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ABSTRACT

We present N-body simulations of resonant planets with inclined orbits that show chaotically evolv-
ing eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is
possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and incli-
nations 179.9◦. While the orbital elements evolve chaotically, at least one resonant argument always
librates. We show that the HD 73526, HD 45364 and HD 60532 systems may be in chaotically-evolving
resonances. Chaotic evolution is apparent in the 2:1, 3:1 and 3:2 resonances, and for planetary masses
from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several Gyr, implying the
mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type
stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically
in about 0.5% of cases. These results suggest that 1) approximate methods for identifying unstable
orbital architectures may have limited applicability, 2) the observed close-in exoplanets may be pro-
duced during the high eccentricity phases induced by inclined resonances, 3) those exoplanets’ orbital
planes may be misaligned with the host star’s spin axis, 4) systems with resonances may be systemat-
ically younger than those without, 5) the distribution of period ratios of adjacent planets detected via
transit may be skewed due to inclined resonances, and 6) potentially habitable planets in resonances
may have dramatically different climatic evolution than the Earth. The GAIA spacecraft is capable
of discovering giant planets in these types of orbits.
Subject headings:

1. INTRODUCTION

Exoplanetary systems with multiple planets show a
wide variety of orbital behavior, such as large amplitude
oscillations of eccentricity (e.g. Laughlin & Adams 1999;
Barnes & Greenberg 2006), mean motion resonances
(MMRs) (e.g. Lee & Peale 2002; Raymond et al. 2008),
and, in one case, oscillations of inclination (McArthur
et al. 2010; Barnes et al. 2011). Here we consider exo-
planets in MMRs with mutual inclinations and find that
these systems can evolve with large, chaotic fluctuations
of eccentricity and inclination for at least 10 Gyr, but
the MMR is maintained throughout.

In general, orbital interactions are broken into two
main categories: secular and resonant. The former treats
the orbital evolution as though the planets’ masses have
been spread out in the orbit, i.e. the mass distribution
averaged over timescales much longer than the orbital
periods. If the orbits are non-circular or non-coplanar,
the gravitational forces change the orbital elements peri-
odically.

MMRs occur when two or more orbital frequencies are
close to integer multiples of each other. The planets pe-
riodically reach the same relative positions, introducing
repetitive perturbations that can dominate over secular
effects. The combination drives the long-term evolution

1 Astronomy Department, University of Washington, Box
951580, Seattle, WA 98195

2 NASA Astrobiology Institute – Virtual Planetary Laboratory
Lead Team, USA

3 E-mail: rory@astro.washington.edu
4 Lunar and Planetary Laboratory, 1629 E. University Blvd.,

Tucson, AZ 86716
5 CNRS, Laboratoire d’Astrophysique de Bordeaux, UMR 5804,

F-33270, Floirac, France

of the system. For example, Rivera & Lissauer (2001)
considered the long-term behavior of Gl 876 (Marcy et al.
2001) and their integrations show hints of chaotic evolu-
tion on 100 Myr timescales (see their Fig. 4b). In this
study we expand the research on exoplanets in MMRs to
include significant mutual inclinations.

While most bodies in our Solar System are on low-e,
low-i orbits, the exoplanets do not share these traits. Ec-
centricities span values from 0 to > 0.9 (e.g. Butler et al.
2006), and at least the two outer planets of υ And have
a large mutual inclination of 30◦ (McArthur et al. 2010).
Numerous exoplanetary pairs in MMR are known, in-
cluding the systems of Gl 876, HD 82943, and HD 73526
in 2:1 (Marcy et al. 2001; Mayor et al. 2004; Tinney et al.
2006; Vogt et al. 2005), HD 45364 in 3:2 (Correia et al.
2009) and HD 60532 in 3:1 (Desort et al. 2008). The or-
bital plane of Gl 876 b has been measured astrometrically
with HST (Benedict et al. 2002), and it was reported that
this observation was compatible with a mutual inclina-
tion between orbital planes (Rivera & Lissauer 2003),
but no formal publication demonstrated that suggestion.
The HD 128311 planetary system lies close to the 2:1 res-
onance, and recent astrometric measurements have mea-
sured the orbital plane of HD 128311 c, but not the other
planet (McArthur et al. 2014). Without knowledge of
both orbital planes, the mutual inclinations are unknown
and use of the minimum masses and coplanar orbits may
not reveal the true orbital behavior, so this system could
in fact lie in the 2:1 resonance.

Several studies have also explored MMRs with mu-
tual inclinations in the context of planet formation.
Thommes & Lissauer (2003) found that convergent mi-
gration in a planetary disk can excite large inclinations
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in exoplanetary systems. Lee & Thommes (2009) per-
formed a similar experiment and found that migrat-
ing planets could become temporarily captured in an
inclination-type MMR, in which conjunction librates
about the midpoint between the longitudes of ascending
node (inclination resonances are described in more detail
in § 2). Libert & Tsiganis (2009) explored the forma-
tion of higher-order inclination resonances and also found
that temporary capture in an inclination resonance can
occur. They also artificially turned off migration shortly
after capture and found the resulting system was stable.
Teyssandier & Terquem (2014) considered this process
and identified several constraints on the planetary mass
ratio and eccentricities that permit entrance into an incli-
nation resonance. All these studies find that MMRs with
inclination can form in the protoplanetary disk, but only
for a few specific scenarios, and even then the inclination
resonance is likely to be fleeting. None of these studies
considered the long-term evolution of the resonant pairs.

Significant mutual inclinations may also be formed via
gravitational scattering events that typically result in the
ejection of one planet (Marzari & Weidenschilling 2002;
Chatterjee et al. 2008; Raymond et al. 2010; Barnes et al.
2011). Raymond et al. (2010) also showed that scattering
could produce systems in MMRs about 5% of the time,
but they did not consider the inclinations of the resul-
tant systems. All these studies reveal that formation of
MMRs with mutual inclination is possible, but probably
rare.

While HST has successfully characterized several
nearby exoplanetary systems astrometrically, the GAIA
space telescope could astrometrically detect hundreds
of Jupiter-sized planets (see e.g. Lattanzi et al. 2000;
Sozzetti et al. 2001; Casertano et al. 2008; Sozzetti et al.
2014), revealing how common are systems in an MMR
with significant mutual inclinations. Against this back-
drop, we explore the dynamics of planets with orbital
period commensurabilities, significant eccentricities and
mutual inclinations.

This paper is organized as follows. In § 2 we describe
the physics of resonance and our numerical methods. In
§ 3, we present results of hypothetical systems, including
planets in the habitable zone (Kasting et al. 1993; Kop-
parapu et al. 2013), as well as giant and dwarf planets in
the 2:1, 3:1 and 3:2 commensurabilities. In § 4 we show
that planet-planet scattering can produce systems in the
2:1 MMR and with significant mutual inclinations. In
§ 5 we analyze several known exoplanetary systems and
find several that could be evolving chaotically. In § 6 we
discuss the results and then conclude in § 7.

