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ABSTRACT

Extrasolar planetary systems display a range of behavior that can be understood in terms of the secular theory of
classical celestial mechanics, including the motions of the major axes. Four planet pairs in the seventeen known
extrasolar planetary systems with multiple planets (� And, 47 UMa, 55 Cnc, and HD 128311), have trajectories in
orbital element space that lie close to the separatrix between libration and circulation. Here we examine the dy-
namics of the first two, which are not in mean motion resonance. The basics of secular theory are reviewed in order
to develop insight into this behavior. The definition of a secular resonance is discussed, correcting misconceptions
in the literature; it is not synonymous with libration and is not a commensurability of eigenfrequencies. The be-
havior of these two near-separatrix systems is evaluated with updated orbital elements by comparing both analytical
and numerical results. We find that the apsidal motion from secular theory does not match the predictions from
N-body simulations and conclude that first-order secular theory should be used with caution on extrasolar planetary
systems. While the existence of one near-separatrix system could be explained simply by chance initial conditions,
the fact that there are several is improbable unless some physical process tends to set up systems near the separatrix.
Explanations based on an impulsive increase in the eccentricity of one planet are promising, but key issues remain
open.

Subject headinggs: celestial mechanics — planetary systems

1. INTRODUCTION

The wide range of morphologies of extrasolar planetary sys-
tems has provided new examples of librational behavior, including
types of behavior well known from classical celestial mechan-
ics, that may contribute to their long-term stability. Determi-
nation of the stability of a particular system and/or whether it is
locked into a librating state can be complicated by two factors:
observational uncertainties in the orbital parameters, and lack of
precision in orbital theory. Often the range of observational un-
certainty includes regions of parameter space for which a given
system may be unstable, perhaps indicating a tendency for plan-
ets to form so densely packed that they lie near the limits of sta-
bility (Barnes & Quinn 2004). Similarly, we show in this paper
that there is some indication from the limited (but growing)
number of known systems that there is a tendency for them to be
near boundaries between modes of mutual apsidal motion. This
boundary is often called the ‘‘separatrix.’’ Here we use the term
separatrix to refer to the boundary between trajectories in phase
space of libration and circulation. A more restricted definition
would reserve the term for cases in which the trajectories on
opposite sides diverge, which is not the case in the systems
discussed here, as we show below. Two examples for which the
behavior of the relative orientations of major axes are close to
the separatrix between libration and circulation through 360

�

are � Andromedae (Butler et al. 1999; Ford et al. 2005) and
47 Ursae Majoris (Fischer et al. 2002; Laughlin et al. 2002,
hereafter LCF02). In addition, two mean motion resonance sys-
tems (55 Cnc b and c, and HD 128311) also show apsidal motion
near the separatrix (Greenberg & Barnes 2005).

The tendency for systems to lie near the separatrix is not fully
understood. For � And, Ford et al. (2005) proposed that one
planet suddenly acquired a substantial orbital eccentricity, per-
haps due to an encounter with another, now-escaped planet. The

interactions between the newly eccentric planet and an interior
planet led to periodic oscillations of both eccentricities. If the
inner planet started with a circular orbit, secular theory would
require that the behavior track the separatrix between libration
and circulation, such that its eccentricity would periodically re-
turn to zero.
According to LCF02, the 47 UMa system does not lie near

the separatrix; it librates in an aligned configuration. This deter-
mination was based on a criterion from classical celestial me-
chanics. The authors used numerical integrations to confirm the
libration. In this paper, however, we show that their numerical
confirmation of the apsidal motion of 47 UMa was incorrect.
Now, further observations of 47 UMa by the California and
Carnegie Planet Search2 (PI: G. Marcy & P. Butler; as of 2005
February 6) have refined the orbital elements, and the new val-
ues are significantly different from those assumed by LCF02. It
should also be noted that Naef et al. (2004) were unable to cor-
roborate the existence of planet c. However, here we presume
that the second planet does exist, and will reconsider the orbital
behavior of 47 UMa with these updated orbital elements. We
label the elements from Fischer et al. (2002) as ‘‘old’’ and those
from Planet Search as ‘‘new.’’
The changing best estimates of the elements suggests that it

is useful to have a general map of the boundaries in orbital ele-
ment space between libration and circulation, and then consider
real systems in this context. Here, we first review (in x 2) the
analytical basis of secular theory to show how the boundaries
are defined in classical celestial mechanics. Most sources cited
in the literature (e.g., Brouwer & Clemence 1961; Rasio 1995;
Murray &Dermott 1999; Zhou & Sun 2003) use a matrix-based
solution to determine the eigenvectors and eigenfrequencies,
with the required matrix inversion carried out numerically. How-
ever, that approach obscures the dependence of the results

1 Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721. 2 See http://exoplanets.org.
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(including various modes of behavior) on key parameters of the
system. In our exposition, we obtain the eigenfrequencies and
eigenvectors algebraically and discuss their implications. For
example, we show the distinction between the concepts of sec-
ular resonance and libration of major-axis orientations, which
can be associated but need not be.

