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ABSTRACT

The determination of an exoplanet as rocky is critical for the assessment of planetary habitability.
Observationally, the number of small-radius, transiting planets with accompanying mass measure-
ments is insufficient for a robust determination of the transitional mass or radius. Theoretically,
models predict that rocky planets can grow large enough to become gas giants when they reach
∼ 10 MEarth, but the transitional mass remains unknown. Here I show how transit data, interpreted
in the context of tidal theory, can reveal the critical radius that separates rocky and gaseous exoplan-
ets. Standard tidal models predict that rocky exoplanets’ orbits are tidally circularized much more
rapidly than gaseous bodies’, suggesting the former will tend to be found on circular orbits at larger
semi-major axes than the latter. Well-sampled transits can provide a minimum eccentricity of the
orbit, allowing a measurement of this differential circularization. I show that this effect should be
present in the data from the Kepler spacecraft, but is not apparent. Instead, it appears that there is
no evidence of tidal circularization at any planetary radius, probably because the publicly-available
data, particularly the impact parameters, are not accurate enough. I also review the bias in the
transit duration toward values that are smaller than that of planets on circular orbits, stressing that
the azimuthal velocity of the planet determines the transit duration. The ensemble of Kepler planet
candidates may be able to determine the critical radius between rocky and gaseous exoplanets, tidal
dissipation as a function of planetary radius, and discriminate between tidal models.

Subject headings:

1. INTRODUCTION

Planetary habitability is a complex function of orbits,
composition, atmospheric evolution and geophysical pro-
cesses. Most searches for habitable environments begin
with the comparison of a planet’s orbit relative to the
host star’s habitable zone (HZ), the region around a star
for which an Earth-like planet can support water on its
surface (Dole 1964; Kasting et al. 1993; Selsis et al. 2007;
Kopparapu et al. 2013). A critical feature of this defini-
tion is the presence of a solid surface, i.e. the planet must
be rocky. Hence, this determination is also crucial in the
identification of potentially habitable environments.
Unfortunately a robust and universal definition of the

boundary between rocky and gaseous worlds has re-
mained elusive. Initially, research was theoretical and
identified the mass of a solid body, a “core,” that was
large enough to permit the capture of protoplanetary gas
(e.g. Pollack et al. 1996; Ikoma et al. 2001; Hubickyj
et al. 2005; Guillot 2005; Militzer et al. 2008; Lissauer
et al. 2009; Movshovitz et al. 2010). These results showed
that a wide range of “critical masses” are possible, from
<∼1 − 20 MEarth. Undoubtedly, the actual critical mass
is a function of the local protoplanetary disk’s properties
(e.g. temperature and viscosity), and one should expect
the critical mass to vary from system to system. How-
ever, there should exist a maximum mass (or radius) be-
low which planets are terrestrial-like because small mass
planets do not possess enough gravitational force to hold
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on to hydrogen and helium. In this study, I examine
the possibility that this boundary can be identified with
transit data coupled with expectations from tidal theory.
Transiting exoplanets offer the opportunity to measure

both the planetary radius and mass. The planetary ra-
dius can be constrained if the stellar radius is known,
usually determined from spectral information (Torres
et al. 2010; Everett et al. 2013), but sometimes directly
through interferometric observations (von Braun et al.
2011; Boyajian et al. 2012). The mass can then be mea-
sured through radial velocity measurements, which no
longer suffer from the mass-inclination degeneracy as the
viewing geometry is known (e.g. Batalha et al. 2011).
In multiple planet systems, masses can also be measured
by transit timing variations (Agol et al. 2005; Holman
& Murray 2005), as for Kepler-9 (Holman et al. 2010)
and Kepler-11 (Lissauer et al. 2011). However, for many
transiting planets, these methods may not be available,
as terrestrial planets tend to produce small radial veloc-
ity and timing variation signals. Thus, direct measure-
ments of the masses of small planets orbiting FGK stars
(0.7 – 1.4 MSun) will be challenging.
The transit detection method is biased toward the dis-

covery of planets on close-in orbits, <∼0.1 AU for FGK
stars. NASA’s Kepler spacecraft has detected over 1000
planet candidates in this range, opening up the possibil-
ity that statistical analyses of these (uninhabitable) plan-
ets could reveal the critical radius between terrestrial and
gaseous planets, Rcrit. As theoretical models of planet
formation have found that the critical mass and radius
lies near 10 MEarth and 2 REarth, planets that are smaller
could be rocky. Although few data points exist, it does
appear that Rcrit < 2 REarth, e.g. Kepler-10 b with mass
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Mp = 4.56 MEarth and radius Rp = 1.42 REarth (Batalha
et al. 2011) and CoRoT-7 b with Mp < 8 MEarth and
Rp = 1.58 REarth (Léger et al. 2009; Queloz et al. 2009;
Ferraz-Mello et al. 2011). Here I will call rocky plan-
ets larger than the Earth “super-Earths”, and gaseous
planets less than 10 MEarth “mini-Neptunes.”
Planets amenable to both transit and radial velocity

measurements tend to lie close to their stars, which is a
different environment than any of the planets in our Solar
System. These planets are subjected to more radiation,
stellar outbursts (Ribas et al. 2005), and tidal effects
(Rasio et al. 1996; Jackson et al. 2008b). While these
effects can act in tandem (Jackson et al. 2010), here I
only consider the tidal effects, as in isolation they can be
used to calculate Rcrit.
The key feature is that the expected rates of tidal dissi-