2. METHODS

2.1. Resonant Dynamics

MMRs are well-studied, and can be explained intu-
itively for low, but non-zero, values of e and inclination i
(Peale 1976; Greenberg 1977; Murray & Dermott 1999).
Stable resonances can be divided into two types: eccen-
tricity and inclination. The difference lies in the loca-
tions of the stable longitudes of conjunction, sometimes
called the libration center. In an eccentricity (e-type)
resonance, the stable longitudes are located at the lon-
gitude of periastron of the inner planet ($1), and the
apoastron of the outer planet (α2 ≡ $2 + π). For in-

clination (i-type) resonances, the stable longitudes lie
halfway between the longitudes of ascending node, Ω,
of each planet (Ω1,2 ± π/2) when the reference plane is
the fundamental plane. When a system is formed, if con-
junction initially occurs near one of these stable points,
and if there is a commensurability of mean motions such
that the conjunction longitude varies slowly, then con-
junction will tend to librate. Furthermore, because the
orbits are farthest apart at these libration centers, res-
onances can reduce the likelihood of close encounters,
further maintaining long-term orbital stability.

Both e-type and i-type resonances are observed in our
Solar System, but e-type is far more prevalent, including
the Galilean satellite system and the Neptune-Pluto pair.
An i-type resonance is observed in the Saturnian satellite
pair of Mimas and Tethys (Allan 1969; Greenberg 1973).
Neptune and Pluto are particularly relevant to this study,
as the pair is in the 3:2 e-resonance (Cohen & Hubbard
1965), and later studies found that the i-resonance ar-
guments also librate on short timescales, but the libra-
tion drifts slowly such that the resonant argument actu-
ally circulates with a period of ∼ 25 Myr (Williams &
Benson 1971; Applegate et al. 1986). Higher order secu-
lar resonances are also operating on Neptune and Pluto
(Milani et al. 1989; Kinoshita & Nakai 1996), and likely
contribute to their configuration being formally chaotic
(Sussman & Wisdom 1988). Nonetheless, the pair is sta-
ble for at least 5.5 Gyr (Kinoshita & Nakai 1996). Thus,
Pluto and Neptune’s orbital evolution is impacted by the
i-resonance but it is likely a small effect.

The first step in identifying a mean motion resonance is
to examine the ratio of orbital periods P or, equivalently,
the mean motions n ≡ 2π/P . If the ratio is close to a
ratio of two integers, i.e. n1/n2 ≈ j1/j2 where j1 and
j2 are integers, then the system may be in resonance.
An MMR requires a periodic force to applied near the
same longitude relative to an apse or a node, which pre-
cess with time. To account for this evolution, celestial
mechanicians have introduced the resonant argument, a
combination of angles that account for both the mean
motions and the orbital orientations.

For e-type resonances, the resonant arguments are

θ1,2 = j1λ2 − j2λ1 − j3$1,2, (1)

where the j terms are integers that sum to 0, and the sub-
scripts 1 and 2 to $ correspond to the inner and outer
planet, respectively. Should any θ librate with time, or
even circulate slowly, then resonant dynamics are impor-
tant. Conjunction (j1λ2− j2λ1) lies close to a particular
longitude relative to the apsides. Usually θ will librate
about either 0 or π, but other stable values are possible
and are referred to as asymmetric resonances.

For i-type resonances, the dominant resonant argu-
ment is

φ = j1λ2 − j2λ1 − j3Ω1 − j4Ω2, (2)

if i = 0 corresponds to the invariable, or fundamen-
tal, plane, i.e. the plane perpendicular to the total
angular momentum of the system. With this choice,
Ω1 = Ω2 ± π. Inclination resonances are fundamen-
tally different from e-type in that first order resonances
are technically not possible, i.e. j1 − j2 > 1. The sta-
ble conjunction longitudes correspond to the two mid-
node longitudes. Note that for circular orbits, there is
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no substantive difference between the two stable longi-
tudes: The geometry at ± 90◦ from the mutual node are
identical. See Greenberg (1977) for more discussion on
the physics of the i-resonance.

It is often convenient to think of resonances in terms
of a pseudo-potential. The conjunction longitude, λc is
accelerated toward the stable points, and oscillates sinu-
soidally about it. The acceleration of λc in a 2:1 (4:2)
MMR can be written as

λ̈c = c1e1 sin(λc−$1)+c2e2 sin($2−λc)+c3i21 sin 2(λc−Ω1),
(3)

where c1, c2 and c3 are constants that depend on the
masses and semi-major axes (Greenberg 1977), and λc =
2λ2 − λ1. Eq. (3) is analogous to that of a compound
pendulum, as long as the e’s and i’s are approximately
constant. The pseudo-potential contains minima at $1,
α2, and Ω1 ± π/2, but each has different depths which
vary as the orbits evolve. Moreover, as e and/or i become
large, this simple picture breaks down and more minima
will likely appear. Thus, we should anticipate the motion
to become complicated, an expectation that is borne out
in §§ 3 – 5.

2.2. Numerical Methods

The classical analytic theory summarized above be-
comes less accurate as the values of eccentricity and in-
clination increase. To lowest order, the evolution of e
and i are decoupled, but as either or both become large,
pathways for the exchange of angular momentum open
up, and the motion can become very complicated (e.g.
Barnes et al. 2011). Thus, we rely on N -body numer-
ical methods to analyze resonances with mutual incli-
nations, while appealing to published analytic theory to
help interpret the outcomes. In particular we use the
well-tested and reliable Mercury (Chambers 1999) and
HNBody (Rauch & Hamilton 2002) codes. We do not
include general relativistic corrections, which are mostly
negligible for the planetary systems we consider here. We
used both mixed variable symplectic and Bulirsch-Stoer
methods to integrate our systems. While the former
can integrate our hypothetical systems to 10 Gyr within
about 10 days on a modern workstation, the Bulirsch-
Stoer method, which is more accurate, requires about 80–
90 days with HNBody; hence we used it sparingly. Regard-
less of our choice of software and/or integration scheme,
identical initial conditions produced qualitatively similar
results. All integrations presented here conserved energy
to better than 1 part in 105, usually better by many or-
ders of magnitude. Unless stated otherwise, all systems
maintained an MMR for 10 Gyr and met our energy con-
servation requirements. The reference plane for i and Ω
for all cases is the invariable plane so that the inclina-
tions and longitudes of ascending node are more physi-
cally meaningful6. Here we ignore planetary and stellar
spins: Planets and stars are point masses.

We consider several broad categories of exoplanetary
systems. First we model systems in the 2:1 resonance.
In Set #1, one planet is always 1 Earth-mass (1 M⊕)
with a semi-major axis a of 1 AU, and the primary is a

6 We have made our source code to rotate any astrocen-
tic orbital elements into the invariable plane, as well as gen-
erate input files for Mercury and HNBody, publicly available at
https://github.com/RoryBarnes/InvPlane.

solar-mass star, i.e. it is in the habitable zone (Kasting
et al. 1993; Kopparapu et al. 2013). The other planet
may have a mass between 3 and 40 M⊕. In Set #2, we
explore the case of two giant planets orbiting a 0.75 M�
star in 2 and 4 year orbits. Set #3 considers two dwarf
planets orbiting a solar-mass star. In Sets #4 and #5, we
simulated ∼Earth-mass planets in the 3:1 and 3:2 MMR,
respectively. For all these simulations, the period ratios
are at exact resonance, but the other orbital elements are
chosen randomly and uniformly over a wide range of val-
ues. For each set, we integrated 100 systems for 10 Myr
as an initial survey, and for systems that appeared inter-
esting, i.e. showed chaotic evolution, we continued them
to 10 Gyr using 0.01 year timesteps. Table 1 shows the
ranges of initial conditions we used for these sets of hy-
pothetical systems.

