 6; accepted 2007 June 26; published 2007 July 27

ABSTRACT

The relationship between the boundaries for Hill and Lagrange stability in orbital element space is modified
in the case of resonantly interacting planets. Hill stability requires the ordering of the planets to remain constant,
while Lagrange stability also requires all planets to remain bound to the central star. The Hill stability boundary
is defined analytically, but no equations exist to define the Lagrange boundary, so we perform numerical ex-
periments to estimate the location of this boundary. To explore the effect of resonances, we consider orbital
element space near the conditions in the HD 82943 and 55 Cnc systems. Previous studies have shown that, for
nonresonant systems, the two stability boundaries are nearly coincident. However, the Hill stability formulae are
not applicable to resonant systems, and our investigation shows how the two boundaries diverge in the presence
of a mean-motion resonance, while confirming that the Hill and Lagrange boundaries are similar otherwise. In
resonance the region of stability is larger than the domain defined by the analytic formula for Hill stability. We
find that nearly all known resonant interactions currently lie in this unexpectedly stable region, i.e., where the
orbits would be unstable according to the nonresonant Hill stability formula. This result bears on the dynamical
packing of planetary systems, showing how quantifying planetary systems’ dynamical interactions (such as
proximity to the Hill stability boundary) provides new constraints on planet formation models.

Subject headings: methods:n-body simulations — planetary systems

1. INTRODUCTION

By the end of 2006, 20 multiple planetary systems had been
detected beyond the solar system (Butler et al. 2006; Wright
et al. 2007). Of these, seven are likely to contain at least one
pair that is in a mean-motion resonance. Barnes & Quinn (2004,
hereafter BQ04) showed that one of these resonant pairs, HD
82943 b and c, had best-fit orbital elements that placed the
system near a stability limit. Indeed, the best fit was unstable,
but a small change (well within observational uncertainties) in
the eccentricitye of the outer planet would make the system
stable (BQ04; Ferraz-Mello et al. 2005). BQ04 also showed
that stability requires the ratio of the orbital periods, , toP /Pc b

be near 2 and that the relative mean longitudes and difference
in longitudes of pericenter lie in a range such that conjunctions
never occur at the minimum distance between the orbits. This
result suggests that, given the values ofe and a of the two
planets, stability is only possible if the two planets are in a
2 : 1 resonance.

Two types of stability have been considered in the literature.
Hill stability requires the ordering of planets to remain constant
for all time; the outer planet may escape to infinity. The equa-
tions that define the limits of Hill stability (i.e., Marchal &
Bozis 1982; Gladman 1993) only apply to systems of two
planets that are not in a resonance. Lagrange stability requires
all planets to remain bound to the star, and the orbits evolve
at least quasi-periodically. Lagrange stability is more mean-
ingful, but its criteria have not been delineated analytically.

Barnes & Greenberg (2006a, hereafter BG06) showed that
the Hill stability boundary is nearly the same as the Lagrange
stability boundary, at least for the nonresonant planets in HD
12661 and 47 UMa. Although the Hill stability boundary was
derived for nonresonant systems, it is not clear how mean-
motion resonances distort it. Here we explore the stability
boundary near two resonant systems, HD 82943 (Mayor et al.
2004) and 55 Cnc (Marcy et al. 2002; McArthur et al. 2004).
Note that for both systems the inner planet of the resonant pair
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is named b and the outer c. We find that the resonances do
provide extra regions of Lagrange stability in phase space that
extend beyond the analytic criterion. In § 2 wedescribe Hill
and Lagrange stability and our numerical methods. In § 3 we
present our results for HD 82943 and 55 Cnc. We also tabulate
proximities to the Hill boundary for all applicable systems and
find that all but one resonantly interacting pair would lie in an
unstable region if not for the resonance. In § 4 wedraw con-
clusions and suggest directions for future work.