pation in terrestrial planets is orders of magnitude larger
than for gaseous worlds. In the classical equilibrium tidal
theory (Darwin 1880; Goldreich & Soter 1966; Hut 1981;
Jackson et al. 2008b), tidal dissipation is inversely pro-
portional to the “tidal quality factor” Q. For rocky plan-
ets in our Solar System, Qr ∼ 100 (Yoder 1995; Henning
et al. 2009), whereas giants have Qg = 104−107 (Goldre-
ich & Soter 1966; Yoder 1995; Zhang & Hamilton 2008;
Lainey et al. 2012), with a traditional value of 106 (Ra-
sio et al. 1996; Jackson et al. 2008b, 2009). For a typical
star-planet configuration, tides usually damp both or-
bital eccentricity and semi-major axis, hence the different
dissipation rates result in different damping timescales.
In other words, terrestrial planets should circularize more
quickly and/or at larger separations than gaseous plan-
ets. This discrepancy could reveal the value of Rcrit,
and also Qr and Qg, all of which are still poorly con-
strained observationally. I find that the different orbital
evolutions of rocky and gaseous exoplanets should be de-
tectable, but is not apparent in publicly-available Ke-
pler data.
In the next section, I describe the tidal models used in

this study and the expected orbits of exoplanets in the
Kepler field of view. In § 3 I describe how transit data
can constrain eccentricity through the transit duration
and basic orbital mechanics, including an extended dis-
cussion of observational biases. In § 4 I describe how I
produce hypothetical distributions of transiting planets
that undergo tidal evolution. In § 5 I present the results
and compare simulated data to Kepler data. I also ex-
amine the publicly available Kepler data and determine
that the distribution of impact parameters appears to be
inconsistent with isotropic orbits. In § 6 I discuss the
results and finally in § 7 I draw my conclusions.

2. TIDAL THEORY

For my calculations of tidal evolution, I employ “equi-
librium tide” models, originally conceived by Darwin
(1880). This model assumes the gravitational potential
of a perturber can be expressed as the sum of Legendre
polynomials (i.e. surface waves) and that the elongated
equilibrium shape of the perturbed body is slightly mis-
aligned with respect to the line that connects the two
centers of mass, see Fig. 1. This misalignment is due to
dissipative processes within the deformed body and leads
to a secular evolution of the orbit as well as the spin an-
gular momenta of the two bodies. These assumptions
produce 6 coupled, non-linear differential equations, but

note that the model is, in fact, linear in the sense that
there is no coupling between the surface waves which sum
to the equilibrium shape. Considerable research has ex-
plored the validity and subtleties of the equilibrium tide
model (e.g. Hut 1981; Ferraz-Mello et al. 2008; Wisdom
2008; Efroimsky & Williams 2009; Leconte et al. 2010).
For this investigation, I will use the models and nomen-
clature of Heller et al. (2011) and Barnes et al. (2013),
which are summarized below.

Q-1, τ 

Planet

Star

Fig. 1.— Schematic of the position of a planetary tidal bulge due
to a star. Dissipative processes inside the planet prevent the bulge,
marked by the dotted line, from pointing toward the center of the
perturber, shown by the dashed line. Instead the bulge points away
by an angle that is either the inverse of the tidal Q (for the CPL
model), or proportional to the time lag τ (for the CTL model).

2.1. The Constant–Phase–Lag Model

In the “constant-phase-lag” (CPL) model of tidal evo-
lution, the angle between the line connecting the centers
of mass and the tidal bulge is constant. Thus, the planet
responds to the perturber like a damped, driven har-
monic oscillator. The CPL model is commonly used in
planetary studies (e.g. Goldreich & Soter 1966; Green-
berg 2009). Under this assumption, and ignoring the
effect of obliquity, the evolution is described by the fol-
lowing equations
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where e is eccentricity, t is time, a is semi-major axis,
G is Newton’s gravitational constant, M1 and M2 are
the two masses, and R1 and R2 are the two radii. The
quantity Z ′

i is
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i
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where k2,i are the Love numbers of order 2, n is the mean
motion, and Qi are the tidal quality factors. The signs
of the phase lags are
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ε0,i = Σ(2ωi − 2n)
ε1,i = Σ(2ωi − 3n)
ε2,i = Σ(2ωi − n)
ε5,i = Σ(n)
ε8,i = Σ(ωi − 2n)
ε9,i = Σ(ωi) ,

(3)

where ωi is the rotational frequency of the ith body,
which I force to be the equilibrium frequency, 1 + 9.5e2.
Σ(x) is the sign of any physical quantity x, and thus
Σ(x) = + 1,−1, or 0.

2.2. The Constant–Time–Lag Model

The constant-time-lag (CTL) model assumes that the
time interval between the passage of the perturber and
the tidal bulge is a constant value, τ . This assumption
allows the tidal response to be continuous over a wide
range of frequencies, unlike the CPL model. But, if the
phase lag is a function of the forcing frequency, then the
system is no longer analogous to a damped driven har-
monic oscillator. Therefore, this model should only be
used over a narrow range of frequencies, see Greenberg
(2009). Ignoring obliquity, the orbital evolution is de-
scribed by the following equations:
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As in the CPL model, I force the rotational frequency to
equal the equilibrium frequency, which is 1 + 6e2 in the
CTL model.
There is no general conversion between Qp and τp.

Only if e = 0 (and the obliquity is 0 or π), when merely
a single tidal lag angle exists, then

Qp ≈ 1/(2|n− ωp|τp), (8)

as long as n−ωp remains unchanged. Hence, the canon-
ical values of the dissipation parameters for dry, rocky
planets in the Solar System, Q = 100 (Goldreich & Soter
1966) and τ = 638 s (Lambeck 1977), are not necessarily
equivalent. Hence, the results for the tidal evolution will
intrinsically differ among the CPL and the CTL model,
even though both choices are common for the respective
model. While tidal dissipation in super-Earths remains

unconstrained, here I will assume that it is similar to the
rocky bodies in the Solar System.