Then, in x 3, we apply numerical integrations to the same spe-
cific orbital elements for 47 UMa assumed by LCF02 to show
the significant differences between analytical and numerical
results, which are due to various approximations in the analyt-
ical methods. While the analytical results do show libration, as
shown in LCF02, the numerical ones indicate circulation, con-
trary to their interpretation. We also use numerical integrations
to refine the map in orbital element space of conditions for li-
bration versus circulation, using a format introduced in LCF02.
Surprisingly, when we consider the most recently determined
best-fit elements for the 47 UMa system, we find that it still lies
near the separatrix, but now the analytical criterion indicates
circulation, while the numerical integration shows libration.

Finally in x 4, we consider possible origins for near-separatrix
behavior. We conclude, from a simple model, that these systems’
proximities to the separatrix are not likely by chance and do re-
quire a physical explanation. The planet-planet scattering model
of Malhotra (2002) and Ford et al. (2005) is promising but key
issues remain unresolved.

2. SECULAR THEORY

2.1. General Solution

In this section we review the basics of secular theory. We
define the following variables: h ¼ e sin ($) and k ¼ e cos ($),
where e is the eccentricity and$ is the longitude of periastron.
To distinguish between the planets we will label the outer planet
with a prime. The disturbing function for the effects of m 0 on m,
where m represents mass, is

R ¼ Gm 0

4a0

�
�

2
b
(1)

3=2(�)e
2 � �b(2)

3=2(�)ee
0 cos ($0 �$)

�
; ð1Þ

where G is the gravitational constant, a is semimajor axis, � is
the ratio of semimajor axes, and b is the Laplace coefficient as
defined in Murray & Dermott (1999). In equation (1), terms of
higher order in eccentricities have been neglected, so the theory
will be less accurate for systems with large values of e or e 0.
Similarly, the disturbing function for m on m 0 is

R0 ¼ Gm

4a0

�
�

2
b
(1)

3=2(� )e
02 � �b(2)

3=2(� )ee
0 cos ($0 �$)

�
: ð2Þ

Noting that e2 ¼ h2 þ k 2 and ee0 cos ($0 �$) ¼ hh0 þ kk 0,
we can rewrite equations (1) and (2) as

R ¼ Gm 0

4a0

�
�

2
b
(1)

3=2(� )(h
2 þ k 2)� �b(2)

3=2(� )(hh
0 þ kk 0)

�
; ð3Þ

R0 ¼ Gm

4a0

�
�

2
b
(1)

3=2(� )(h
02 þ k 02)� �b(2)

3=2(� )(hh
0 þ kk 0)

�
: ð4Þ

Note that secular theory assumes that there are no mean motion
resonances and that the short-period variations of the mean mo-
tions can be neglected. We also assume inclination effects are
negligible, which is reasonable because the coupling of e and i
occurs at higher order.

In general the equations for the variation in h and k are

dh

dt
¼ þ na

GM

�R

�k
dk

dt
¼ � na

GM

�R

�h
: ð5Þ

We can therefore rewrite these equations (now including the
outer planet) as

dh

dt
¼ Ak � Bk 0

dk

dt
¼ �Ahþ Bh 0

dh0

dt
¼ �Ck þ Dk 0

dk 0

dt
¼ Ch� Dh 0; ð6Þ

where

A ¼ nm0

4M
�2b

(1)

3=2(� )

B ¼ nm0

4M
�2b

(2)

3=2(� )

C ¼ n0m

4M
�b(2)

3=2(� )

D ¼ n0m

4M
�b(1)

3=2(� ); ð7Þ

whereM is the central mass, and n is the mean motion. In order
to keep this analysis as general as possible, we obtain the solu-
tion of the set of differential equations in terms of A, B, C, and
D. From inspection of equation (6), the solution must be of the
form

h ¼ a sin (!t þ � )

k ¼ a cos (!t þ � )

h0 ¼ c sin (!t þ � )

k 0 ¼ c cos (!t þ � ): ð8Þ

Inserting equation (8) into equation (6) yields only two inde-
pendent equations:

a! ¼ Aa� Bc;

c! ¼ �Caþ Dc: ð9Þ

Solving each equation for ! yields

! ¼ A� B=K ¼ �CK þ D; ð10Þ

where K � a/c.
We now have two equations and two unknowns, ! and K. We

cannot solve for the values of a and c individually, only their
ratio K. Solving for K in equation (10) yields

K� ¼ D� A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(D� A) 2 þ 4CB

p
2C

: ð11Þ
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Let K+ and K� be the two solutions corresponding to the + and
� operation in front of the square root. Inserting equation (11)
into equation (10) we obtain

!� ¼ � 1

2

�
�A� D �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(D� A)2 þ 4CB

q �
: ð12Þ

The frequency with the positive square root (!+) corresponds
to the K+ solution, and !� corresponds to the K� solution. Thus
the general solution to equation (8) becomes

h ¼ Kþcþ sin (!þt þ �þ)þ K�c� sin (!�t þ ��)

k ¼ Kþcþ cos (!þt þ �þ)þ K�c� cos (!�t þ ��)

h0 ¼ cþ sin (!þt þ �þ)þ c� sin (!�t þ ��)

k 0 ¼ cþ cos (!þt þ �þ)þ c� cos (!�t þ ��); ð13Þ

where the amplitudes, c+ and c�, and the corresponding phases,
�+ and ��, are the four constants of integration of the four first-
order differential equations in equation (6).