In § 5 we examine known systems in or near the 2:1
(HD 73526 and HD 128311), 3:2 (HD 60532) and 3:1
(HD45364) MMRs. Each of these systems was discov-
ered via radial velocity data, and hence suffer from the
mass-inclination degeneracy. However, HD 128311 c has
also been detected astrometrically with HST (McArthur
et al. 2014), hence its mass and full orbit are known. The
best fits and uncertainties in parentheses for these known
systems are listed in Table 2. The position of each planet
in its orbit, the “phase,” is crucial information and differ-
ent authors present the information in different formats
and so we present the parameter used in the most recent
paper in Table 2. Tp is the time of periastron passage, λ
is the mean longitude and µ is the mean anomaly.

For each of the known systems, we vary each orbital
element uniformly within its published uncertainties and
simulate the orbital evolution with HNBody. Our goal is
not to calculate a probability that each system is in an
i-type resonance, but rather to determine if it is possible
at all. We simulate 100 versions of the these systems
and allow i and Ω to take any value, and m is adjusted
accordingly. If chaotic motion in the MMR is apparent,
we integrate it for a further 10 Gyr.

3. HYPOTHETICAL SYSTEMS

In this section we present the results of the simulations
described in the previous section. We separate the results
by resonance: 2:1, then 3:1, and finally 3:2. In all cases
we find evidence of chaotic orbital evolution, often with
very large amplitudes of eccentricity and inclination.

3.1. The 2:1 Resonance

In this section we examine example cases in Sets #1–3,
i.e. in the 2:1 MMR. The e-resonance arguments are

θ1,2 = 2λ2 − λ1 −$1,2, (4)

and the i-resonance argument is

φ = 4λ2 − 2λ1 − Ω1 − Ω2. (5)

3.1.1. Earth with an Exterior Companion (Set #1)

Set #1 consists of an Earth-mass planet with a 1 year
period and a larger exterior planet with an orbital period
of 2 years. In Fig. 1 we show the evolution of the resonant
arguments, e and i for the first example, System A in
Table 3, for the first 105 years.

The top two panels show that the resonance arguments
switch between libration and circulation. Initially θ1
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TABLE 1
Initial Conditions for Hypothetical Systems

Set MMR M∗ (M�) m1 m2 a1 (AU) a2 (AU) e i (◦) Ω (◦) ω (◦) λ (◦)

1 2:1 1 1 M⊕ 3.3–36.6 M⊕ 1 1.5874 0–0.5 0–30 0–360 0–360 0–360
2 2:1 0.75 0.314 MJup 0.1–1.15 MJup 1.44219 2.2893 0–0.5 0–30 0–360 0–360 0–360
3 2:1 1 0.0775 MMoon 2.84 MMoon 1 1.5874 0–0.5 0–30 0–360 0–360 0–360
4 3:1 1 1 M⊕ 3.3–36.6 M⊕ 1 2.0801 0–0.5 0–30 0–360 0–360 0–360
5 3:2 1 1 M⊕ 3.3–36.6 M⊕ 1 1.3104 0–0.5 0–30 0–360 0–360 0–360

TABLE 2
Best Fits and Uncertainties for Selected Known Exoplanet Systems

System M∗ (M�) Planet m (MJup) P (d) e ω (◦) Phase

HD 128311 0.828 b 1.769 (0.023) 453.019 (0.404) 0.303 (0.011) 57.864 (3.258) 2400453.019 (4.472)a

c 3.125 (0.069) 921.538 (1.15) 0.159 (0.006) 15.445 (6.87) 2400921.538 (18.01)a

HD 73526 1.08 b 2.8 (0.2) 188.3 (0.9) 0.19 (0.05) 203 (9) 86 (13)b

c 2.5 (0.3) 377.8 (2.4) 0.14 (0.09) 13 (76) 82 (27)b

HD 60532 1.44 b 1.03 (0.05) 201.3 (0.6) 0.28 (0.03) 351.9 (4.9) 2453987 (2)a

c 2.46 (0.09) 604 (9) 0.02 (0.02) 151 (92) 2453723 (158)a

HD 45364 0.82 b 0.1872 (0) 226.93 (0.37) 0.1684 (0.019) 162.58 (6.34) 105.76 (1.41)c

c 0.6579 (0) 342.85 (0.28) 0.0974 (0.012) 7.41 (3.4) 269.52 (0.58)c

a Tperi (JD)
b µ (◦)
c λ (◦)

TABLE 3
Initial Conditions for Selected Set #1 Systems

System Body m (M⊕) a (AU) e i (◦) Ω (◦) ω (◦) µ (◦)

A 1 1 1 0.0866 10.322 223.75 340.2 268.33
2 10.07 1.5874 0.1883 0.82 43.747 74.21 296.5

B 1 1 1 0.0251 1.61 277.19 353.67 261.33
2 26.91 1.5874 0.0531 0.0475 97.19 219.07 359.38

C 1 1 1 0.2373 2.918 217.13 330.25 102.45
2 4.39 1.5874 0.4225 0.565 37.13 246.36 112.88

Db 1 1 1 0.00296 19.83 278.01 332.27 268.52
2 35.62 1.5874 0.266 0.449 98.01 69.73 343.09

E 1 1 1 0.2952 38.51 247.92 40.44 225.93
2 14.82 1.5874 0.0961 1.832 67.92 253.92 318.12

F 1 1 1 0.1 12.04 270.26 140.77 0
2 10 1.5874 0.15 0.9551 90.26 23.77 10

G 1 1 1 0.15 23.526 232.96 31 0
2 10 1.5874 0.2 1.832 52.96 247.9 10

b Stable for only 73 Myr.

(black dots) librates about 0, the classic libration cen-
ter for e-type resonances, while θ2 (red dots) librates on
short timescales, but circulates on long timescales. Also
note that the e- and i-resonance arguments appear to
be coupled. During this initial phase, φ librates with
large amplitude. After about 14,000 years, the behav-
ior changes dramatically and all arguments librate, but
with sudden jumps between libration centers. Then at
25,000 years, the motion appears to return to the ini-
tial state. This switching between modes of oscillation
demonstrates the system is chaotic, and is often an indi-
cator of impending instability (e.g. Laskar 1990). Hence
we would naively expect a similar outcome for this sys-
tem. The eccentricity of the inner planet shows un-
usual behavior that also changes with the resonance ar-
guments. The evolution is approximately periodic, but
does not appear regular. The inclinations do not appear

to be strongly impacted by the changes in the resonance
argument behavior.

In Fig. 2, we extend the evolution of e and i by a factor
of 105, to 10 Gyr. Here we see that the hints of chaotic
behavior in Fig. 1 remain present, but are not indica-
tive of the true scale of the chaotic motion for this sys-
tem. Remarkably, the system survives for 10 Gyr despite
the chaos. The eccentricity of the inner planet aperiodi-
cally reaches values larger than 0.65, while its inclination
reaches 40◦. The outer planet is more massive, so its evo-
lution does not have as large an amplitude as the inner,
but it, too, evolves chaotically. While the variations in
e and i are chaotic, there are clearly bounds to their
permitted values.