2.3. Differential Circularization of Super-Earths and
Mini-Neptunes

As described above, most previous research predicts
several orders of magnitude difference in Q or τ between
terrestrial and giant planets. As an example in Fig. 2, I
show the evolution of two planets with different compo-
sitions that formed with identical orbits around identical
stars. The line shows 10 Gyr of CPL tidal evolution of a
2 REarth planet with a density of 1 g/cm3 (i.e. a gaseous
3.8 MEarth mini-Neptune) and a tidal Q of 106 (see e.g.
Goldreich & Soter 1966; Jackson et al. 2008b), while the
filled circles are the orbit of a 2 REarth planet with a
mass of 10 MEarth and a tidal Q of 100 (i.e. a super-
Earth) every 100 Myr. The super-Earth circularizes in
about 1 Gyr; the mini-Neptune barely evolves, even over
10 Gyr. This discrepancy is despite that the equilibrium
tidal models predict evolution scales with planetary mass
– the large difference between the Qs dominates.
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Fig. 2.— Comparison of the tidal evolution of a
2 REarth mini-Neptune (solid line; for 10 Gyr) and
a 2 REarth super-Earth (open squares; in 100 Myr
intervals). Both planets begin with an orbital pe-
riod of 5 days and and eccentricity of 0.2. The mini-
Neptune experiences little orbital evolution, but the
super-Earth circularizes in about 1 Gyr. This dis-
crepancy is due to the 4 orders of magnitude differ-
ence in tidal dissipation between gaseous and rocky
planets.

3. THE TRANSIT DURATION ANOMALY

In this section I review and revise previous work on
the “transit duration anomaly” (TDA), defined here as
the ratio of the observed transit duration to the dura-
tion if the orbit were circular. This parameter has gone
by several names in the literature, such as the “transit
duration deviation” (Kane et al. 2012), and the “pho-
toeccentric effect” (Dawson & Johnson 2012). Here I
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use the name proposed by Plavchan et al. (2012)4, as
in celestial mechanics the term “anomaly” refers to a
parameter’s value relative to pericenter, e.g. the “true
anomaly” is the difference between a planet’s true lon-
gitude and its longitude of pericenter. The analogy is
not perfect, as the TDA is not measured relative to the
duration at pericenter, but rather to the duration due
to a circular orbit. Nonetheless, “anomaly” captures the
fact that the duration is set by the longitude relative to
pericenter, the true anomaly θ, as shown below.
In this section, I first review how the TDA can be used

to determine the minimum eccentricity of an orbit. Then
I review the biases implicit in TDA measurements and
update previous results.

3.1. Determination of the Minimum Eccentricity

Transit data coupled with knowledge of semi-major
axis enable the imposition of a lower bound on the ec-
centricity emin (Jason W. Barnes 2007; Ford et al. 2008).
The determination of emin requires knowledge of both
the physical size of the orbit, as well as a precise deter-
mination of the orbital period P , planetary and stellar
radii (Rp andR∗), and the impact parameter b, see Fig. 3.
If the transit is well-sampled, then these parameters can
be obtained (Mandel & Agol 2002).

Rp
b

D

R✴   

Fig. 3.— Schematic of a planetary transit. The planet has a
radius Rp, and the star R∗. The planet crosses the stellar disk
a projected distance b from disk center. The distance the planet
travels during transit is D, the distance between the center of the
planet at first and fourth contacts.

The transit duration is the time required for a planet
to traverse the disk of its parent star, and to first order
is:

T =
D

vsky
=

2(
√

(R∗ +Rp)2 − b2

vsky
, (9)

where vsky is the azimuthal velocity, i.e. the instanta-
neous velocity of the planet in the plane of the sky. Al-
though several different definitions of the duration are
possible (Kipping 2010), I choose this definition to match
the Kepler public data. On a circular orbit, the az-
imuthal velocity is constant and equal to the orbital ve-

4 Note that Plavchan et al. (2012) define the TDA as the ratio
of the observed duration to that of a planet on an eccentric orbit
that transits the stellar equator.

locity. Therefore the duration for a circular orbit is

Tc =

√

(R∗ +Rp)2 − b2

πa
P, (10)

where P is the orbital period. For an eccentric orbit the
orbital velocity is a function of longitude (Kepler’s 2nd
Law), and is given by

v = vc

√

1 + 2e cos θ + e2

1− e2
, (11)

where e is the eccentricity and vc is the circular velocity.
Finally, from classical mechanics, the azimuthal velocity
is

vsky = vc
1 + e cos θ√

1− e2
. (12)

From transit data alone, the value of θ is unknown, and
hence so is e.
However, one can exploit the difference between T and

Tc to obtain a minimum value of the eccentricity, emin

(Barnes 2007). The situation is somewhat complicated
because T can be larger or smaller than Tc depending on
θ. If the planet is close to apoapse, T > Tc, while near
periapse T < Tc. To derive emin, one must assume that
θ = 0 or π. While the velocity could be larger at some
other position in the orbit, the maximum deviation from
the circular velocity is at least as large as the measured
velocity, and hence e must be at least a certain value. If
I define the TDA as