2.2. Trajectories in Orbital Element Space

In order to visualize this solution, consider a polar-coordinate
plot of e 0 versus $0, which is equivalent to a Cartesian plot of
h 0 versus k 0 (Fig. 1). The position (k 0, h 0 ) represents a vector
(which we call e 0) whose magnitude is e 0 and direction is$0, the
direction of periastron. According to equation (13), e 0 is the sum

of two vectors, one of magnitude c+ with direction (!þt þ �þ)
and the other of magnitude c� with direction (!�t þ ��). We
call these two vectors c+ and c� and note that each has a constant
magnitude and a uniformly varying direction. Their sum e 0 con-
tinually varies in magnitude and direction.
If we were to plot the vector e, defined as (k, h) on the same

plot, it too would be the sum of two vectors; one with the same
direction as c+ but with its magnitude changed by a factor ofK+,
and the other with the same direction as c� but with its mag-
nitude changed by a factor of K�.

2.3. Numerical Example (47 UMa)

As an example, consider the behavior of 47 UMa as modeled
by LCF02, which was based on the orbital elements of Fischer
et al. (2002; see our Table 1). In our Figure 2 we reproduce
Figure 2 from LCF02, in which the evolution of�$, e, and e 0 is
plotted from both a secular solution and a numerical simulation.
LCF02’s figure shows results from analytical secular theory and
from numerical integrations. They reported that both methods
give similar results, although we do see some differences; most
significant is that �$ reaches to or near 180

�
. The dots near

zero, while the system is close to j�$j ¼ 180
�
, result from plot-

ting the N-body parameters in astrocentric coordinates. As sec-
ular theory provides orbital elements in this coordinate system,
the numerical results were also plotted in this system. We show
in x 3 that this is an artifact of this choice of coordinate system
and that the system is indeed circulating. In this section we com-
pare results from our solution (xx 2.1 and 2.2) with the results of
LCF02.
With the numerical values from Table 1, we find that A ¼

4 ;10�4 yr�1, B ¼ 2:7 ; 10�4 yr�1, C ¼ 6:7 ;10�4 yr�1, and
D ¼ 10�3 yr�1. Therefore, Kþ � 1:23 and K� � �0:33, with
corresponding (k, h) vector rotation rates!þ ¼ 1:85 ; 10�4 yr�1

and !� ¼ 12:2 ; 10�4 yr�1. LCF02 found that periodically the
system reaches a condition in which�$ ¼ 0, e 0 is nearly zero,
and e is about 0.06. Let us define this moment as t ¼ 0, and let
$ (the direction of e at t ¼ 0) define the reference direction (the
k-axis). We plot both e 0 and e on this coordinate system (Fig. 3),
with subscripts 0 to denote this initial condition. At t ¼ 0,
by definition, all the vectors lie along the k-axis, so we have
cþ þ c� ¼ 0 and Kþcþ þ K�c� ¼ 0:06. Solving the two equa-
tions we find that, at t ¼ 0, cþ ¼ 0:04, c� ¼ �0:04, Kþcþ ¼
0:047, and K�c� ¼ 0:013. Thus e 00 is the sum of two vectors,
c+ pointing in the +k direction and c� pointing in the opposite
direction. Similarly, e0 is the sum of two vectors, both pointing
toward positive k, one of magnitude 0.047 and the other of
magnitude 0.013. In Figure 3, the smaller dots indicate the c+
and the K+c+ vectors. The c� vector is exactly equal and oppo-
site of c+, so that their total e

0
0 is zero. The vectorK�c� points in

the same direction as K+c+ and their total is e0.

Fig. 1.—Schematic of e0, the vector sum of two vectors, c+ and c�, which
make angles (!þt þ �þ) and (!�t þ ��) with the k-axis, respectively.