2. METHODOLOGY

2.1. Stability Boundaries

Hill stability in a coplanar system can be described by the
following inequality:

2M m m1 22 4/3� c h 1 1 � 32 3 2/3 4/3G M m (m � m )∗ 3 1 2

m m (11m � 7m )1 2 1 2� � … , (1)23m (m � m )3 1 2

whereM is the total mass of the system, is the mass of them1

more massive planet, is the mass of the less massive planet,m2

is the mass of the star,G is the gravitational constant,m3

, c is the total angular momen-M p m m � m m � m m∗ 1 2 1 3 2 3

tum of the system, andh is the energy (Marchal & Bozis 1982).
If a given three-body system satisfies the inequality in equa-
tion (1), then the system is Hill stable. If this inequality is not
satisfied, then the system may or may not be Hill stable. In this
inequality, the left-hand side is a function of the orbits, but the
right-hand side is only a function of the masses. This approach
is fundamentally different from other common techniques for
determining stability which exploit resonance overlaps (Wisdom
1982; Quillen & Faber 2006), chaotic diffusion (Laskar 1990;
Pepe et al. 2007), fast Lyapunov indicators (Froeschle´ et al. 1997;
Sándor et al. 2007), or periodic orbits (Voyatzis & Hadjide-
metriou 2005, 2006; Hadjidemetriou 2006).
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TABLE 1
Orbital Elements and Errors for HD 82943and 55 Cnc

System
m3

(M,) Planet
m

(MJup)
P

(days) e
�

(deg) Tperi (JD)

HD 82943. . . . . . 1.05� 0.05a b 0.88 221.6� 2.7 0.54� 0.05 138� 13 2451630.9� 5.9
c 1.63 444.6� 8.8 0.41� 0.08 96� 7 2451620.3� 12.0

55 Cnc . . . . . . . . . 0.95� 0.1b b 0.84� 0.07 14.653� 0.0006 0.02� 0.02 99� 35 2450001.479� 10�6

c 0.21� 0.04 44.276� 0.021 0.339� 0.21 61� 25 2450031.4� 2.5
d 4.05� 0.9 5360� 400 0.16� 0.06 201� 22 2785� 250

a Santos et al. (2000).
b Marcy et al. (2002).

Fig. 1.—Stability map for HD 82943. The shading represents the fraction
of simulations that are Lagrange stable on 106 yr timescales. The bin sizes are
0.02 for and 0.01 for . Contour lines show values ofb/bcrit. Ordinarilye P /Pc c b

would imply instability; however, the mean-motion resonanceb/b ! 1.02crit

provides a stable region that would not exist if the resonance did not affect
the motion.

Fig. 2.—Stability map for 55 Cnc (cf. Fig. 1). The bin sizes are 0.05 for
and 0.04 for . As in HD 82943, the mean-motion resonance providese P /Pc c b

a larger Lagrange-stable region.

BG06 useb (the left-hand side of eq. [1]) andbcrit (the right-
hand side) to describe the Hill stability boundary. The Hill
stability boundary is the curve defined by . BG06b/b p 1crit

showed that the Lagrange stability boundary appears to be
located whereb/bcrit is slightly larger than 1 (1.02 for 47 UMa
and 1.1 for HD 12661).

2.2. Numerical Methods

For each system, HD 82943 and 55 Cnc, 1000 initial config-
urations were generated based on the observational data for each
system (Mayor et al. 2004; Marcy et al. 2002); that is, the initial
conditions spanned the range of observational uncertainty. Note
that more recent, improved elements are available (Butler et al.
2006), but for our purposes the older values serve equally well.
Orbital parameters that have known errors, such ase and the period
P, are varied as a Gaussian centered on the best-fit value, with a
standard deviation equal to the published uncertainty, and orbital
elements are sampled appropriately. For elements with systematic
errors, such as inclination, the initial conditions were varied uni-
formly. The inclination was varied between 0� and 5�, and the
longitude of ascending node was varied between 0 and 2p. Masses
were then set to the observed mass divided by the sine of the
inclination. The variation of orbits out of the fundamental plane
will not significantly affect our calculations of Hill stability (Veras
& Armitage 2004). Each element was varied independently. The
distribution of initial conditions is presented in Table 1. In this
table, � is the longitude of periastron andTperi is the time of
periastron passage. The integrations were performed with SWIFT
(Levison & Duncan 1994) and MERCURY (Chambers 1999),
and conserve energy to at least 1 part in 104. For more details on
these methods, consult BQ04.

For each simulation we numerically determined Lagrange
stability on ∼106 yr timescales. BQ04 showed that this time-
scale identifies nearly all unstable configurations. We then cal-
culatedb/bcrit in the parameter space sampled by the numerical
integrations. Comparison of these two sets of results shows
how the Hill and Lagrange stability boundaries are related near
a mean-motion resonance.