∆ ≡ T/Tc = vc/vsky =

√
1− e2

1 + e cos θ
, (13)

then

emin =

∣

∣

∣

∣

∆2 − 1

∆2 + 1

∣

∣

∣

∣

(14)

is the minimum eccentricity permitted by transit data.
Several studies invoked the orbital velocity instead of

the sky velocity (e.g. Tingley & Sackett 2005; Burke
2008; Kipping 2010). However, J. W. Barnes (2007) cor-
rectly noted that T is actually a function of the azimuthal
velocity, which equals the orbital velocity at pericenter
and apocenter. For many other studies, the assumed
form of the velocity is unclear. As transits are a photo-
metric phenomenon, unaffected by the component of the
velocity along the line of sight, the projection of the or-
bital velocity into the sky plane, vsky , is the appropriate
choice. This implies that previous studies are only ap-
proximately correct. As I show in the next section, using
vc will only amount to a small error.
The TDA has been used in several studies to constrain

the eccentricity distribution, often with the assumption
that the impact parameter is unknown, as proposed by
Ford et al. (2008). In that case, one can only use those
systems in which T > Tc for a central transit (b = 0)
to estimate emin. Moorhead et al. (2011) analyzed the
first 3 quarters of Kepler data and found that the KOIs
appeared to be consistent with a mean eccentricity near
0.2. They also found that eccentricities appear to be
large regardless of orbital period, and that small planets
tend to have larger eccentricities. More recent work has
failed to determine if the Kepler eccentricity distribution
is consistent with the radial velocity planets (Plavchan
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et al. 2012; Kane et al. 2012). These studies were limited
by the number of known candidates, as well as the rel-
atively poor characterization of the transits themselves.
Note that Kane et al. (2012) used the difference between
T and Tc, rather than the quotient, to model eccentricity.
Dawson & Johnson (2012) demonstrated that in some
cases careful statistical analyses of transit data can pro-
vide constraints on the actual eccentricity, especially if
∆ deviates significantly from unity.

3.2. Observational Biases in the Transit Duration
Anomaly

To further elucidate the TDA, as well as to revisit pre-
vious results that may have invoked an inappropriate def-
inition, in this section I review the geometry and biases
associated with it. In Fig. 4 I show the orbital and and
azimuthal velocities as a function of true anomaly for
three different eccentricities. The differences between the
panels are subtle at low e, but can be significant for large
e.
The vertical lines in Fig. 4 show the values of θ at

which the velocity is equal to the circular velocity. For
the orbital velocity, the longitude where v = vc is given
by

θorbc = ± cos−1(−e) (15)

and for the azimuthal velocity, it lies at

θskyc = ± cos−1
(

√
1− e2 − 1

e

)

. (16)

In Fig. 5, I show schematics for 4 orbits. In all cases an
observer at x = +∞ views the transit such that either
v = vc (left) or vsky = vc (right).
As I am only interested in the azimuthal velocity, for

the remainder of this paper I will assume that θc = θskyc

and drop the superscript. For an eccentric orbit, the
planet travels faster than the circular velocity for θc/π >
0.5 of the orbit. There is therefore an observational bias,
which I will call the “velocity bias,” to observe ∆ < 1
(Tingley & Sackett 2005; Burke 2008; Plavchan et al.
2012). The probability that T < Tc due to this effect is
just

pvel(T < Tc) =
θc
π

(17)

and is shown by the dashed curve in Fig. 6.
The bias toward small ∆ is magnified by the geometri-

cal bias toward transits occurring at smaller star-planet
separations. As shown in J. W. Barnes (2007; see also
Borucki & Summers 1984), the overall transit probability
is

ptransit =
1

4π

2R∗

a(1− e2)

∫ 2π

0

(1 + e cos θ)dθ =
R∗

a(1− e2)
(18)

and the probability to observe the transit when T < Tc

is

pshort =
1

4π

2R∗

a(1− e2)

∫ θc

−θc

(1+e cos θ)dθ =
R∗(θc + e sin θc)

aπ(1 − e2)
,

(19)
and thus the bias toward observing a transit duration
shorter than the circular duration is the ratio of these

two equations,

pduration =
θc + e sin(θc)

π
, (20)

which I will call the “duration bias.” This effect is shown
by the solid curve in Fig. 6, and is the actual likelihood
to observe a transit with T < Tc. As e → 1, it becomes
extremely unlikely to observe a long transit. This effect
can make studies that rely on transit durations longer
than that predicted for a central transit (b = 0) unlikely
to find high eccentricity objects (e.g. Moorhead et al.
2011; Plavchan et al. 2012).
In practice, this bias is not dramatic as most planets

are not on very eccentric orbits. Burke (2008) used ana-
lytic fits to the then-current eccentricity distribution as
determined from radial velocity planets, excluding those
with orbital periods less than 10 days that may be tidally
circularized, to find that the mean value of ∆ should be
0.88. Recall that Burke (2008) used v instead of vsky
in his definition of ∆, thus his mean should be slightly
lower than the actual mean as v ≥ vsky .
To update the expectations of Burke (2008), I recom-

pute the expected distribution of ∆ from radial velocity
planets. In the left panel of Fig. 7, I show the current
distribution of e with the thick gray line5. I exclude those
planets with a > 0.1 AU leaving 362 planets. To evaluate
the expected distribution of ∆, I created 107 synthetic
systems consisting of a star with a radius between 0.7
and 1.4 R⊙, and a planet whose radius I ignored. The
orbit had a = 0.05 AU, an eccentricity distribution given
by the dashed histogram in the left panel of Fig. 7, and
an isotropic distribution of orbits. I then calculated ∆
for all transiting geometries with durations larger than 1
hour and show the resulting ∆ distribution in the right
panel of Fig. 7. As noted, 66% of cases have ∆ < 1, with
a mean value of 0.90. If I instead use the circular veloc-
ity to calculate ∆, I find 68% have ∆ < 1, with a mean
of 0.88, reproducing the Burke (2008) result. The differ-
ence between using vc and vsky to calculate the TDA is
modest for the known radial-velocity-detected planets.