TABLE 1

Orbital Parameters

System Source Date Planet

a

(AU)

P

(days) e

$
(deg)

Tperi
(JD � 2,450,000)

m

(MJ)

47 UMa........... Fischer et al. (2002) 2002 Jan b 2.09 1089.0 0.061 171.8 3622.9 2.54

c 3.73 2594 0.005 127 1363.5 0.76

California and Carnegie Planet Search 2005 Feb b 2.09 1089.0 0.061 172 3622.9 2.54

c 3.73 2594 0.1 127 1363.5 0.76

� And .............. Ford et al. (2005) 2005 Feb c 0.825 241.32 0.258 250.2 n/a 1.943

d 2.54 1301.0 0.279 287.9 n/a 3.943
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If we allow the coordinate system to rotate at the angular
velocity !+, the vectors c+ and K+c+ will remain fixed in the ro-
tating coordinate system. However, c� and K�c� will rotate at
the rate !� in an inertial frame, or ! ¼ !� � !þ � 10�3 yr�1

(or a period of 6000 yr) in the rotating frame. Hence, the total
vectors e and e 0 will change with time as shown in Figure 4.
Thus over a 6000 yr period, e 0 varies between 0 and 0.08, and
e varies (180� out of phase) between 0.06 and 0.035, in perfect
agreement with the behavior described by LCF02. Note that
only a slight variation in the constant of integration c� (which

depends on initial conditions) would give either libration or
circulation, depending on whether the e 0 circle encompasses
the origin or not. With the elements used here for 47 UMa,
the system is very close to the boundary between libration and
circulation.

2.4. Criteria for Libration

From inspection of equation (13), or of its graphical repre-
sentation (Fig. 5), we note that if either constant of integration,
c+ or c� (determined by initial conditions), were zero, then e and
e 0 would have fixed magnitude and point in the same direc-
tion (if K were positive) or in the opposite direction (if K were
negative). Thus e and e 0 would be constant and�$ ¼ $0 �$
would be fixed at 0

�
or 180

�
.

If instead of beginning at zero, one of the c values (c� for
example) were very small, then the value of �$ would librate
about 0

�
or 180

�
(depending on the sign of K+), as illustrated in

Fig. 3.—Schematic of e0, and e
0
0 at t ¼ 0 (during apsidal alignment) in a case

of near-separtrix behavior, like 47 UMa; e 00 is the sum of c+ and c�, and e0 is the
sum of K+c+ and K�c�.

Fig. 2.—Reproduction of LCF02’s Fig. 2. In this figure the black dots rep-
resent their solution to the secular theory, and grey dots represent results of an
N-body integration. Although the two solutions do appear to track each other,
a close examination shows several grey dots at large (close to �180�) values of
�$.

Fig. 4.—Schematic of the evolution of e0 and e in a system like 47 UMa. The
two vectors c� and K�c� rotate about the points k ¼ cþ and k ¼ Kþcþ, re-
spectively. Note that both vectors rotate at the same rate, !, the secular fre-
quency. The dashed lines represent the loci of values that the two eccentricity
vectors may take. The dotted lines are the eccentricity vectors. As time goes on,
the magnitudes and directions of these vectors oscillate.

Fig. 5.—Schematic of libration. The vectors to the centers of the circles point
in opposite directions. In this example, because neither circle encompasses the
origin, the system is librating.
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Figure 5. In this example, the c� and K�c� vectors execute
small circular ‘‘epicycles’’ as shown.

If jc�j ¼ jcþj or if jK�c�j ¼ jKþcþj, then the trajectory of e 0
or e, respectively, would periodically pass through the origin.
This would be a separatrix trajectory at the boundary between
libration and circulation. LCF02 used an expression for the quan-
tity ee0 cos (�$) as a criterion for determining the apsidal mo-
tion. In our notation the relevant equations are

ee0 cos (�$) ¼ (Kþc
2
þþ K�c

2
�)

þ (Kþ þ K�)cþc� cos ½(!þ� !�)t þ (�þ� ��)�

ð14Þ

and

ee0 sin (�$) ¼ (K�� Kþ)cþc� sin ½(!þ � !�)t þ (�þ � ��)�:

ð15Þ

Inspection of equation (14) and Figure 4 shows that there is a
critical value for the ratio of the amplitude of the oscillation of
the ee0 cos (�$) to the offset distance,

S ¼ (Kþ þ K�)cþc�

Kþc
2
þ þ K�c2�

: ð16Þ

If jSj > 1,�$ circulates. If jSj < 1,�$ librates. Moreover,
if the offset, the denominator in equation (16), is positive, �$
librates about 0�. If it is negative, libration is about 180�. If
jSj ¼ 1, the trajectory lies on the separatrix.

As we have seen, for the initial conditions used by LCF02,
the behavior is very close to the separatrix. Moreover, LCF02
noted that for 47 UMa, jSj < 1 and inferred that, at least for
the orbital elements and secular theory that they used, the sys-
tem librates. The trajectory in a Cartesian coordinate system
{ee0 cos (�$); ee0 sin (�$)} is therefore an ellipse, like the ex-
amples shown in Figure 6.