3. RESULTS

For HD 82943 the “stability map” is shown by the gray-
scale shading in Figure 1. Shading indicates the fraction of
initial conditions, in a certain range of orbital element space,
that give Lagrange stable behavior (no ejections or exchanges)
over 106 yr: white bins contain only stable configurations, black
only unstable, and the darkening shades of gray correspond to
decreasing fractions of stable configurations. This representa-
tion plots the stable fraction as a function of two parameters:
the eccentricity of the outer planer, , and the ratio of theec

periods, . The numerical simulations show that LagrangeP /Pc b

stability is most likely for values of slightly greater thanP /Pc b

2 and less than 0.4. BQ04 called this feature the “stabilityec

peninsula.”
Superimposed on this gray-scale map are contours ofb/bcrit

values. All the values ofb/bcrit are much less than 1.02, which
ordinarily would imply instability. However, in the resonance
zone where , the stability peninsula sticks into a regimeP /P ≈ 2c b

(b/bcrit as small as 0.75) that would be unstable if the planets
were not in a mean-motion resonance. Note that the numerical
simulations include cases with variations of a few percent in
mass; theb/bcrit contours shown are for the average mass but
would shift only slightly over the range of masses.

For 55 Cnc, the stability map (Fig. 2) was developed from
integrations over 4 million years, i.e., 106 orbits of the outer
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TABLE 2
Values of b/bcrit for Known Systems

System Pair b/bcrit Class

HD 202206a . . . . . . b-c 0.883 R (5 : 1)
HD 128311b . . . . . . b-c 0.968 R (2 : 1)
HD 82943b . . . . . . . b-c 0.946 R (2 : 1)
HD 73526b . . . . . . . b-c 0.982 R (2 : 1)
GJ 876b . . . . . . . . . . . c-d 0.99c R (2 : 1)
47 UMab . . . . . . . . . . b-c 1.025 S
HD 155358d . . . . . . b-c 1.043 S
HD 108874b . . . . . . b-c 1.107 R (4 : 1)
u Andb . . . . . . . . . . . . c-d 1.125c S
HD 12661b . . . . . . . b-c 1.199 S
HIP 14810e . . . . . . . b-c 1.202 T
HD 169830b . . . . . . b-c 1.280 S
HD 74156b . . . . . . . b-c 1.542 S
HD 190360b . . . . . . b-c 1.701 T
HD 168443b . . . . . . b-c 1.939 S
HD 38529b . . . . . . . b-c 2.070 S
HD 217107b . . . . . . b-c 7.191 T

a Correia et al. (2005).
b Butler et al. (2006).
c An additional planet is present in this system.
d Cochran et al. (2007).
e Wright et al. (2007).

Fig. 3.—Histogram of values ofb/bcrit (with a bin size of 0.1) for the 17
pairs of planets in Table 2.

planet. Our simulations include planets b, c, and d, but not the
inner planet e. Planet e is relatively small, and Zhou et al.
(2004) found that the outer, nonresonant planet d does not
appear to affect the global stability of the system. Therefore,
our simulations should elucidate the relationship between Hill
and Lagrange stability boundaries in the presence of a 3 : 1
mean-motion resonance.

Of our simulations, were Lagrange stable. The50.2%� 5.5%
least massive planet, c, was the planet most likely to be ejected.
In this system we see that stability is likely for every-e ! 0.3c

where, except at , where it extends to .P /P ≈ 3 e ∼ 0.55c b

Comparing this distribution with the analytical stability cri-
terion ( ), we see that the numerical experimentsb/b � 1.03crit

reproduce that boundary, except in resonance whereb/bcrit can
be as low as 0.96. This stability peninsula for 55 Cnc does not
protrude as far into the Hill unstable region as HD 82943. This
difference may be because the 2 : 1 resonance is of a lower
order (and thus stronger) than the 3 : 1 resonance, and therefore
has a more pronounced stabilizing effect.

Next we tabulateb/bcrit values for all observed systems that
contain two planets. We also include GJ 876 c and b, andu And
c and d. Equation (1) is only applicable to two-planet systems,
but we consider these latter two pairs, which are each part of a
bigger system, as the third planet in each system is probably too
small or too far away to significantly change the interaction of
those pairs. However, interpreting values ofb/bcrit in systems of
more than two companions should be made with caution, as
there is no guarantee corresponds to the Hill boundaryb/b p 1crit

for any individual pair.
Table 2 lists values ofb/bcrit and the “class” of the interaction,

which distinguishes the dominant phenomenon that changes
the shapes of the orbits. “R” denotes pairs whose interaction
is dominated by mean-motion resonances (Table 2 also lists
the resonance), “T” indicates pairs that may have experienced
significant tidal evolution, and “S” indicates pairs with strong
secular interactions (Barnes & Greenberg 2006b). All but one
resonantly interacting pair haveb/bcrit values less than 1. If not
for the resonance, these systems would be unstable.