4. METHODOLOGY

In order to determine if the difference in Q values can
permit the identification of Rcrit, I perform Monte Carlo
simulations of both the CPL and CTL models. I then
compare the results to publicly-available Kepler data to
search for the predicted signal.
For my synthetic data, I created 25,000 star-planet

configurations with initial semi-major axes uniformly in
the range [0.01,0.15] AU, planetary radii in the range
[0.5,10] REarth, stellar masses in the range [0.7,1.4] MSun,
a radius in solar radii equal to its mass in solar
masses, and ages in the range [2,8] Gyr. If the plan-
etary radius is less than 2 REarth, then the mass is
(R/REarth)

3.68 MEarth (Sotin et al. 2007), if larger, then
I assume the density is 1 g/cm3, similar to the planets in
the Kepler-11 system (Lissauer et al. 2013). The initial
eccentricity is drawn from the currently observed distri-
bution of distant planets (a > 0.1 AU), see Fig. 7. For
CPL runs I used 30 ≤ Qr ≤ 300, 106 ≤ Qg ≤ 107, and
106 ≤ Q∗ ≤ 107. For CTL runs I used 30 ≤ τr ≤ 300 s,

5 As of 4 June 2013, http://exoplanets.org
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Fig. 4.— Velocity relative to the circular velocity as a function of true anomaly for three different eccentricities. The dotted line shows
the circular velocity. Dashed lines show the values of true anomaly at which the velocity equals the circular velocity. Left: Orbital velocity.
Right: Velocity in the plane of the sky.

Fig. 5.— Locations on an orbit where a velocity is equal to the circular velocity. In all cases, the orbit’s semi-major axis is 1, and the
observer is assumed to be located at x = +∞, as shown by the dashed line. The longitude of periastron is shown by the dotted line. In
each panel the eccentricity is listed, as is one of the values of the true anomaly at which the velocity is circular. In all cases, the orbit is
rotated so that that longitude, θc, lies on the +x-axis. Left: The total velocity of the planet is equal to the circular velocity when it crosses
the +x axis. In these cases, the observer will see transit durations longer than that from an identical planet on a circular orbit. Right:
The azimuthal velocity is equal to the circular velocity when it crosses the +x axis. In these cases, an observer will see a transit duration
equal to that of an identical planet, but on a circular orbit, i.e. emin = 0.
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Fig. 6.— Probability of detecting a transit duration
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0.003 ≤ τg ≤ 0.03 s, and 0.001 ≤ τ∗ ≤ 0.01 s. I then
integrated the system forward for the randomly chosen
age and assumed I observed the system in that final con-
figuration. In order to calculate emin, I choose a random
value for θ that represents the direction of the observer,
and an inclination i chosen uniformly in cos i, with imea-
sured from the plane of the sky. I then calculate the
separation between the star and planet using

r =
a(1− e2)

1 + e cos θ
(21)

and determine the impact parameter, b = r tan(π/2 −
i). If b < R∗, then the planet transits, and I calculate
the transit duration. As pointed out in Burke (2008),
short transit durations can be missed, and I therefore
throw out transit durations that are less than 1 hour,
which is the approximate minimum duration detectable
by Kepler. The vast majority of the rejected transits are
too short due to a large impact parameter, however a
few are due to large eccentricity and alignment of the
longitude of pericenter with the line of sight. Thus, my
estimates of the minimum eccentricity distribution are
slightly biased toward lower values. From the remaining
transits, I calculate the TDA and emin using Eqs. (12–
14).
I also compute emin for Kepler candidates that have

all the requisite parameters presented in Kepler Planet
Candidate Data Explorer6 (see also Batalha et al. 2013).
These data do not contain error bars and assuredly con-
tain some false positive, but the data set is uniform and
sufficient for this proof of concept. I limit my sample

6 http://planetquest.jpl.nasa.gov/kepler

to those with orbital periods less than 15 days, but will
refer to this subsample as the “Kepler sample” in the
upcoming sections.

5. RESULTS

5.1. Tides and the Minimum Eccentricity

I begin by considering an intermediate step: In Fig. 8, I
show the average final eccentricity of my simulated plan-
ets as a function of planetary radius, Rp, and orbital pe-
riod, P . The paucity of eccentric orbits at low Rp and P
shows the more effective circularization of rocky bodies.
Furthermore, I can see the features that correspond di-
rectly to three parameters that are currently very poorly
constrained: Rcrit via the rapid rise in < e > at the
imposed value of 2 REarth; Qg (τg) via the rapid rise in
< e > at 1 day above 2 REarth; and Qr (τr) via the rise
over 2–10 days and below 2 REarth. Thus, despite the
order of magnitude uncertainty I gave to each physical
parameter, the large discrepancy between Qr (τr) and
Qg (τg) does result in an important difference in the ex-
pected orbits of close-in planets of FGK stars. For the
CTL model, 1,955 planets merged with the star during
the integrations; 1,118 for CPL (see Jackson et al. 2009;
Levrard et al. 2009).
Next I calculate the average minimum eccentricity