2.5. What Is a Resonance?

A resonance occurs when natural frequencies of a system are
commensurate. Consider the apsidal precession frequency of an
orbiting planet. The planet may precess, while maintaining a
constant eccentricity, due, for example, to perturbations by the
oblateness of the central body. Similar perturbations of the same
mathematical form will result from other orbiters on circular
orbits, from general relativity, from rings of small orbiters, etc.
These combined effects define the ‘‘natural’’ precession fre-
quency. Now, if the orbiter is affected by another planet that is
not on a circular orbit, the perturbations are more complicated
(e.g., x 2.1). However, the term in the disturbing function that
does not contain the perturber’s eccentricity (i.e., the first term
in eqs. [1] or [2], depending on whether the perturber is interior
or exterior) has the same functional form as any of the other ef-
fects (e.g., oblateness) that contribute to the natural precession.
Hence, in terms of the dynamics, the effect of this term must be
included in the natural precession frequency.
For the system of two planets introduced in x 2.1, the natural

precession rates are thus obtained by ignoring the second terms
in the disturbing functions. In that case, if we used only the first
terms, equation (7) would give simple precession of the planets
at the rates A and D, respectively. Thus A and D are, by defini-
tion, the natural precession rates for this system.
A secular resonance occurs if A � D. In order to evaluate the

effects of the resonance, let A ¼ D in our secular theory devel-
oped in x 2.1. In this case, from equation (11),

K� ¼ �
ffiffiffiffiffiffiffiffiffi
B=C

p
; ð17Þ

and, from equation (10),

!� ¼ D�
ffiffiffiffiffiffiffi
CB

p
: ð18Þ

From equations (14) and (17), we have

ee0 cos (�$) ¼ Kþc
2
þ þ K�c

2
� ¼ K�(c

2
� � c2þ); ð19Þ

which is constant. From equation (15) we have

ee0 sin (�$) ¼ 2K�cþc� sin ½
ffiffiffiffiffiffiffi
CB

p
t þ (�þ � ��)�: ð20Þ

So in resonance, the maximum amplitude of libration of �$
is (cf. Fig. 6)

�$max ¼ tan�1

�
2cþc�

c2� � c2þ

�
: ð21Þ

The relationship between libration and resonance has not
always been clear in the literature (e.g., Barnes & Quinn 2004;
LCF02; Malhotra 2002). These papers use the term secular res-
onance throughout to mean libration. Kinoshita &Nakai (2001)
stated that a secular resonance occurswhen two eigenfrequencies
(!+ and !� in the two-planet case) are equal. According to
equation (10), the Kinoshita & Nakai (2001) definition requires
(D� A)2 þ 4CB ¼ 0. Our definitions of these constants requires
that they all be positive definite. Therefore theKinoshita&Nakai
(2001) definition of secular resonance can never be met for a
two-planet system. The correct condition for resonance is when
the natural frequencies A and D are equal.
Next we demonstrate behavior of the eccentricities when this

resonance condition (A ¼ D) is met. Suppose that we let t ¼ 0,

Fig. 6.—Schematic illustration of the three types of apsidal motion. Anti-
alignment occurs when the solution to eq. (14) and eq. (15) lies completely in
quadrants II and III. Similarly, alignment occurs when the solution lies entirely
in quadrants I and IV. Circulation occurs when the solution encompasses the
origin.
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when e ¼ e0, e
0 ¼ e00 and $0

0 ¼ $0 ¼ 0. Using equation (17)
we obtain

cþ þ c� ¼ e00;

Kþcþ þ K�c� ¼ e0: ð22Þ

Therefore,

cþ ¼ e00
2
þ e0

2Kþ
;

c� ¼ e00
2
� e0

2Kþ
: ð23Þ

We next show that even if e0 and e 00 are small, at least one ec-
centricity can become very large, given the condition A ¼ D.

The behavior depends critically on the value of K+ and may
be divided into three cases.

Case 1: jKþj3 e0/e
0
0.—Assuming e0 � e00, this condition can

only be met ifm0/m31, according to equations (7) and (17). In
this case, cþ � c�. In other words, the two vectors that compose
e 00 in (k, h) space are equal. Similarly, e0 ¼ Kþcþ þ K�c�, or
(because K� ¼ �Kþ), e0 ¼ Kþ(cþ � c�), i.e., e0 is the sum of
two nearly equal and opposite vectors with large amplitudes. As
the directions of c+ and c� change at rates !+ and !�, the value
of e will increase to Kþ(cþ þ c�). Therefore, as the mass ratio
between the planets grows, the eccentricity of the smaller planet
may grow to arbitrarily large values. This case, with m0 3m
was considered by Greenberg (1975), who showed that A�D
appears in the denominator of the solution, driving e toward
very large values when natural precession rates A and D are
nearly equal.
Case 2: jKþjTe0/e

0
0; or m/m

0 31.—In this case, c+ and c�
are nearly equal and opposite according to equation (23). From
equation (22), a finite e0 implies |c+| and |c�| must be large. As
K+ is small, this suggests that as c+ and c� rotate into a parallel
configuration e ¼ cþ þ c� becomes large.
Case 3: jKþj �1.—In this case there is no substantial in-

crease in either ee or e 0, which remain close to e0 and e
0
0 for all

time, respectively.

