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ABSTRACT

Two types of stability boundaries exist for any planetary system consisting of one star and two planets. Lagrange
stability requires that the planets remain bound to the star, conserves the ordering of the distance from the star,
and limits the variations of orbital elements like semimajor axis and eccentricity. Hill stability only requires that
the ordering of the planets remain constant; the outer planet may escape to infinity. A simple formula defines a
region in orbital element space that is guaranteed to be Hill-stable, although Hill-stable orbits may lie outside
the region as well. No analytic criteria describe Lagrange stability. We compare the results of 1000 numerical
simulations of planetary systems similar to 47 UMa and HD 12661 with these two types of boundaries. All cases
are consistent with the analytic criterion for Hill stability. Moreover, the numerically determined Lagrange bound-
ary lies close to the analytic boundary for Hill stability. This result suggests an analytic formulation that may
describe the criterion for Lagrange stability.

Subject headings: methods: analytical — methods:n-body simulations — planetary systems —
stars: individual (HD 12661, 47 Ursae Majoris)

1. INTRODUCTION

Since the discovery of the first extrasolar planetary system
with multiple companions,u And (Butler et al. 1999), sub-
stantial research has investigated the dynamics of multiplanet
systems. Most of this work has examined the nature of indi-
vidual systems such as 47 UMa (Fischer et al. 2002; Laughlin
et al. 2002; Goz´dziewski 2002) and HD 12661 (Fischer et al.
2003; Goz´dziewski 2003; Lee & Peale 2003). One investiga-
tion, using numerical integration of orbits, showed that several
of the known systems lie near an obvious stability boundary
(Barnes & Quinn 2004).

The dynamical stability of gravitational systems of multiple
(12) particle systems has been studied for centuries. The de-
scription of the motions in this type of system have no analytic
solution. Analytic constraints on dynamical stability began to
emerge in the 1970s and 1980s, when it was shown that the
motions of a system of two planets and a star would be bounded
in some situations (Zare 1977; Szebehely 1980; Marchal &
Bozis 1982; Milani & Nobili 1983; Valsecchi et al. 1984).
These constraints can be interpreted in terms of the limitations
on angular momentum exchange between the planets (Milani
& Nobili 1983). However, this type of argument is only valid
for two planets not involved in any low-order mean motion
resonances. There is no known analytic boundary for systems
in a low-order mean motion resonance, or a system with more
than two planets.

Two predominant definitions of stability have emerged. In
Hill (or hierarchical) stability, the ordering of the planets, in
terms of distance from the central star, is conserved. However,
the outermost planet may escape to infinity, and the system
would still be considered stable. A more useful definition,
called Lagrange stability, is more stringent: the planets remain
bound to the central star, changes in the ordering of the planets
are forbidden, and the semimajor axis and eccentricity varia-
tions also remain bounded.

Currently, investigations of the Lagrange stability of a system
are generally made through numerical simulations (e.g., Barnes
& Quinn 2004). However, Marchal & Bozis (1982) noted that:
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“Some studies (Szebehely & McKenzie 1977; Szebehely 1978,
1980) seem to show a correlation between the Hill stability
and the other types of stability related to escape and exchanges;
it would be interesting to investigate these questions.” In 1982
limited computer power made such an investigation daunting.
Now with modern computing power and motivated by exo-
planet systems we can revisit their supposition.

Gladman (1993) extended the study of Hill stability by ap-
proximating the boundary (see § 2) in orbital element space. He
verified the analytic expression through numerical tests, in certain
limits. More recently, Veras & Armitage (2004) modified the
Hill criterion for application to mutually inclined orbits.

Other stability studies consider boundaries between periodic,
quasi-periodic, and formally chaotic orbits via the fast Lya-
punov indicator (Froeschle´ et al. 1997). Such boundaries have
been explored in extrasolar planetary systems (Goz´dziewski et
al. 2001, 2002, 2003; Kiseleva-Eggleton et al. 2002); however,
it is not clear how these boundaries (or any other test based
on Lyapunov exponents) relate to limits of Lagrange stability.

In this Letter, we compare the analytic description ofHill
stability to a numerical determination ofLagrange stability. In
§ 2 we review the Hill stability equations for systems of two
planets. In § 3 wenumerically test the analytic solutions and
compare the predictions of Hill stability with Lagrange stability,
which is determined byN-body simulations. In § 4 we draw
general conclusions and suggest directions for future work.