< emin > for transiting geometries of simulated rocky
and gaseous planets in 0.5 day orbital period intervals
and plot < emin > as a function of orbital period for dif-
ferent radii as solid lines in Fig. 9. For the CTL model,
I obtained 2,127 observable transits, and for CPL 2,151,
about twice as many planets as in the same period range
as the Kepler sample. Note that my synthetic data do
not share several properties of the Kepler data, such as
the planetary radius and period distributions. For both
the CTL (left) and CPL (right) models, the trends are
the same. For R < Rcrit, < emin >∼ 0 up to about
a 4–5 day period. However, for larger radii, circular
orbits are only guaranteed for periods less than about
1.5–2 days. The rocky and gaseous distributions become
about equal at P = 13 days, albeit with considerable
scatter. At large orbital periods, the simulated data be-
come sparser as the transit probability is dropping (pro-
ducing the apparent oscillations in < emin >), and those
that do transit are more likely to be near pericenter of an
eccentric orbit, causing the secular growth in < emin >
with period. Note that similar variations are present in
the Kepler sample.
Figure 9 also contains the values of emin provided by

the Kepler team as squares. Solid squares correspond
to Rp < Rcrit, open to Rp > Rcrit. Nearly all the
observed data are above the predictions, in agreement
with the results of Moorhead et al. (2011). Therefore,
it does not appear that there is any signal of tidal evo-
lution in the Kepler data, regardless of orbital period!
This result is in stark contrast to radial velocity data
that show clear signs of circularization at small P (e.g.
Butler et al. 2006). Moreover, the average eccentricity in
the Butler et al. catalog is ∼ 0.25, which is lower than
the vast majority of minimum eccentricities derived from
Kepler transits in this study. As the radial velocity data
are older and have been reproduced by multiple teams,
the Kepler data are more likely to be incorrect. In the
next section I describe several plausible explanations for



8

0.0 0.2 0.4 0.6 0.8 1.0
Eccentricity

0.00

0.05

0.10

0.15

0.20
P

(e
cc

en
tr

ic
ity

)

Simulated
Observed

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.0 0.5 1.0 1.5 2.0 2.5
∆

0.00

0.05

0.10

0.15

0.20

0.25

P
(∆

)
66% 34%

Fig. 7.— Left: Eccentricity distribution of exoplanets. The solid gray line is the observed distribution (with bin size 0.05) of 362 radial
velocity exoplanets with a > 0.1 AU from exoplanets.org as of 4 June 2013. The dashed line is the distribution used in this study. Right:
The transit duration anomaly expected from the simulated data set assuming a random viewing geometry and that the transit duration is
set by the azimuthal velocity, Eq. (12).

the discrepancy.

5.2. A Closer Look at the Kepler Sample

The lack of evidence of tidal evolution in the KOIs sug-
gests there is an issue with the interpretation of the light
curves. In this section I examine several features of the
Kepler sample and conclude that the data suffer from a
systematic bias. As described in Batalha et al. (2013),
transits are fit to the geometric, limb-darkened transit
model of Mandel & Agol (2002). This model can de-
termine planetary radius and impact parameter, as well
as other parameters that are not relevant to the current
study. The publicly-available data are long cadence, and
hence the transits are not well-sampled. This sparse sam-
pling is most likely to affect the impact parameter, as the
shape of the transit is crucial to its estimation. Below I
show that the impact parameters do indeed appear to be
suspicious.
A partial list of the Kepler data used in this study is

shown in Table 1, with the full table available in the sup-
plementary material7. In Fig. 10 I plot ∆ as a function of
orbital period in the left panel. Although no trends are
present, it does appear that most values of ∆ are greater
than 1. In the right panel I bin the ∆ values to confirm
this impression. This distribution cannot be explained
by orbital mechanics and isotropic orbits which predict
that ∆ distributions can only be biased toward ∆ < 1.

7 http://www.astro.washington.edu/users/rory/publications/Barnes14.table1.

Instead I find 78% of KOIs have ∆ > 1, with a mean
value of 1.38.
To search for the source of this discrepancy, I con-

sidered relationships among the parameters that per-
mit the calculation of emin. The durations increase
monotonically with the orbital period, albeit with sig-
nificant scatter, as expected (Kane et al. 2012). Several
studies have pointed out systematic errors in the stellar
characterization (Dressing & Charbonneau 2013; Everett
et al. 2013). In particular, Everett et al. (2013) stud-
ied 220 Kepler host stars and found the vast majority
have larger radii than reported by the Kepler team, and
that one-quarter are 35% larger than suggested by the
Kepler team. Since ∆ ∝ R−1

∗ , such a revision could
significantly lower ∆ and potentially resolve the discrep-
ancy. Since they “only” examined 220 host stars, some
of which are not known to host a close-in planet, I do not
include their results here, so that my analysis is kept to
a uniform sample.
Perhaps the biggest inconsistency in the Kepler data

lies in the impact parameter, see Fig. 11. The distribu-
tion predicted by the radial velocity exoplanets beyond
the reach of tides is shown with the dashed histogram
and is taken from the same sample that produced the
right panel of Fig. 7. It is approximately flat, with the
slight rise toward small values due to isotropically dis-
tributed orbits favoring edge-on geometries. Instead, the
Kepler sample, shown by the solid line, rises sharply to
large values of b. This distribution hints that a system-
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Table 1. Properties of Short Period KOIs