In summary, for two planets a secular resonance occurs if the
natural precession frequencies A and D are nearly equal. In ad-
dition, if initial eccentricities are comparable to one another, we
find that resonant pumping of an eccentricity to a high value re-
quires the planets’ masses to be significantly different from one
another. The identification of libration as synonymous with res-
onance, common in the literature, is not correct. In fact, libra-
tion is possible even very far from resonance. One example is
the alignment of semimajor axes of Saturn’s satellites Titan and
Rhea, which are not in resonance (Greenberg 1975). However,
secular resonance behavior does tend to include libration, so
libration may be a useful indication, if not proof, of resonance.
Finally, we emphasize that resonance is not characterized by
nearly equal eigenfrequencies, but rather by nearly equal nat-
ural frequencies in a system with two planets.

3. COMPARING NUMERICAL
AND ANALYTICAL RESULTS

We have recomputed the behavior of eccentricities and lon-
gitudes of pericenter for the 47 UMa system, using the 2002
best estimate of elements (as in x 2 and in LCF02) as shown in
Figure 7. As in the version published by LCF02 (reproduced
in Fig. 2), we show the results of both the analytical secular

theory and a numerical integration performed with the code
MERCURY6 (Chambers 1999).

First the analytical results are essentially identical. They show
ec dropping to near zero, as is characteristic of behavior near
the separatrix. They show libration of �$ with an amplitude
of nearly 90� and a rapid change in �$ as ec passes near zero.
Second, in both our results and those of LCF02, the numerical
behavior gives a period about 15% shorter than the analytical
case, and variations in the eccentricities have larger amplitudes.
These differences between analytical and numerical results re-
flect the assumptions of the analytical work.

We sample the numerical simulation of the system in 1 yr
intervals, providing more data points than were in LCF02. This
extra information shows that�$ actually circulates rather than
librates, although there is substantial short-term scatter in the
values of e, e 0, and �$.

The behavior can be better understood by considering the
motion in a polar plot of ee0 cos�$ versus ee0 sin�$ (Fig. 8).
Here we see confirmation that the analytical result gives libra-
tion, albeit near the separatrix. However, the numerical result
clearly shows circulation, still near the separatrix, but now em-
bracing the origin. Note that the short-term scatter in the tra-
jectory can produce enormous changes in �$, but these only
occur near the origin where e 0 is near zero. At that point, with a
nearly circular orbit, very small changes in the orbit can wildly
change the orientation of the major axis, which is not well-
defined at e0 ¼ 0.

The circulation of�$ demonstrated by the numerical results
is contrary to the results reported by LCF02, who said that the
numerical results confirmed the libration predicted by the

Fig. 7.—Evolution of the astrocentric longitudes of periastron (top) and
eccentricities (bottom) for the Fischer et al. (2002) configuration of 47 UMa
presented in Table 1. The solid lines represent the analytic solution; the points,
a numerical integration (sampled yearly). Secular theory predicts aligned li-
bration, but the numerical simulation is clearly circulating. This figure dem-
onstrates a breakdown in secular theory when applied to extrasolar planetary
systems. The apparent high frequency scatter while the system passes through
j�$j ¼ 180� is an artifact of plotting in astrocentric coordinates. We plot the
numerical results in this coordinate system as secular theory provides orbital
elements in this system. Although not shown, in Jacobi elements, the orbital
elements have less scatter, and there are no points with j�$j < 90� when
eb � 0.
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analytical secular theory. Had they plotted their numerical results
on a polar plot or plotted points more closely spaced in time,
they might have seen that the system circulates rather than li-
brates. Certainly their statement that the system lies ‘‘deep in-
side’’ the libration zone is wrong based on either the analytical
theory or the numerical results. Either way, the trajectory lies
close (the trajectory’s proximity to the origin is much less than
the size of the trajectory in these parameters) to the separatrix,
not deep inside the libration zone. Moreover, the system is so
close to the separatrix that any difference is comparable to the
magnitude of short-period effects and to the difference between
analytical and numerical integration.

Our result shows the limitations of the analytical theory, with
its various assumptions (e.g., very small eccentricities). The an-
alytical results are qualitatively correct and useful. However,
numerical integration gives more accurate results, which can be
significantly different from the analytical results. In this case, it
means the difference between libration and circulation.

LCF02 introduced a mapping of apsidal motion in initial�$
versus initial e0 space, where libration or circulation are expected
to follow from initial conditions, with boundary lines separating
the different domains. The boundaries were based on the analyt-
ical secular theory and are shown in Figure 9. In this figure the
solid lines represent the separatrices as determined by secular
theory. In addition we have used the numerical simulations to
more accurately define the domain of libration and circulation
(as shown by the shading).