Overall, we find that 70% of the pairs we consider are ob-
served to have . HD 217107 is observed to haveb/b ! 1.3crit

b/bcrit significantly larger than other pairs. In Figure 3 we plot
the distribution ofb/bcrit values from Table 2.

4. CONCLUSIONS

By explicitly mapping how mean-motion resonances can
provide additional regions of stability in orbital element space,
we have found that nearly all observed resonant systems lie in
these extended regions. More generally, we have also shown
that the distribution ofb/bcrit appears to show that many plan-
etary systems (resonant or not) lie close to the limits of dy-
namical stability. These distributions provide new constraints
for models of planet formation.

In the cases presented here, the 2 : 1 resonance provides a
larger stable region than the 3 : 1 resonance, presumably be-
cause it is a lower order (stronger) resonance. However, for the
5 : 1 mean-motion resonance in HD 202206,b/bcrit can reach
0.88 and still be stable. So why is the range of stability for the
3 : 1 resonance in 55 Cnc so small? Perhaps if in the 55 Cncec

system has values in excess of 0.5, it does interact with the
third planet, destabilizing the system. Future work should in-
vestigate the minimumb/bcrit that allows stability for each res-
onance. Future work may also determine if the peninsula we
find in 55 Cnc is truncated due to interactions with 55 Cnc d.

We seek to identify the origin of the shape of the stability
peninsulas in resonant systems. Ideally, a general expression will
eventually be developed that describes the Lagrange stability
boundary and that applies to planets both in and out of resonance.
One avenue of research is to focus on close-approach distances.
In the limit of zero eccentricity, orbits are unstable if they are
separated by less than 3.5 mutual Hill radii (Gladman 1993).
Therefore, we speculate that systems with approaches within this
distance are unstable. For secularly evolving systems, the orbits
change with time, and eventually the planets will line up at the
minimum distance between the orbits over a secular period. Res-
onances can prevent planets from lining up in this danger zone,
hence the stability peninsulas. This likely explanation for the
shape of the Lagrange boundaries might be a fruitful direction
of future research into planetary system stability.

The distribution ofb/bcrit shows that, regardless of the pres-
ence of mean-motion resonance, many systems have values
that are close to the stability boundary. This trend appears to
support the hypothesis that planetary systems are dynamically
“packed,” i.e., that additional planets could not exist in orbits
between those that are known without destabilizing the system
(Barnes & Quinn 2001; BQ04; Barnes & Raymond 2004; Ray-
mond & Barnes 2005; Raymond et al. 2006). Perhaps there is
a minimum value ofb/bcrit that would permit the insertion of
an additional planet that leaves the system still stable. In other
words it will be interesting to determine, for a given value of
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b/bcrit, the largest mass object that could orbit between two
planets and still leave the system stable. Such a relation could
produce an analytic criterion for dynamical packing, which can
currently only be estimated numerically (e.g., Menou & Ta-
bachnik 2003; Dvorak et al. 2003; Rivera & Haghighipour
2007).

Past work provides illumination on the possibility that some
minimum value ofb/bcrit may define the limit for which ad-
ditional planets could be placed between the observed planets.
The HD 168443 system ( ) has been shown to beb/b p 1.94crit

unable to support even infinitesimal test masses (Barnes &
Raymond 2004). The region between the known planets of HD
169830 ( ) is chaotic, and a planet in that regionb/b p 1.28crit

would most likely be unstable (E´ rdi et al. 2004). On the other
hand, HD 38529 ( ) could support a Saturn-massb/b p 2.07crit

companion between the known planets (Barnes & Raymond
2004). These results suggest may be the criticalb/b p 2crit

value.
The packing of the two planets in HD 190360 demands closer

inspection. Although the orbits are more separated and less
eccentric than those in HD 168443, theirb/bcrit value (1.70) is
less than that for HD 168443 (1.94). To explore this issue, we
have integrated the HD 190360 system with a hypothetical
Earth-mass planet on a circular orbit located at the midpoint
between the apoastron distance of the inner planet and the
periastron distance of the outer. The additional companion in
the HD 190360 system survived for 106 yr. A similar experi-
ment with HD 74156 ( ) showed ejection of theb/b p 1.54crit

Earth-mass planet in only 2500 yr. We tentatively conclude that
systems are packed if and not packed ifb/b � 1.5crit

, and the packing status is unknown in the rangeb/b � 2crit

. Future research needs to determine the re-1.5 � b/b � 2crit

lationship betweenb/bcrit and the possibility that additional
planets could be stable between known ones.