2. HILL STABILITY

There is no analytic solution for the motion of three grav-
itating bodies, but in certain situations the range of motion can
be shown to be bounded; certain regions of phase space are
forbidden for each particle (Marchal & Bozis 1982; Milani &
Nobili 1983; Valsecchi et al. 1984). This boundary is a direct
result of the conservation of angular momentum. For the case
of two planets around a much more massive star, the eccen-
tricity exchange (through exchange of orbital angular momen-
tum) is limited, and the planets will never experience a close
enough encounter to expel the interior planet from the system
(i.e., Hill stability).
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TABLE 1
Orbital Elements and Errors

System
m3

( )M, Planet
m

( )MJ

P
(days) e

�
(deg)

Tperi

(JD � 2,450,000)

HD 12661. . . . . . 1.07 b 2.3 263.3 (20) 0.35 (0.1) 292.6 (20) 9943.7 (10)
c 1.56 1444.5 (75) 0.2 (0.1) 147 (20) 9673.9 (40)

47 UMa . . . . . . . . 1.03 b 2.54 1089 (3) 0.06 (0.014) 172 (15) 3622 (34)
c 0.76 2594 (90) 0.1 (0.1) 127.0 (56.0) 1363.5 (493)

Marchal & Bozis (1982) quantified the criterion for Hill-
stable configurations as

2M m m1 22 4/3� c h 1 1 � 32 3 2/3 4/3G M m (m � m )∗ 3 1 2

m m (11m � 7m )1 2 1 2� � … , (1)23m (m � m )3 1 2

whereM is the total mass of the system, and are them m1 2

planet masses (the subscript 1 refers to the inner planet),m3

is the mass of the star,G is the gravitational constant,M p∗
, c is the total angular momentum ofm m � m m � m m1 2 1 3 2 3

the system, andh is the energy. If a given three-body system
satisfies the inequality in equation (1), then the system is said
to be Hill-stable, and close approaches are forbiddenfor all
time. If the inequality fails to be satisfied, then the Hill stability
of the system is unknown;the system may still be Hill-stable.
Note that the left-hand side of equation (1) is a function of the
positions and velocities of the system, and the right-hand side
is purely a function of the masses. Thus, for given masses,
equation (1) defines a boundary in orbital element space.

Gladman (1993) showed that equation (1) could be changed
to barycentric orbital elements and rewritten, to first order, as

m m m2 1 2�3 2 4/3a m � (m g � m g d) 1 1 � 3 , (2)1 1 1 2 2( )2 4/3d a

where , , ,2 1/2m p m /M a p m � m g p (1 � e ) d pi i 1 2 i i

, e is the eccentricity,a is the semimajor axis, and1/2(a /a )2 1

. For given masses and eccentricities, there is a criticali p 1, 2
value of the semimajor axis ratio (or equivalently a critical
value of d, which we call ), for which the two sides ofdcrit

equation (2) are equal. If is large enough (i.e., ),a /a d 1 d2 1 crit

then the system is surely Hill-stable—otherwise, maybe not.
The boundary for Lagrange stability should lie atd 1 dcrit

(larger orbital separation) because it is a more stringent defi-
nition of stability. As we show below, this expectation is borne
out by our numerical integrations. There would be no reason
to expect, a priori, that the actual Lagrange boundary would
be correlated with the Hill boundary limit. There might not
even be a clear boundary in orbital element space between
Lagrange-stable and Lagrange-unstable configurations.

3. STABILITY OF EXOPLANET SYSTEMS

In this section we numerically explore the stability of hy-
pothetical systems with masses and orbital elements similar to
the 47 UMa and HD 12661 systems. In Table 1 we present the
current best fits (masses and orbits) and errors, shown in pa-
rentheses, for each of these two systems. In this tablem is the
planetary mass,� is the longitude of periastron, and isTperi

the time of periastron passage. Equations (1)–(2) should apply

to these systems because each has only two planets not in low-
order mean motion resonance. Moreover, we can exploit orbital
integrations that had already been performed for different pur-
poses (Barnes & Quinn 2003, 2004). The numerical simulations
were performed with MERCURY6 (Chambers 1999) for HD
12661 or SWIFT (Levison & Duncan 1994) for 47 UMa.