For the numerical study, the parameter space of Figure 9 is
divided into bins of 0.01 in e00 ¼ ec and 1� in �$. In each bin
we solve the secular solution and run an N-body simulation for

104 yr (nearly two secular periods; cf. Fig. 7). For numerical
integrations we sampled �$ once per (Earth) year and deter-
mined if the system ever came within 20� of either parallel or
antiparallel alignment.
The lower left corner, bounded by the black line, represents

parameter space that secular theory predicts to be aligned libra-
tion. The top right corner, bounded by the white line, is anti-
aligned libration. Secular theory predicts the intervening region
to be circulating. The colors represent the results of numerical
simulations. White regions underwent aligned libration, grey
circulated, and black were antialigned. The shading shows that
the boundaries between circulation and libration from the nu-
merical experiments are different from the boundaries from the
analytical solution. A prominent disagreement, for example,
is at low values of e 0 with �$ between 90� and 0�. While the
analytical theory predicts libration there, the numerical exper-
iments show circulation. Consequently, for the initial condi-
tions of 47 UMa assumed by LCF02 (the white asterisk at
ec ¼ 0:005;�$ ¼ 47�), the system circulates, contrary to the
libration predicted by secular theory.

Fig. 9.—Distribution of apsidal motion as predicted from secular theory and
resulting from numerical integrations. Secular theory predicts aligned libration
in the region bounded by the black line, antialigned libration by the white line,
and circulation elsewhere. White regions represent numerical trials which un-
derwent aligned libration; black, antialigned; and grey, circulation. The lines do
approximate the shaded regions, but the ‘‘old’’ system (ec ¼ 0:005; �$ ¼ 45�,
white asterisk) is incorrectly labeled as aligned libration by secular theory. A
revision to the elements changed ec to 0.1. The black asterisk marks this ‘‘new’’
location. Now the problem is reversed; secular theory predicts circulation, but
the system is actually undergoing aligned libration.

Fig. 8.—Polar plot of the solutions to eqs. (14) and (15). The secular solution
(solid line) does not encompass the origin and is therefore librating. Since the
ellipse lies entirely in the positive ee0 cos (�$) direction, the system is in an
aligned configuration. Conversely, the numerical results (dots), do surround the
origin, and therefore the system circulates. Compared to the width of these ovals,
their distances from the origin are small. This figure shows how a small quan-
titative difference can produce such a drastic qualitative difference. In addition,
the secular solution undergoes a large librational amplitude. The current best fit
to this system, therefore, lies close to the separatrix, between aligned libration
and circulation. The numerical model appears to pass through the origin, but this
again is an artifact of using astrocentric coordinates. In Jacobi coordinates the
numerical oval passes completely to the left of the origin.
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Next we consider the more recently improved orbital ele-
ments, shown in Table 1 and by the black asterisk in Figure 9. At
this point in the map, the analytical criterion predicts circula-
tion, while the numerical simulation predicts libration, each the
opposite of the results for the earlier reported elements. Thus
while LCF02 were incorrect in reporting that numerical integra-
tion gave libration with earlier elements, with the new elements,
numerical results do give libration after all. With either set of
elements, the system is close to the separatrix.

The numerical integration of the current best fit to 47 UMa is
shown in Figures 10 and 11. The libration near the separatrix is

evident. Note however, that the uncertainties in the orbital pa-
rameters are still substantial, 0.1 for e 0 and 45� for �$. With
these uncertainties, andwith the system so close to the separatrix,
it remains undetermined whether the 47 UMa system is actually
in a state of circulation or libration.

Another system that similarly lies near the secular separatrix
is �And (Butler et al. 1999; Ford et al. 2005). Using the current
best-fit estimates for orbital elements (see Table 1), while again

Fig. 10.—Evolution of the new orbital elements of 47 UMa. In this case,
secular theory (solid lines) predicts circulation, whereas the system is clearly
librating, based on the results of a numerical integration (dots).

Fig. 11.—Polar plot for the new orbital elements of 47 UMa. As expected
from Fig. 10, the analytical solution encompasses the origin, but the numerical
simulation lies entirely in quadrants I and IV.

Fig. 12.—Secular evolution of the outer two planets of � And. In this anal-
ysis, the inner planet has been ignored. As in 47 UMa we see that the analytical
solution (thin lines, longer period ) does not match the apsidal motion of the
numerical solution (thick lines, shorter period ). In this case, however, the an-
alytical solution does a good job of matching the eccentricity evolution and the
secular period.

Fig. 13.—Polar plot for � And. This system appears to lie even closer to the
separatrix than 47 UMa. In this system the analytical solution (line) encom-
passes the origin and predicts circulation, but the numerical simulation ( points)
shows the system is actually librating.
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recognizing that the observations admit some uncertainty in
the values, we plot the behavior in Figures 12 and 13, similar to
Figures 10 and 11 for 47 UMa, above. Again the behavior is
very close to the separatrix, although in this case it is the interior
planet’s eccentricity, e, that passes close to zero, rather than e 0,
as in the case of 47 UMa.

In the � And case, as in 47 UMa, there is a distinct difference
between the results from the numerical solution and the results
from the analytical secular theory. As seen in Figure 13, the
secular theory gives circulation and the analytical theory gives
libration. Again this qualitative difference is made possible by
the fact that the system is close to the separatrix. Based on the
larger orbital eccentricities in this case (e and e 0 both exceed
0.3) than in the 47 UMa case (neither exceeding 0.1), one might
have expected much greater discrepancy between the analytical
and numerical results. However, in comparing Figures 11 and
13, we find the differences are comparable for both these plan-
etary systems. We conclude that for systems near a secular
separatrix, first-order secular theory should not be used to de-
termine the apsidal motion. Only direct N-body integrations
give the true motion.