KOI a (AU) P (d) T (hr) Rp (REarth) R∗ (RSun) b Tc (hr) ∆ emin

1.01 0.036 2.471 1.732 14.42 1.06 0.822 1.984 0.873 0.135
2.01 0.039 2.205 3.877 22.29 2.71 0.128 5.810 0.667 0.384
3.01 0.052 4.888 2.368 4.67 0.74 0.029 2.612 0.907 0.098
4.01 0.056 3.849 2.928 11.79 2.60 0.946 2.764 1.059 0.058
5.01 0.058 4.780 2.012 5.65 1.42 0.951 1.716 1.172 0.158
5.02 0.075 7.052 3.688 0.66 1.42 0.750 3.169 1.164 0.151
7.01 0.044 3.214 4.111 3.72 1.27 0.714 2.431 1.691 0.482
10.01 0.047 3.522 3.198 15.88 1.56 0.640 3.682 0.869 0.140
17.01 0.045 3.235 3.602 11.06 1.08 0.029 3.015 1.195 0.176
18.01 0.052 3.548 4.081 17.37 2.02 0.006 5.282 0.773 0.252
20.01 0.056 4.438 4.671 17.58 1.38 0.018 4.338 1.077 0.074
...

atic error may be present in the Kepler analysis, which
manifests itself in my analysis into large values of ∆ and
emin. I conclude that the currently available Kepler data
produce unreliable values of b and hence emin.

6. DISCUSSION

My simulated data show that Rcrit is identifiable in
transit data due to the difference in the tidal Qs of
gaseous and rocky bodies, at least for my idealized model
of exoplanetary properties. My analysis is somewhat cir-
cular as I split the data in Fig. 9 on the selected value
of Rcrit. In reality, its value is unknown and must be
searched for. However, given the large and approxi-
mately equal values of < emin > in the Kepler data,

I did not perform that search. More accurate data are
needed, and may be available as KOI parameters are re-
fined. Resolution of transit ingress and egress may be
possible with short cadence data (which are unpublished
but assuredly a small fraction of the total number of
KOIs), or by folding the hundreds of transits together
(e.g. Jackson et al. 2013), potentially rectifying the dis-
cordance between the Kepler and radial velocity data.
In order to accurately determine the minimum eccen-

tricities, one needs both reliable information for both R∗

and b, but they are not yet available. Although subsets
of more reliable data are available for the former (e.g.
Everett et al. 2013), the transit fits are still plagued by
inaccurate calculations of the impact parameter. De-
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termination of the impact parameters in short cadence
data or by folding would require a new and comprehen-
sive analysis of those light-curves and is beyond the scope
of this study. After those data have been properly an-
alyzed, the technique described in this study should be
re-applied in order to determine Rcrit, Qg, and Qr.
Aside from systematic errors in the analysis of the

light curves, physical effects can also impact the value
of < emin >. First, I note that additional companions
can pump eccentricity through mutual gravitational in-
teractions, even if tidal damping is ongoing (Mardling &
Lin 2002; Bolmont et al. 2013). Therefore one must be
cautious when interpreting Fig. 9, as additional compan-
ions, both seen and unseen, can maintain non–zero ec-
centricities. However, Bolmont et al. (2013) showed that
planet–planet interactions cannot maintain the eccentric-
ity of the hot super-Earth 55 Cnc e above 0.1. That sys-
tem is particularly relevant as there are many close–in
planets orbiting a typical G dwarf. Therefore, I conclude
that eccentricity pumping can be significant, but cannot
explain the discrepancy between the observed and sim-
ulated systems shown in Fig. 9. This analysis should
be revisited when all the Kepler data become available
and all issues with host star characterization have been
resolved.
Another possibility is that stellar winds and activ-

ity can strip an atmosphere, reducing the mass and ra-
dius, and potentially changing the planet from a mini–

Neptune to a super–Earth (Jackson et al. 2010; Valencia
et al. 2010; Leitzinger et al. 2011; Poppenhaeger et al.
2012). Recently, Owen & Wu (2013) argued that the Ke-
pler sample is consistent with hydrodynamic mass loss,
and that some low–mass planets could have formed with
substantially more mass. Mass loss should increase the
time to circularize the orbit, assuming the radius doesn’t
become very large, which is unlikely after about 100 Myr
(Lopez et al. 2012). Therefore, mass loss could stall
circularization for mini–Neptunes, but not for super–
Earths. Although few radial velocity measurements exist
for planets with radii less than ∼ 1.5 REarth, they have
densities consistent with silicate compositions (Batalha
et al. 2011). Thus, mass loss seems unlikely to explain
the differences seen for the smallest candidates in the
Kepler field.
Radial inflation by irradiation (e.g. Lopez et al. 2012)

or tidal heating (Bodenheimer et al. 2001; Jackson et al.
2008c; Ibgui & Burrows 2009) also work to decrease e
since the evolution scales as R5

p. Hence, bloated planets
should be found on circular orbits, but no such trend is
observed in the Kepler candidates.
In this study I used two qualitatively different equilib-

rium tidal models and standard assumptions for dissipa-
tion. However different tidal models have been proposed
(e.g. Ogilvie & Lin 2004; Henning et al. 2009; Socrates
et al. 2012; Makarov & Efroimsky 2013) and could be ap-
plied to this problem. However, the trend I predict here
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expected distribution of the radial velocity exoplanets
with no tidal circularization is shown by the dashed
line. The short-period KOIs tend to have large im-
pact parameters.