The libration and slow circulation of the resonant ar-
guments suggest that both e and i-type resonances are
important in this system. We further explore the evo-
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Fig. 1.— The first 105 years if evolution of System A. Black corresponds to the inner Earth-mass planet initially at 1 AU, red to a larger
planet in the outer 2:1 resonance. Variations of the inclination resonance argument (top), eccentricity arguments (top middle) with black
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lution of the system in Fig. 3, which only considers the
first 30,000 years of orbital evolution. In the left panel we
compare the conjunction longitude (black dots) with the
various stable longitude predicted from classic resonant
theory, $1 (purple curve), α2 ≡ $2 +π (orange curve),
Ω+

1 ≡ Ω1 + π/2 (blue curve), and Ω−
1 ≡ Ω1 − π/2

(green curve). Conjunction librates, but, surprisingly,
not always about the expected stable longitudes. For
most of the time, λc ∼ $1, but it also librates about
other locations that are not associated with any classic
libration center. Note that conjunction avoids α2.

In the right panel, we plot the two mean motions and
see that they librate about the resonant frequencies, but
with varying amplitudes. Careful inspection of the two
panels shows that the different mean motion amplitudes
correspond to the different librations seen in the left
panel. There appear to be 5 different resonant oscilla-
tions over this cycle, which approximately repeats for at
least the first 1 Myr.

The long-term behavior in Fig. 2 shows mode-switching
can occur on longer timescales as well. For example, from
6.5 – 6.8 Gyr, e and i are confined to narrow regions, but
then return to the large amplitude oscillations. Fig. 4
shows the evolution over 105 years starting at 6.75 Gyr
within this alternative mode. In comparison to Fig. 1,
the i-resonance argument is circulating, as is θ2. How-
ever, θ1 is librating about 0 indicating that the system
is exclusively in an e-type resonance.

After 10 Gyr the evolution is qualitatively similar to
the initial evolution. The e- and i-resonant arguments
are switching between libration and circulation, a quasi-
stable behavior. We are unaware of any study that has
found qualitatively similar behavior in a planetary or
satellite system. While long-lived chaos is evident in our
Solar System (e.g. Sussman & Wisdom 1988), the am-
plitudes of the variations are much smaller. Moreover,
the switching between different quasi-periodic states is
also usually an indicator of instability. System A is not
“nearly integrable,” as is often argued for stable plane-
tary systems. Nonetheless, these planets remains bound
and in resonance for the main sequence lifetime of a solar-
type star.

Although the orbital behavior of System A is surpris-
ing, this case is not anecdotal. Table 3 contains 6 exam-
ples from Set #1 that show chaotic evolution, yet remain
in resonance for 10 Gyr. In Figs. 5–7, we show 3 more
cases as representative examples of the 2:1 MMR. These
simulations demonstrate that chaotic inclined MMRs can
produce behavior that spans a range from high frequency,
low amplitude oscillations to low frequency and high am-
plitude oscillations to cases in which all available phase
space is sampled.

System B is an example of high frequency, low ampli-
tude evolution. Fig. 5 shows the first 25,000 years of its
evolution. In this case the resonant arguments oscillate
with a period of a few hundred years and switch states at
∼18,000 years. The eccentricities and inclinations of the
Earth-like planet oscillate with an amplitude of 0.1 and
0.25◦, respectively, on this timescale. Note that System
B begins with a mutual inclination of just 1.65◦, reveal-
ing that relatively small mutual inclinations can lead to
chaotic orbital evolution. Over 10 Gyr, e1 remains below
0.14 and e2 0.06, while i1 remains below 18◦ and i2 below

1◦.
System C is similar to System A in its evolution, as

shown in Fig. 7. Over 10 Gyr e1 varies from 0 to 0.9 and
i1 varies from 0 to 60◦. From ∼ 3 Gyr to ∼ 6 Gyr (not
shown) the system enters a different mode in which the
eccentricities and inclinations are confined to narrower
regions.

System D only survives in the resonance for 73 Myr,
but we it include here to illustrate the extreme eccen-
tricity evolution that is possible in inclined MMRs. At
87,170 years, e1 reaches a value of 0.99998, implying a
periastron distance that would place it inside the core of
its solar-mass primary. Clearly, the point-mass approxi-
mation for the orbital dynamics has broken down for this
system. In particular, we expect that at when e1 ∼ 1
that strong tidal effects should dramatically alter the or-
bits. We return to this point in § 6.

Rather than show similar plots for Systems E–G, we
only comment on their behavior. System E shows a cir-
culating φ for the first 105 years, while θ1 librates with
large amplitude about 0, and θ2 drifts. The inner planet’s
e and i vary from 0 to 0.75 and 55◦, respectively. After
∼ 6 Gyr, the system slowly moves into a different state
with i1 varying between 20◦ and 50◦, and θ1 aperiodi-
cally circulating. System F has resonant arguments that
switch between libration and circulation as in Fig. 1 and
eccentricities that remain below 0.3 and inclinations be-
low 20◦. System G is similar to System A.

These examples are only illustrative and do not rep-
resent the full range of possibilities. The 7 cases listed
in Table 3 met our stability criteria (see § 2), and we
suspect many more cases also would, but computational
constraints prevented a more thorough analysis.

3.1.2. Two Giant Planets Orbiting a 0.75 M� Star (Set #2)

Next we consider Set #2: Two Saturn- to Jupiter-mass
planets orbiting a 0.75 M� star in 2 and 4 year orbital
periods. Such planets induce a larger astrometric signal
in the host star, and are large enough that radial velocity
observations could break the 180◦ ambiguity in Ω implicit
in astrometric measurements of exoplanets. In Table 4
we present 7 systems which survived for ∼ 10 Gyr and
conserved energy adequately.

In Fig. 8 we show the evolution of System N on two
timescales. The left panels show the variation in the reso-
nant arguments and e and i for 105 years in the same for-
mat as Fig. 1. As before the resonant arguments switch
between libration and circulation leading to chaotic evo-
lution of e and i. In the right panels we show the evolu-
tion of e and i for 10 Gyr. e1 aperiodically reaches values
of ∼ 0.85, and i1 reaches 50◦. Note as well at 2.4 and
6.0 Gyr the systems enters qualitatively different states
for about 100 Myr.

In Fig. 9 the orbit of the host star about the system’s
barycenter is shown over 7 years if viewed face-on, i.e. the
invariable plane is parallel to the sky plane. In this ex-
ample we assume the system is located at 25 pc, and the
combined system induces a ∼ 100 µas astrometric signal,
which is 4–5 times larger than the expected GAIA uncer-
tainties for stars with G-band magnitudes <∼13, repre-

sented by the line labeled “GAIA Uncertainty” (Sozzetti
et al. 2014). This system would be relatively easy to
characterize with radial velocity data as well, and hence
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1 ≡ Ω1 − π/2 (green). Right: Evolution
of the mean motions of the inner planet (top) and outer planet (bottom).

TABLE 4
Initial Conditions for Selected Set #2 Systems

System Body m (MJup) a (AU) e i (◦) Ω (◦) ω (◦) µ (◦)

H 1 0.314 1.4422 0.0276 2.504 247.16 94.57 7.74
2 0.573 2.2893 0.2021 1.118 67.12 126.15 313.87

Ie 1 0.314 1.4422 0.1155 3.302 39.32 273.88 195.14
2 0.303 2.2893 0.4692 3.076 219.29 247.62 48.35

J 1 0.314 1.4422 0.2374 7.089 24.56 256 77.1
2 0.234 2.2893 0.3988 8.019 204.54 185.86 127.68

K 1 0.314 1.4422 0.0364 11.267 126.11 284.5 41.42
2 0.328 2.2893 0.223 8.761 306.18 273.49 160.47

L 1 0.314 1.4422 0.0263 19.459 176.25 202.97 229.91
2 0.736 2.2893 0.3696 6.989 356.23 153.08 261.74

M 1 0.314 1.4422 0.4596 3.282 106.68 44.59 350
2 0.399 2.2893 0.3402 1.936 286.57 131.7 73.93

N 1 0.314 1.4422 0.0561 21.623 247.55 325.64 274.59
2 0.902 2.2893 0.4466 6.53 67.64 60.26 326.55

e Stable for only 9.761 Gyr.

could be fully characterized in the next 10 years. Of
course, the details of actually modeling resonant systems
are non-trivial (e.g. Marcy et al. 2001), but the discov-
ery of such a chaotic system would mark an important
milestone in exoplanet science.