4. ORIGINS OF NEAR-SEPARATRIX MOTION

We have seen that two planetary systems, 47 UMa as well
as the previously recognized � And, display secular orbital be-
havior very close to the separatrix between libration and cir-
culation of the orientations of the major axes of the planets.
Near-separatrix behavior is characterized by one of the planet’s
orbital eccentricities periodically passing near a value of zero.
More specifically, in the polar plots, the width of the trajectory
is much larger than the closest approach to the origin.

The � And system inspires consideration about how such a
state might be created. If both planets were initially on near-
circular orbits, and then one of them was suddenly given an
eccentricity (for example, by an impulsive force), the initial
conditions would be set up for a near-separatrix trajectory of the
system in orbital element space, as discussed in x 2. Malhotra
(2002) suggested that such an impulse in the past might explain
the state of �And, with the impulse provided by scattering from
another planet. This idea was pursued further by Ford et al.
(2005), who demonstrated the process with a hypothetical sys-
tem of three planets initially on circular orbits, whose evolution
they studied with a numerical simulation. The systemwas started
with the two outer planets on orbits close enough that they quickly
began to pump one another’s orbital eccentricities, until in a short
time one escaped the system and the other had acquired a sub-
stantial eccentricity. The inner planet was still on a near-circular
orbit. Thus subsequent motion followed the near-separatrix be-
havior exhibited by � And.

The agreement with the observed system’s behavior makes
this a compelling model for the origin of near-separatrix trajec-
tories. However, the initial conditions assumed in that scenario
need to be considered more carefully. The initial systemwith all
three planets on circular orbits must have evolved into that state
by the planets either growing in place or migrating into those
orbits, or both. Remaining to be explained is how, during that
evolution, prior to the initial state assumed by Ford et al. (2005),
the system avoided already having eccentricities pumped up. It
is not clear that the assumed system of circular orbits could ever
have formed.

Is it possible instead that the near-separatrix state of � And
is simply a matter of chance initial conditions? To address the

plausibility of that explanation, consider a hypothetical system
similar to � And in terms of masses and semimajor axes. In
general, according to secular theory, the major axes will line up
periodically. We can define such an instant as time t ¼ 0, with
the ‘‘initial’’ condition given by the state of the system. For
example, suppose that the inner planet has an orbital eccentric-
ity of e ¼ 0:3. This example value happens to be the value of
e when the major axes are aligned in the real � And system
(Fig. 12), but in fact the choice of this particular numerical value
is not critical. The following argument will hold for any reason-
able eccentricity value in the typical range for extrasolar plan-
ets. If the outer planet’s eccentricity e had exactly the ‘‘ideal’’
initial value (which also happens to be 0.3), the system would
lie exactly on the separatrix and the value of e would periodi-
cally plunge to exactly zero. However, the secular solution shows
that the initial value of e could differ from this ideal value over a
range of about 5% and still give behavior at least as close to the
separatrix as that of the actual � And system.
Thus, roughly speaking, the probability of random initial con-

ditions giving near separatrix behavior is at least a few percent. A
more rigorous analysis of this probability would use action-angle
variables (for which the volume of a region of phase space is
conserved under the time evolution of a Hamiltonian system)
rather than Keplerian elements. However for our purposes, this
rough estimate is adequate. Given that 18 multiplanet systems
are known (including our solar system), it is not surprising to
find one of them by chance as close to the separatrix as �And is.
Thus �And does not by itself require a special model to explain
its behavior.
The story changes somewhat now that we have also found the

current best fit to 47 UMa to be near the separatrix. In fact, the
probability that 47 UMa would have random initial conditions
that put it so close to the separatrix would also be a few per-
cent. Thus, while the state of � And by itself does not indicate
any need for an explanation, the fact that two systems have this
condition does suggest that there is some process that tends to
favor it. Furthermore, we have recently noted that at least two
pairs of extrasolar planets that are in mean motion resonances
(55 Cnc and HD 128311) also display behavior of �$ that
is very near the separatrix between libration and circulation
(Greenberg &Barnes 2005). Therefore, four out of the 24 known
pairs of adjacent giant-planet orbits (including our own so-
lar system) display near-separatrix behavior, while only about
1 would be expected by chance. It appears that some pro-
cess favors this condition, and further investigation may help
provide insight into the formation and evolution of planetary
systems.
Finally, we emphasize that the surprisingly common phenom-

enon of near-separatrix behavior should no longer be confused
with secular resonances or with libration. Neither 47 UMa or
� And is in or near a secular resonance, and it is uncertain
whether either is librating. What makes them remarkable is
how close each system is to the boundary between libration and
circulation.
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