holds unless the dissipation rates in gas giants and rocky
planets are within 1–2 orders of magnitude of each other,
rather 4–6. Recently, Storch & Lai (2013) have proposed

just such a model in which all tidal dissipation in gas
giants occurs in a rocky core. Should all planets show
the same trend in emin, then that would be evidence in
support of their model. Hence, even if the expectations
laid out above prove to be incorrect, some tidal models
could be rejected by the methodology used in this study.
I have focused on transiting planets, but an analogous

study could be applied to radial velocity data. Those
data may be more amenable to such a study as orbital
eccentricity is a direct observable. The problem lies in
the low reflex velocities induced by the small planets as
well as the ambiguity in mass due to the mass-inclination
degeneracy. Nonetheless, with enough objects and an
accounting for the expected isotropy of orbits, it may be
possible to determine tidal dissipation as a function of
mass in radial velocity data.
The Kepler spacecraft was designed to discover a po-

tentially habitable planet orbiting a solar-like star. Such
a planet (mp <∼10 MEarth; rp <∼2 REarth; P ≈ 1 year)
would have an undetectable radial velocity signature,
preventing a direct mass measurement. Thus, confirma-
tion of that planet’s rocky nature is daunting. However,
Kepler data may also hold the key to a convincing solu-
tion to the problem, as shown in this study. The distribu-
tion of TDAs in conjunction with tidal theory suggests
the value of Rcrit may be calculated from the close-in
planets. Although these planets are not habitable, they
may provide crucial information to assess the habitability
of Earth-like planets that transit Sun-like stars.
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7. CONCLUSIONS

I have shown that the expected difference in tidal dissi-
pation between gaseous and terrestrial exoplanets should
lead to tidal circularization at different orbital distances.
I have also shown how transit data, namely the transit
duration anomaly, can be used to determine the critical
radius between gaseous and terrestrial planets. More-
over, an analysis of emin can also constrain the tidal
dissipation in exoplanets, an understanding of which is
sorely needed. Using standard values for tidal parame-
ters and the critical radius, I find that a large ensemble
of transit data should identify the critical radius between
rocky and gaseous exoplanets. My analysis of available
Kepler data reveals that the theoretical expectations are
not met. However, this discrepancy cannot be used to
refute the hypothesis because the values of < emin >
are inconsistent with radial velocity detected exoplanets,
particularly where tidal damping has been observed.
I have also reviewed the derivation of the TDA, as well

as the known biases toward small values. Previous stud-
ies have advocated different choices for the velocity of
the transiting planet as a function of true anomaly. The
transit duration is actually determined by the azimuthal
velocity, which is the velocity in the sky plane (Eq. [12]).
While it is not clear in all previous studies which velocity
was used, those that used the orbital velocity will obtain
slightly smaller expected values of ∆. I find that the cur-
rent distribution of exoplanet eccentricities predicts that
66% of transit durations should be less than Tc, with a
mean and mode of 0.9. In contrast, 78% of short-period
KOIs have durations greater than Tc with a mean of 1.38.
This distribution is inconsistent with celestial mechanics

and the expectation isotropic orbits, regardless of tidal
damping.
As the Kepler data are refined, or as new data,

e.g. from the TESS mission arrive, this hypothesis should
be revisited. The value of Rcrit is crucial for the in-
terpretation of the habitability of transiting Earth-sized
planets orbiting Sun-sized stars. Moreover, planets in
the habitable zones of M dwarfs are susceptible to tidal
effects (Dole 1964; Kasting et al. 1993; Jackson et al.
2008a; Heller et al. 2011; Barnes et al. 2013), so a de-
termination of Q for terrestrial exoplanets is also crucial
to assessing habitability of planets such as those orbit-
ing Gl 581 (Udry et al. 2007; Mayor et al. 2009; Vogt
et al. 2010) and Gl 667C (Anglada-Escudé et al. 2012;
Bonfils et al. 2013; Anglada-Escudé et al. 2013). As mis-
sions like Kepler and TESS have been designed to find
potentially habitable worlds, the determination of Rcrit

through their data alone would be an important step
forward in determining the occurrence rate of terrestrial
planets in the HZ.
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Léger, A., Rouan, D., Schneider, J., et al. 2009, Astro. &

Astrophys., 506, 287
Leitzinger, M., Odert, P., Kulikov, Y. N., et al. 2011,

Planet. Space Sci., 59, 1472
Levrard, B., Winisdoerffer, C., & Chabrier, G. 2009, ApJ, 692, L9
Lissauer, J. J., Hubickyj, O., D’Angelo, G., & Bodenheimer, P.

2009, Icarus, 199, 338
Lissauer, J. J., Fabrycky, D. C., Ford, E. B., et al. 2011, Nature,

470, 53
Lissauer, J. J., Jontof-Hutter, D., Rowe, J. F., et al. 2013, ApJ,

770, 131
Lopez, E. D., Fortney, J. J., & Miller, N. 2012, ApJ, 761, 59
Makarov, V. V., & Efroimsky, M. 2013, ApJ, 764, 27
Mandel, K., & Agol, E. 2002, ApJ, 580, L171
Mardling, R. A., & Lin, D. N. C. 2002, Astrophys. J., 573, 829
Mayor, M., Bonfils, X., Forveille, T., et al. 2009, A&A, 507, 487
Militzer, B., Hubbard, W. B., Vorberger, J., Tamblyn, I., &

Bonev, S. A. 2008, ApJ, 688, L45
Moorhead, A. V., Ford, E. B., Morehead, R. C., et al. 2011,

ApJS, 197, 1
Movshovitz, N., Bodenheimer, P., Podolak, M., & Lissauer, J. J.

2010, Icarus, 209, 616
Ogilvie, G. I., & Lin, D. N. C. 2004, ApJ, 610, 477
Owen, J. E., & Wu, Y. 2013, ApJ, 775, 105

Plavchan, P., Bilinski, C., & Currie, T. 2012, ArXiv e-prints,
arXiv:1203.1887

Pollack, J. B., Hubickyj, O., Bodenheimer, P., et al. 1996, Icarus,
124, 62

Poppenhaeger, K., Czesla, S., Schröter, S., et al. 2012, A&A, 541,
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