For each of the two systems, Barnes & Quinn (2003, 2004)
considered 1000 different initial conditions distributed over the
range of observational uncertainty (Fischer et al. 2002, 2003).
For most orbital elements they selected values at random from
a Gaussian distribution. However, the inclinations were selected
from a uniform distribution between 0� and 5�, and the lon-
gitude of ascending node from a uniform distribution from 0
to . For the initial conditions each orbital element was se-2p
lected independently. This distribution is not ideal for mapping
stability; a priori, a uniform distribution, far from any mean
motion resonances, might have been more efficient, except that
we already had these results in hand.

3.1. HD 12661

For HD 12661 the outcome after 4 million years of each
numerical experiment (Lagrange stability or instability) is
shown as a function of , , and in Figure 1. This choicee e a /ab c c b

of timescale is somewhat arbitrary but has been shown to iden-
tify most unstable configurations (Ford et al. 2001; Barnes &
Quinn 2004). Also shown in Figure 1, for comparison with the
numerical results, is the surface represented by equation (2).
According to equation (2), all configurations that lie to the
lower left of the curves (smaller eccentricities)must be Hill-
stable. Note that this criterion is not exclusive: Hill-stable con-
figurations are possible outside that region as well. Therefore,
the actual boundary between Hill stability and instability lies
to the upper right of the curves. The Lagrange boundary must
lie below and to the actual Hill boundary of the curves because
Lagrange stability is a more stringent criterion.

In these results every case considered remained Hill-stable over
4 million years (Fig. 1,crosses and circles) consistent with the
expectations of equation (2). Therefore, regardless of Lagrange
stability, these configurations were all Hill-stable. In principle, any
case that is Hill-stable and Lagrange-unstable (Fig. 1,circles)could
have gone Lagrange-unstable either by switching the planets’order
or by ejecting the outer planet. Every Lagrange-unstable config-
uration of HD 12661 ejected the outer planet (planet c). Most
interestingly, the boundary of Lagrange stability is close to, and
tracks, the surface defined by equation (2), which was derived in
the context of Hill stability. Marchal & Bozis (1982) had suspected
such a relationship.

Next let us quantify how far the numerically determined
Lagrange boundary is from equation (2). For each configuration
we determine the value of . We then plot as a function ofd/dcrit

the fraction,f, in each bin that is Lagrange-stable overd/dcrit

4 million years (Fig. 2). There is a sudden transition (inde-
pendent of eccentricity) from Lagrange-unstable configurations
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Fig. 1.—Lagrange stability of different initial configurations of the HD
12661 planetary system based on , , and . Each panel is a slice throughe e a /ab c c b

this three-dimensional space, showing all cases that begin with withina /ac b

1% of the value listed at the top of the panel. [Here the ratio is the(a /a )c b nom

best-fit ratio of the semimajor axes, which is 3.08 for HD 12661. For example,
the top left panel contains all trials that began with a ratio of in the rangea /ac b

0.89–0.91 times the best-fit value.] Crosses represent Lagrange-stable config-
urations, circles are Lagrange-unstable configurations, and the solid line rep-
resents the solution to eq. (2).

Fig. 2.—Fraction of cases that are Lagrange-stable as a function of proximity
to the Hill stability boundary. In this plot we also compare of the exact solution
to the Hill stability boundary, eq. (1) (solid line), to that of the approximate
solution, eq. (2) (dashed line), for the simulations of HD 12661. The transition
from instability to stability occurs at values slightly greater than 1.

to Lagrange-stable near . The Lagrange stabilityd/d p 1.05crit

boundary lies close to the surface defined by equation (2).
Equation (1) can also be compared with the results of our

numerical simulations. The left-hand side of equation (1) is a
function of orbital elements that we callb. Figure 2 also in-
cludes a plot off as a function of ( being the right-b/b bcrit crit

hand side of eq. [1]), showing a clear transition within about
5% of the boundary defined by equation (1). Even though the
initial eccentricities may be large (some are over 0.5) the ap-
proximate solution, equation (2), appears to be in good agree-
ment with equation (1). Both theb and d curves in Figure 2
show that there is a relatively narrow transition from Lagrange
stability to Lagrange instability.

For the best-fit values to the observed HD 12661 system,
we find that and . The ratio is 1.19,d p 1.756 d p 1.476crit

putting this system within, but not deep within, the stable zone.