As noted at the end of § 3, 70% of the tabulated systems
have , indicating that the planets are too fullyb/b ! 1.3crit

packed to allow any intermediate planets. This result, coupled

with the limitations of radial velocity surveys to detect planets
(e.g., we used minimum masses), suggests that the vast majority
of multiple-planet systems are similarly fully packed. Our re-
sults are therefore consistent with the “packed planetary sys-
tems” hypothesis (BQ04; Barnes & Raymond 2004; Raymond
& Barnes 2005; Raymond et al. 2006; see also Laskar 1996),
which proposes that planetary systems tend to form so as to
be dynamically packed. This hypothesis therefore predicts that
HD 190360 and especially HD 217107 harbor additional un-
detected planets.

This investigation has identified a simple way to parame-
terize multiple-planet systems. At least for a two-planet system,
a single parameterb/bcrit may indicate both stability and pack-
ing. Moreover, the statistics of the distribution of this dynamical
parameter for observed systems are intriguing: planetary sys-
tems tend to be dynamically fully packed, and resonant systems
lie at values ofb/bcrit that would indicate instability for non-
resonant systems. Describing planetary systems by parameter-
izing the character of their dynamical interaction is also the
approach taken by Barnes & Greenberg (2006b), who calcu-
lated the proximities of planetary systems to the apsidal sep-
aratrix. These new methodologies focus on the proximities of
the dynamical interactions to boundaries between qualitatively
different dynamical regimes.

It now appears that about half of stars with planets have
multiple planets (Wright et al. 2007), and descriptions of their
dynamical interactions will therefore become increasingly more
relevant, especially since many planets’ eccentricities oscillate
by 2 orders of magnitude (Barnes & Greenberg 2006b). We
encourage research that models planet formation (e.g., Lee &
Peale 2002; Sa´ndor & Kley 2006) to include comparisons of
the simulated values ofb/bcrit to those of real planetary systems.

J. Bryan Henderson, Thomas R. Quinn, and Chance Reschke
assisted with the simulations presented here. An anonymous
referee provided helpful suggestions. This work was funded by
NASA’s PG&G program.
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Érdi, B., Dvorak, R., Sa´ndor, Zs., Pilat-Lohinger, E., & Funk, B. 2004,

MNRAS, 351, 1043
Ferraz-Mello, S., Michtchenko, T. A., & Beauge´, C. 2005, ApJ, 621, 473
Froeschle´, C., Lega, E., Gonczi, R. 1997, Celest. Mech. Dyn. Astron., 67, 41
Gladman, B. 1993, Icarus, 106, 247
Hadjidemetriou, D. 2006, Celest. Mech. Dyn. Astron., 95, 225
Laskar, J. 1990, Icarus, 88, 266
———. 1996, Celest. Mech. Dyn. Astron., 64, 115
Lee, M. H., & Peale, S. J. 2002, ApJ, 567, 596
Levison, H. F., & Duncan, M. J. 1994, Icarus, 108, 18
Marchal, C., & Bozis, G. 1982, Celest. Mech., 26, 311

Marcy, G. W., Butler, R. P., Fischer, D. A., Laughlin, G., Vogt, S. S., Henry,
G. W., & Pourbaix, D. 2002, ApJ, 581, 1375

Mayor, M., Udry, S., Naef, D., Pepe, F., Queloz, D., Santos, N. C., & Burnet,
M. 2004, A&A, 415, 391

McArthur, B. E., et al. 2004, ApJ, 614, L81
Menou, K., & Tabachnik, S. 2003, ApJ, 583, 473
Pepe, F., et al. 2007, A&A, 462, 769
Quillen, A. C., & Faber, P. 2006, MNRAS, 373, 1245
Raymond, S. N., & Barnes, R. 2005, ApJ, 619, 549
Raymond, S. N., Barnes, R., & Kaib, N. A. 2006, ApJ, 644, 1223
Rivera, E. J., & Haghighipour, N. 2007, MNRAS, 374, 599
Sándor, Zs., & Kley, W. 2006, A&A, 451, L31
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