In Fig. 10 we show the evolution of System I in the
same format as Fig. 8. This system appears qualitatively
similar to System N, but with lower amplitudes in e and
i. However, this system destabilizes at 9.761 Gyr, as seen

on the right side of the right panels. We found several
other systems in which an ejection occurred after 1 Gyr.
The chaotic resonant behavior shown in this study is not
necessarily stable on arbitrarily long timescales. Like our
own Solar System, these hypothetical systems are just
relatively long-lived (see, e.g. Lecar et al. 2001).

3.1.3. Dwarf Planets in the 2:1 MMR (Set #3)

In this section we consider Set #3, dwarf planets in
the 2:1 MMR. While these planets are not detectable in



9

      
0

90

180

270

360

φ 
(o )

      
0

90

180

270

θ 1, θ
2 (

o )

      
0.00
0.05
0.10
0.15
0.20
0.25
0.30

E
cc

en
tr

ic
ity

0 2•104 4•104 6•104 8•104 1•105

Time - 6.75 Gyr

0

5

10

15

20

In
cl

in
at

io
n 

(o )

Fig. 4.— Same as Fig. 1, but at 6.75 Gyr.



10

      
0

90

180

270

360

φ 
(o )

      
0

90

180

270

θ 1, θ
2 (o )

      
0.00
0.02

0.04
0.06
0.08
0.10

E
cc

en
tr

ic
ity

0 5.0•103 1.0•104 1.5•104 2.0•104 2.5•104

Time (yr)

0.0

0.5

1.0

1.5

In
cl

in
at

io
n 

(o )

Fig. 5.— The first 25 kyr of evolution of System B in the same format as Fig. 1.



11

      
0

90

180

270

360

φ 
(o )

      
0

90

180

270

θ 1, θ
2 (o )

      
0.0

0.2

0.4

0.6

E
cc

en
tr

ic
ity

0 2•105 4•105 6•105 8•105 1•106

Time (yr)

0

1

2

3

In
cl

in
at

io
n 

(o )

Fig. 6.— The first 1 Myr of evolution of System C in the same format as Fig. 1.



12

      
0

90

180

270

360

φ 
(o )

      
0

90

180

270

θ 1, θ
2 (o )

      
0.0
0.2

0.4

0.6

0.8

E
cc

en
tr

ic
ity

0 2•104 4•104 6•104 8•104 1•105

Time (yr)

0

50

100

150

In
cl

in
at

io
n 

(o )

Fig. 7.— The first 105 years of evolution of System D in the same format as Fig. 1. This system destabilized after 73 Myr.
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Fig. 8.— Orbital evolution of System N. The left panels are in the same format as Fig. 1; the right is in the same format as Fig. 2.

the near future, they display remarkable dynamics and
illustrate the extreme chaos that the 2:1 MMR with in-
clinations can produce. In Table 5 we present 4 cases
that are stable for 10 Gyr, and in Fig. 11 we show the
evolution of System P over 10 Gyr. Note that the e-
resonance arguments sometimes librate for long periods
of time, such as near 2.5 Gyr. The i argument does not
appear to librate in this visualization, but higher reso-
lution plots over shorter periods show similar behavior
as above. Systems O and Q are similar to P, but the
inclinations and eccentricities remain lower.

These systems show a diversity of behavior from small-
scale chaos (System Q), to dramatic chaos in which e1
and i1 sample all available phase space (System P). The
resonant arguments, particularly the eccentricity argu-
ments, switch between circulation and libration. e1 in
Systems O (not shown), P and R (not shown) aperiodi-
cally reach values in excess of 0.99, and hence they should
tidally circularize prior to 10 Gyr.

The resonant arguments in these systems behave dif-
ferently than for the larger planets. On short timescales
(not shown) the resonant arguments switch modes as
in previous cases, but these systems can remain in one
mode for long timescales, particularly the e-resonance.
In Fig. 11 note that there are intervals when the two
e-arguments librate for more than 100 Myr.

3.2. The 3:1 Resonance

In this section we consider an Earth-like planet at 1
AU from a 1 M� star with an exterior companion with
an orbital period of 3 years, i.e. in the 3:1 MMR. In this

case the e-resonance arguments are

θ1,2 = 3λ2 − λ1 − 2$1,2, (6)

and the i-resonance argument is

φ = 3λ2 − λ1 − Ω1 − Ω2. (7)

Table 6 lists three configurations that are stable for
10 Gyr and show chaotic evolution. Systems T and U
are shown in Figs. 12 and 13, respectively. The former
has (relatively) modest inclination and eccentricity vari-
ations, while the latter samples all the phase space avail-
able, with 0 <∼ i <∼ π and 0 <∼ e <∼ 1. In both systems the
resonance arguments switch between libration and circu-
lation, as seen in the previous 2:1 MMR cases. System S
(not shown) is similar to System U, but the inclinations
only reach ∼ 65◦ and e only 0.9.

3.3. The 3:2 Resonance

Next we consider the 3:2 MMR with an interior 1 M⊕
planet at 1 AU from a solar-mass star and a larger exter-
nal companion at 1.3104 AU. The e-resonance arguments
are

θ1,2 = 3λ2 − 2λ1 −$1,2, (8)

and the i-resonance argument is

φ = 6λ2 − 4λ1 − Ω1 − Ω2. (9)

Table 7 lists two systems that are stable for 10 Gyr and
showed chaotic evolution. In Fig. 14 we plot the evolu-
tion of the resonant arguments, e and i on two timescales
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Fig. 10.— Orbital evolution of System I in the same format as Fig. 8. The system destabilizes after 9.761 Gyr.

TABLE 5
Initial Conditions for Selected Set #3 Systems

System Body m (MMoon) a (AU) e i (◦) Ω (◦) ω (◦) µ (◦)

O 1 0.0775 1 0.3032 19.835 283.31 290.53 231.72
2 1.171 1.5874 0.2768 1.013 103.31 50.74 54.65

P 1 0.0775 1 0.04305 24.34 57.06 90.49 57.09
2 2.817 1.5874 0.3192 0.544 237.06 231.06 90.68

Q 1 0.0775 1 0.1036 5.298 169.03 21.27 348.68
2 0.568 1.5784 0.1544 0.577 349.03 171.19 158.69

R 1 0.0775 1 0.4475 14.98 289.05 94.15 272.54
2 2.513 1.5784 0.2093 0.332 109.05 352.99 154.19

TABLE 6
Initial Conditions for Selected Set #4 Systems

System Body m (M⊕) a (AU) e i (◦) Ω (◦) ω (◦) µ (◦)

S 1 1 1 0.1798 2.06 178.04 261.79 66.85
2 6.5 2.0801 0.3808 0.234 358.4 113.3 286.96

T 1 1 1 0.02514 1.04 246.96 151.63 261.33
2 27.05 2.0801 0.05311 0.0362 66.96 17.04 359.38

U 1 1 1 0.149 43.64 260.51 18.15 220.4
2 22.2 2.0801 0.2755 1.27 80.51 51.82 6.72
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Fig. 11.— Evolution of System P in the same format as Fig. 1.
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Fig. 12.— Orbital evolution of System T in the same format as Fig. 8.
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Fig. 13.— Orbital evolution of System U in the same format as Fig. 8.

for System W. The evolution is qualitatively similar to
that in the other resonances. System V is quite similar,
with e reaching 0.9 and i reaching 60◦ aperiodically over
10 Gyr.