3.2. 47 UMa

Figure 3 shows results for 47 UMa in a similar format as
Figure 1. Results here are based on a yr timescale, which610
was shown to be a sufficient timescale to determine stability
(Barnes & Quinn 2004). The eccentricity ranges differ from
one another (and from those in Fig. 1) because the uncertainties
in the two eccentricities are different (see Table 1). As in HD
12661, we see that the Lagrange stability limit lies just inside
the curve for equation (2).

Figure 4 shows the fraction of Lagrange stable configurations
(from Fig. 3) as a function of and . As with HDb/b d/dcrit crit

12661, the transition to Lagrange stability is at values of
and only slightly greater than 1. Also, like HDb/b d/dcrit crit

12661, every Lagrange-unstable configuration ejected the outer

planet, confirming the Hill stability criterion. Once again we
see that the Lagrange stability boundary appears to track the
surface defined by equation (2). Unlike HD 12661 the two
curves do not track each other exactly, but they are within a
few percent, consistent with the accuracy of the approximation
of equation (2).

For the best-fit values to the observed 47 UMa system, we
find that and . Therefore, the ratio ofd p 1.336 d p 1.195crit

the two is 1.117, and the system is probably stable.

4. CONCLUSIONS

Although equation (1), and its equivalent equation (2), were
derived in the context of Hill stability, we have found that it
appears to be a good predictor of Lagrange stability, confirming
the suspicions of Marchal & Bozis (1982). At this point we
tentatively conclude that if , then a two planetd � 1.1d { dcrit LS

system is Lagrange-stable. In terms of , Lagrange stabilityb/bcrit

appears to be guaranteed at slightly smaller values. Additional
work that numerically integrates various hypothetical systems
is needed to test the validity of these empirical results. At this
point, however, we tentatively find that if the ratio of the semi-
major axes were 1% and 4% closer for 47 UMa and HD 12661,
respectively, then the Lagrange stability of the systems could
not be guaranteed. For these two systems, then, we have quan-
tified how far each is from the Lagrange stability boundary.

Equations (1) and (2) were derived in the context of Hill
stability, but they provide only weak constraints. They do not
actually define the boundary between Hill stability and insta-
bility. Ironically, it now appears that these equations actually
approximate the boundary of Lagrange stability. We would
encourage a search for the explanation for this somewhat sur-
prising correlation between equation (2) and the actual La-
grange limit. If a physical explanation could be identified, then
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Fig. 3.—Lagrange stability of different initial configurations of the 47 UMa
planetary system based on , , and . The format is the same as Fig. 1e e a /ab c c b

except each panel is a slice through the parameter space showing cases that
began within 0.5% of the value of listed at the top of the panel. For 47a /ac b

UMa the nominal ratio of the semimajor axes is 1.78. Crosses represent
Lagrange-stable configurations, circles are Lagrange-unstable configurations,
and the solid line represents the solution to eq. (2).

Fig. 4.—Lagrange stability of configurations of 47 UMa as a function of
(solid line) and (dashed line). As with the HD 12661 system,b/b d/dcrit crit

Lagrange stability occurs at .d ≈ 1.1dcrit

it may allow a quantification of Lagrange stability for an ar-
bitrary number of planets. In addition, it would be interesting
to see if the inclined Hill equation (Veras & Armitage 2004)
also tracks Lagrange stability. Future numerical work may also
determine how close equation (2) is to the actual Hill limit.

The nature of Lagrange stability is a pressing issue given
the proximity of several systems to the boundary between La-
grange stability and instability (Barnes & Quinn 2001, 2004;
Goździewski 2002, 2003). The proximities of these systems to
Lagrange instability have led to the “packed planetary systems”
hypothesis (Barnes & Quinn 2004; Barnes & Raymond 2004;

Raymond & Barnes 2005, Raymond et al. 2006; see also Laskar
2000), which suggests that all planetary pairs formed close to
the Lagrange stability limit. The verification or rejection of this
hypothesis hinges on both theoretical advances (such as this
quantitative description of the Lagrange boundary) and obser-
vational improvements (such as breaking the so-called mass-
inclination degeneracy and reductions in orbital element errors).
The results presented here might represent the first step toward
a theoretical understanding of the packing of planetary systems.

This work was funded by NASA’s Planetary Geology and
Geophysics program grant number NNG05GH65G. We would
also like to thank an anonymous referee for suggestions that
greatly clarified this manuscript.
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