4. FORMATION BY SCATTERING

The large amplitude chaotic orbital evolution shown
above is remarkable, but can such a system form? As
described in § 1, several studies have examined the for-
mation of inclination resonances in the context of con-
vergent migration during the protoplanetary disk phase.
Those studies found that i-resonances can form under the
proper circumstances, but they did not consider the post-
formation evolution. In this section, we show that grav-
itational scattering among planets can produce systems
in the 2:1 MMR with mutual inclinations that evolve
chaotically for 10 Gyr.

Our sample comes from the data set used in Raymond
et al. (2008) that found MMRs resulting from scattering
events. The reader is referred to that paper for details,
but briefly, systems consisting of initially 3 planets were
allowed to interact gravitationally and in many cases 1–
2 planets were ejected from the system. Raymond et al.
(2008) examined the e-resonance arguments of systems
in which 2 planets remained, and reported that 5% of
systems had at least one e-resonance argument librating.
Systems like those shown in § 3 were deemed unstable
and thrown out.

In light of the results of § 3 we have re-examined sys-
tems near an MMR to search for chaotic, but long-lived
evolution. Specifically we focus on the “Mixed2” distri-

bution of Raymond et al. (2008) in which the planets’
masses follow a power-law distribution with exponent
−1.1. This distribution has recently been shown to repro-
duce many observed dynamical properties of exoplanets
(Timpe et al. 2013). This suite of simulations consisted
of 1000 systems, and we examined 49 that had period
ratios with 10% of 2, of which 24 were identified as being
in an e-resonance by Raymond et al. (2008). Of these,
27 had mutual inclinations less than 5◦ and the largest
was 27◦. We find three that appear qualitatively similar
to those in the previous section. They are listed in Ta-
ble 8, and System X is shown in Fig. 15. System Y (not
shown) evolved such that the eccentricities and inclina-
tions remained below 0.12 and 7◦, respectively. System
Z evolved such that they remained below 0.15 and 3◦.
We also searched for systems evolving chaotically in the
3:1 or 3:2 MMR, but did not find any.

The amplitudes of the variations of the orbital elements
is lower than some cases shown in § 3, but similar to
others, e.g. System B. Given the small number of systems
that produced chaotic resonant behavior, it remains to
be seen if evolution that reaches e ∼ 1 and i ∼ π can
be naturally produced. Nonetheless we conclude that
planet-planet scattering can produce systems that evolve
chaotically for 10 Gyr in an MMR.

5. KNOWN SYSTEMS

The previous two sections established the typical char-
acteristics of planets in inclined MMRs and a viable for-
mation mechanism. The next question that naturally
arises is if any known systems might be evolving in a
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TABLE 7
Initial Conditions for Selected Set #5 Systems

System Body m (M⊕) a (AU) e i (◦) Ω (◦) ω (◦) µ (◦)

V 1 1 1 0.1404 27.34 232.78 39.79 5.92
2 5.96 1.3104 0.3498 4.08 52.78 314.14 108.38

W 1 1 1 0.0144 36.05 316.73 13.72 293.02
2 21.83 1.3104 0.1671 1.37 136.73 307.8 308.84

TABLE 8
Initial Conditions for Planets in a Chaotic 2:1 MMR Formed by Scattering

System Body m (MJup) a (AU) e i (◦) Ω (◦) ω (◦) µ (◦)

X 1 0.118 4.83696 0.1498 18.845 291.14 83.60 330.83
2 0.213 7.71971 0.1548 8.15 111.12 195.95 118.57

Y 1 0.65 6.23933 0.026033 0.802 168.16 30.05 284.95
2 0.0737 9.97199 0.04723 5.60 348.18 298.78 49.35

Z 1 0.168 5.45138 0.13299 1.453 133.88 186.20 113.99
2 0.934 8.78422 0.01305 0.204 313.83 137.53 146.93

long-lived and chaotic configuration. In this section we
examine four candidates in 3 different MMRs and with
observed properties listed in Table 2. These planets were
all discovered by the radial velocity technique and hence
their orbital planes were undetected. HD 128311 c has
been detected astrometrically (McArthur et al. 2014),
but its companion planet has not, so the mutual inclina-
tion remains unknown.

5.1. 2:1 Systems: HD 128311 and HD 73426

We performed 100 integrations of HD 128311 and
HD 73526 for 10 Myr each. We found no stable con-
figurations of the former if the orbits were allowed to be
non-planar. This should not be taken to mean the sys-
tem must be coplanar as we may not have considered
enough cases. Rein & Papaloizou (2009) found the sys-
tem could form in a coplanar configuration through con-
vergent migration, and McArthur et al. (2014) found the
best-fit coplanar solution to the system is dynamically
stable and not in resonance. At this point, we conclude
that this system is likely to be in a coplanar configu-
ration, which precludes the chaotic evolution we report
here.

HD 73526, on the other hand, could be evolving chaot-
ically. In Table 9 we list three versions that are stable for
10 Gyr and show chaotic evolution. Note that we always
use a stellar mass of 1.08 M�. In Fig. 16 we show the
evolution of System AB. Unlike the previous systems, the
resonant arguments do not appear to switch between li-
bration and circulation, and the i-arguments do not show
any libration at all. The θ1 argument librates about 0
for the full 10 Gyr year duration. Nonetheless, the ec-
centricities and inclinations appear to be coupled and to
switch between modes, as was seen in § 3. Systems AA
and AC show similar behavior with similar amplitudes.
Of the previous systems, HD 73526 is most similar to
System B (c.f. Fig. 5).

5.2. The 3:1 System HD 60532

In this section we consider the HD 60532 system which
is in the 3:1 MMR. In Table 10 we list 3 cases which show
chaos for 10 Gyr, and present the evolution of case BC in

Fig. 17. As with HD 75326, the i-resonance arguments
circulate, but the e-arguments switch between libration
and circulation. This system appears qualitatively sim-
ilar to those in § 3.2. Over 10 Gyr, the system evolves
chaotically, as shown in the right panels. The BA and BB
systems are qualitatively similar, but the mode-switching
is not as dramatic.

5.3. The 3:2 System HD 45364

We found no configurations of HD 45364 that were sta-
ble for 10 Gyr, but one trial did survive for 4.557 Gyr
while conserving energy to 1 part in 106. Its initial con-
ditions are in Table 11, and its evolution is shown in
Fig. 18.

6. DISCUSSION

The previous three section have demonstrated that 1)
planets in an MMR and with mutual inclinations can
experience chaotic evolution of orbital elements for Gyr
while at least 1 resonant argument librates throughout,
2) planet-planet scattering, in which one planet is re-
moved from a planetary system by gravitational inter-
actions, can leave behind two planets in the 2:1 MMR
and with significant mutual inclinations, and 3) several
systems known to be in an MMR could have mutual incli-
nations that induce chaotic evolution, but maintain the
resonance. In this section, we discuss the theoretical and
observational implications of these results, as well as de-
scribe the limits of our analysis, which naturally leads to
directions for future research on this topic.

Fig. 3 shows that conjunction can librate about mul-
tiple centers, some of which, such as $1, are predicted
by classic celestial mechanics. These libration centers
are derived from low-order expansions of the “disturbing
function” (for a review see Murray & Dermott (1999)). If
one term dominates, there are specific stable longitudes
for conjunction, e.g. $1 if the term 2λ2− λ1−$1 domi-
nates. However, with large and varying values of e and i
multiple terms are important. Stable longitudes can mi-
grate or become unstable, allowing transitions of libra-
tion to different kinematic modes. This movement could
be due to the deepening of nearby minima as e and/or
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TABLE 9
Initial Conditions for Selected HD 73526 Cases

System Body m (MJup) a (AU) e i (◦)f Ω (◦)f ω (◦) µ (◦)

AA b 2.89 0.66857 0.1728 1.37 182.66 193.96 96.27
c 2.576 1.0615 0.1126 1.21 2.44 147.97 107.05

AB b 2.881 0.64347 0.1824 1.27 262.07 57.63 95.97
c 2.405 1.0311 0.05134 1.18 81.74 8.87 92.51

AC b 2.87 0.6572 0.1552 3.37 342.84 349.04 75.29
c 2.691 1.0274 0.08992 2.85 162.79 324.05 77.07

f Measured relative to invariable plane

TABLE 10
Initial Conditions for Selected HD 60532 Cases

System Body m (MJup) a (AU) e i (◦)f Ω (◦)f ω (◦) µ (◦)

BA b 0.997 0.759 0.3037 2.56 267.21 185.73 162.6
c 2.42 1.5943 0.1578 0.692 87.1 252.05 322.57

BB b 1.053 0.7582 0.2978 1.403 253.26 212.28 277.17
c 2.464 1.5661 0.0354 0.399 73.39 250.17 322.34

BC b 1.062 0.7587 0.2816 5.806 293.03 79.61 209.64
c 2.545 1.572 0.0207 1.62 113.05 341.14 321.88

f Measured relative to invariable plane

TABLE 11
Initial Conditions for the HD 45364 Case

Body m (MJup) a (AU) e i (◦)f Ω (◦)f ω (◦) µ (◦)

b 0.1874 0.6822 0.1782 2.07 359.31 110.52 199.03
c 0.6581 0.8969 0.09935 0.509 179.38 320.73 265.9

f Measured relative to invariable plane

i changes. As the orbits evolve, conjunction could gain
access to another minimum, leading to a change in the
libration center.

The behavior has multiple drivers that each behave like
a pendulum. In effect, the system is analogous to a com-
pound pendulum, e.g. Eq. (3). As the system evolves,
the planets are able to move into different modes of os-
cillation. For some modes, the stable longitude is repre-
sented by classic longitudes like $1, but others may only
be derivable using higher order theory. Our hypothesis
should be testable from derivation of high-order models
of resonant behavior from the disturbing function. Such
an analysis was beyond the scope of this work, which is
just a demonstration of the amplitude and duration of
the chaos, but is clearly desirable.

This result has important implications for theoretical
work on orbital stability. Common approaches for iden-
tifying unstable orbits rely on short integrations (∼ 1000
orbits) and a subsequent analysis of the orbital evolution
to count the number of frequencies in the orbital oscil-
lations: a larger number could indicate the system is
chaotic and unstable. Examples include the Mean Expo-
nential Growth of Nearby Orbits (MEGNO; (e.g. Cin-
cotta & Simó 2000; Goździewski et al. 2001)) and fre-
quency maps (e.g. Laskar 1990; Laskar & Correia 2009).
Our results suggest that those methods are susceptible
to labeling long-lived systems as short-lived. The inves-
tigation of viable orbital architectures of planets in an

inclined MMR should seek configurations that can per-
sist for the age of the host star as described here, which
appear unstable on the short term, but are in fact long-
lived. For example, HD 202206 is likely in a 5:1 MMR,
but Correia et al. (2005) used a frequency analysis to con-
strain the orbital parameters rather than N-body mod-
els. Future work should explore the the veracity of these
approximate methods for the case of inclined MMRs.

At epochs of very high e, we expect some planets to
tidally circularize. For example, Systems D and U could
not persist as shown because tides would circularize the
planet. Two scenarios are plausible, depending on the
dissipation rate in the planet. If the dissipation is rela-
tively weak, the resonance may be maintained such that
the resonant pair migrates inward together. Such sys-
tems should be represented in radial velocity and transit
surveys, which are biased toward the detection of plan-
ets on relatively short orbital periods. The three cases
presented in § 5 are possible examples. In principle, the
inward migration could be arrested if the tidal dissipa-
tion forces the pair into a configuration that diminishes
the maximum eccentricity. Thus, planets found far from
the host star today could nonetheless have formed at
larger distances and moved in. As the dissipation can be
episodic, it could take a long time for the pair to migrate
inward significantly, further increasing the likelihood to
detect the planets where tidal forces are expected to be
insignificant. This possibility has been discussed for non-
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Fig. 14.— Orbital evolution of System W in the same format as Fig. 8.



22

Fig. 15.— Orbital evolution of System X in the same format as Fig. 8.
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Fig. 16.— Orbital evolution of System AB (HD 73526) in the same format as Fig. 8.
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resonant systems (Li et al. 2014; Dawson & Chiang 2014),
and we find it can also occur for MMRs. Future work
should explore the role of tidal dissipation in these sys-
tems and determine if there is any predicted or observed
signature of tidal evolution resulting from an inclined
MMR.

On the other hand, if the tidal dissipation in the planet
is very large, it may break the resonance, resulting in
rapid tidal circularization and migration, leaving one
close-in planet and one more distant a planet. Although
many close-in planets are singletons (Steffen et al. 2012),
some are known to host more distant companions. These
companions have been suggested as perturbers that could
drive eccentricities to high values through Kozai-type
oscillations (Takeda & Rasio 2005), but the possibility
of resonant excitation of eccentricity has not previously
been proposed.

Note that these periods of high-e can occur when i
has a wide range of values. Thus, the planet’s final or-
bital plane could be independent of its initial orbital
plane and be misaligned with its host star’s spin axis.
Such spin-orbit misalignment is observed (Triaud et al.
2010; Hirano et al. 2014), and numerous mechanisms
have been proposed, such as planet-planet scattering fol-
lowed by tidal circularization (Chatterjee et al. 2008),
tidal circularization during phases of high eccentricity
due to interactions with very distant perturbers (Fab-
rycky & Tremaine 2007; Storch et al. 2014), and interac-
tions with the gas disk and a distant stellar binary com-
panion (Batygin 2012). The chaotic evolution of e and i
in an inclined MMR is another process to add to this list.
However, given the low occurrence rate of chaotic incli-
nation resonances formed by scattering, it is unlikely to
be a dominant mechanism. But note that this inference
is based on only one set of scattering simulations with
specific initial conditions – others may be more efficient
and producing these types of systems.

Inclined MMRs could impact the distribution of period
ratios of planets found via transit by making one planet’s
orbital plane significantly different from the other. After
applying a geometric transit correction, Steffen & Hwang
(2014) find a relative excess of planets in the 3:2 reso-
nance and relative deficits in 2:1 and 3:1 in Kepler data.
However, for the systems in which only 2 planets are de-
tected, the excess of 3:2 pairs disappears, the 2:1 is still
depleted, and the 3:1 appears to be unaffected. If addi-
tional planets destabilize inclined MMRs, then the trend
in the 3:2 MMR may be indicative of inclined MMRs,
as we would not expect systems that evolve with large
amplitude to have companions nearby. However, caution
is necessary when interpreting these data, as knowledge
of the underlying population and the role of tidal evo-
lution is critical. Migration during the protoplanetary
disk phase often leads to capture into resonance (Snell-
grove et al. 2001; Lee & Peale 2002), producing a pri-
mordial excess of planets in MMRs. On the other hand,
tidal evolution of planets in MMRs tends to pull them to
period ratios that are not exactly commensurate (Lith-
wick & Wu 2012; Batygin & Morbidelli 2013; Delisle &
Laskar 2014). Moreover, the formation of inclined reso-
nant orbits of close-in planets is unknown, so they could
be intrinsically rare. Thus, it is not obvious that inclined
MMRs are sculpting the close-in exoplanet population,
but our results suggest that they could.

Future work should identify boundaries to the long-
lived but chaotic resonances discovered here and employ
a quantitative description of the chaos. All of our sim-
ulations of hypothetical systems began with planetary
orbital periods at exact commensurability, but this state
is not typically observed for exoplanets, see Table 2 and
§ 5. A large suite of N-body simulations that integrate
systems to 10 Gyr is required to map out the bound-
aries of the chaotic and resonant behavior. Throughout
this study we have referred to systems as chaotic as they
clearly are. However, as a system moves toward regular
motion, the motion might no longer be obviously chaotic.
The use of Lyapunov exponents or other metrics would
be necessary to elucidate the true boundaries of the long-
lived chaotic motion.

Identifying inclined MMRs in transit and/or RV data is
possible but difficult (see e.g. Dawson et al. 2014), but
astrometric measurements are probably the best route
to find their existence. HST has successfully detected
some planets for which RV detections suggest an MMR
is present (Benedict et al. 2002; McArthur et al. 2014)
and two planets not in an MMR (McArthur et al. 2010),
but has not detected two planets in an MMR. The outer
planet of HD 128311 has been detected, and the in-
ner is potentially detectable with HST (McArthur et al.
2014), but its precarious architecture relative to dynam-
ical instability suggests it is in a coplanar configuration.
The most likely instrument to discover planets in an in-
clined MMR is GAIA (Casertano et al. 2008), as shown
in Fig. 9. The known systems we examined in § 5 are
all good candidates for GAIA astrometry, and so in the
next 5 years we should find out if any of them could be
experiencing chaotic evolution.

We note that our simulations of known systems failed
to reveal any in which the i arguments librate. Instead
the e-arguments switch between circulation and libra-
tion, which likely drives the chaos. Note that System B
evolves in a similar manner, and many other cases do
as well. Of our 3 systems formed by scattering, 2 were
similar to the known systems (Fig. 15). A further ex-
ploration of known systems, either by including more or
broadening the parameter space survey, could reveal if
this trend is real. If known systems are only consistent
with i-argument circulation, it could provide important
clues to the formation and frequency of exoplanets in
inclined MMRs.

Throughout this study we have described systems that
survive for 10 Gyr as “stable.” As most of our host stars
are solar analogs, this usage is reasonable as the systems
survive for the main sequence lifetimes of the host stars.
However, in some cases we find destabilization can occur
on > 1 Gyr timescales. Hence, these systems are not
“stable” in the sense that they could survive indefinitely.
Late-term destabilization of systems in inclined MMRs
may explain the observation that the host stars of planets
in the 2:1 MMR tend to be younger than other host stars
(Koriski & Zucker 2011). If this observation is validated,
it would support the hypothesis that some MMRs evolve
chaotically and disrupt on long timescales.

In the previous sections we did not consider the role
of additional planets, which could significantly shrink the
longevity of a chaotically evolving system. It is clear that
for system in which e1 ∼ 1 that interior planets are for-
bidden. However, exterior planets could exist provided
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Fig. 17.— Orbital evolution of System BC (HD 60352) in the same format as Fig. 2.
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Fig. 18.— Orbital evolution of the HD 45364 case in the same format as Fig. 8.

they are distant and/or small. On the other hand, some
systems show low amplitude chaotic variations and may
therefore be robust to perturbations from a third planet.
We do not map out the role of a third companion in the
stability of our systems, but future work should explore
how they modify the results presented here.

Most of our simulations begin with an Earth-mass
planet at 1 AU from a solar-mass star, and would be con-
sidered potentially habitable (Kasting et al. 1993; Kop-
parapu et al. 2013). If habitable, these worlds would be
markedly different from the Earth, with unpredictable
climates on geologic timescales. For planets in which
the eccentricity grows large, the planet could occasion-
ally enter a runaway greenhouse (incident radiation flux
scales as (1−e2)−1/2) rendering the planet uninhabitable.
Large inclination fluctuations can also lead to large vari-
ations in obliquity, which is a major driver of climate
evolution (e.g. Williams & Kasting 1997; Spiegel et al.
2009). While extremely fast and large variations of obliq-
uity could be detrimental to habitability, at the outer
edge of the habitable zone, these variations can suppress
ice sheet growth and, in principle, increase a planet’s
habitability (Armstrong et al. 2014). For planets that
occasionally reach very high eccentricity, tidal dissipa-
tion could ultimately pull the planet out of the habitable
zone (Barnes et al. 2008). Should any potentially habit-
able planets be found in an MMR, it will be imperative
to understand the orbital evolution, and its connection to
climate, prior to investing spectroscopic observations of
its atmosphere to search for biosignatures (see e.g. Dem-

ing et al. 2009; Kaltenegger & Traub 2009; Misra et al.
2014).

7. CONCLUSIONS

We have simulated the orbital evolution of exoplanets
in mean motion resonances and inclinations and found
the orbits can evolve chaotically for at least 10 Gyr. We
hypothesize that these systems behave like compound
pendula, which are naturally chaotic systems that can
switch between modes of oscillation, as seen in our sim-
ulations (see Fig. 3). We find this chaotic motion over a
range of mass ratios and for the 2:1, 3:2 and 3:1 res-
onance. We also tested different N-body codes using
different integration schemes, and conclude the results
are robust. Inclined MMRs can be produced by planet-
planet scattering and the resultant systems are qualita-
tively similar to our simulations of known systems in an
MMR.

These results have numerous implications for both the-
ory and observations:

• Approximate methods to estimate stability with
short integrations may be unreliable near MMRs.

• Close-in planets may arrive at their current orbits
due to eccentricity excitation by inclined MMRs
followed by rapid tidal circularization.

• Some short-period planets with orbital planes mis-
aligned with the stellar spin axis may be produced
by systems initially in inclined MMRs.
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• MMR pairs may be episodically migrating inward
due to weak dissipation occurring during epochs of
very large eccentricity.

• Systems in an MMR may be systematically
younger than other multiplanet systems due to the
destabilization of older MMR systems.

• The distribution of period ratios of adjacent plan-
ets detected via transit may be skewed by inclined
MMRs.

• Potentially habitable planets may be severely im-
pacted by the orbital architecture of the system.

Although no systems are currently known to demon-
strate the behavior we have outlined here, the GAIA
space telescope has the power to detect hundreds of giant
exoplanets in inclined MMRs.

This work was supported by NASA’s Virtual Plan-
etary Laboratory under Cooperative Agreement No.
NNA13AA93A and NSF grant AST-1108882.
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