
High-Resolution Finite Volume Methods with
Application to Volcano and Tsunami Modeling

Randall J. LeVeque
Department of Applied Mathematics

University of Washington

Supported in part by NSF, DOE



Outline

• Volcanic flows, ash plumes, pyroclastic flow

• Tsunami modeling, shallow water equations

• Finite volume methods for hyperbolic equations

• Conservation laws and source terms
• Riemann problems and Godunov’s method

• Wave propagation form

• Wave limiters and high-resolution methods

• Software: CLAWPACK



Some collaborators

Algorithms, software
Marsha Berger, NYU
Donna Calhoun, UW
Phil Colella, UC-Berkeley
Jan Olav Langseth, Oslo
Sorin Mitran, UNC
James Rossmanith, Michigan
Derek Bale, eV Products

Tsunamis
David George, UW
Harry Yeh, OSU

Volcanos
Marica Pelanti, UW
Roger Denlinger, USGS CVO
Dick Iverson, USGS CVO
Alberto Neri, Pisa
T. E. Ongaro, Pisa

Supported in part by NSF and the DOE SciDAC program



Marica Pelanti, Donna Calhoun, Joe Dufek, and David George

at Mount St. Helens



Volcanic flows

• Flow of magma in conduit
• Little dissolved gas =⇒ lava flows
• Dissolved gas expansion =⇒ phase transition, ash jet
• Ash plumes, Plinian columns
• Collapsing columns, pyroclastic flows or surges
• Lahars (mud flows)
• Debris flows



Volcanic Ash Plumes



Pyroclastic Flows



I. Pyroclastic dispersion dynamics of pressure-balanced eruptions

Influence of the diameter Dv and the exit velocity vv

Regions of different types of eruption columns
(Neri–Dobran, 1994).

Characteristic features of a
collapsing column.



Pyroclastic dispersion dynamics

Vent conditions and physical properties [Neri–Dobran, 1994]:

pv Tv αdv d ρd

[MPa] [K] [µm] [kg/m3]

0.1 1200 0.01 10 2300

Gas and dust in thermal and mechanical equilibrium at the vent.

Test 1. Dv = 100 m, vv = 80 m/s . → Collapsing volcanic column

Test 2. Dv = 100 m, vv = 200 m/s. → Transitional/Plinian column



Numerical Experiments

Injection of a hot supersonic particle-laden gas
from a volcanic vent into a cooler atmosphere.

? Initially: Standard atmosphere vertically stratified in pressure
and temperature all over the domain;

? At the vent: Gas pressure, velocities, temperatures, volumetric
fractions of gas and dust assumed to be fixed and constant;

? Ground boundary: modeled as a free-slip reflector;

? Other boundaries:
2D experiments: Axisymmetric configuration. Symmetry
axis: free-slip reflector; Upper and right-hand edges of the
domain: free flow boundaries (all the variables gradients set
to zero).
Fully 3D experiments: Upper and lateral sides: free-flow
boundaries.



Dv = 100m, vv = 80m/s. Collapsing column.
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Physical Model

Two-phase fluid flow composed of solid particles (dust) in a gas.

Gas phase: compressible;
Dust phase: incompressible (constant microscopic mass density ρd).

Dust particles are assumed to be dispersed (vol. fraction αd � 1),
with negligible particle-particle interaction. The solid phase is thus
considered pressureless.

Model accounts for:

• Gravity;
• Interphase drag force;
• Interphase heat transfer.

Some of the neglected phenomena: viscous stress, turbulence.



Model Equations

Conservation of mass, momentum, and energy for gas and dust

ρt + ∇ · (ρug) = 0 ,

(ρug)t + ∇ · (ρug ⊗ ug + pI) = ρg − D(ug − ud) ,

Et + ∇ · ((E + p)ug) = ρug · g − D(ug − ud) · ud − Q(Tg − Td) ,

βt + ∇ · (βud) = 0 ,

(βud)t + ∇ · (βud ⊗ ud) = βg + D(ug − ud) ,

Ωt + ∇ · (Ωud) = βud · g + D(ug − ud) · ud + Q(Tg − Td) .

αg , αd = volume fractions (αg + αd = 1, αd � 1);

ρg , ρd = material mass densities (ρd = const.); ρ = αgρg , β = αdρd = macroscopic densities;

ug , ud = velocities; pg = gas pressure, p = αgpg ;

eg , ed = specific total energies, E = αgρgeg , Ω = αdρded;

eg = εg + 1

2
||ug ||2, ed = εd + 1

2
||ud||

2; εg , εd = specific internal energies; Tg , Td = temperatures;

g = (0, 0,−g) = gravity acceleration (z direction), g = 9.8m/s2;
D = drag function; Q = heat transfer function.



Closure Relations

Gas equation of state: pg = (γ − 1)ρgεg , γ = cpg/cvg = const.;

Dust energy relation: εd = cvdTd , cvd = const.;

Drag

D =
3

4
Cd

βρ

ρdd
||ug − ud|| ,

d = dust particle diameter, Cd = drag coefficient,

Cd =







24

Re

(

1 + 0.15Re0.687
)

if Re < 1000 ,

0.44 if Re ≥ 1000 ,

Re = Reynolds number =
ρ d||ug−ud||

µ
, µ = dynamic viscosity of the gas.

Heat transfer

Q =
Nu 6κgβ

ρdd2
,

Nu = Nusselt number = 2 + 0.65Re1/2Pr1/3, Pr = Prandtl number =
cpgµ

κg
,

κg = gas thermal conductivity.



Shock structure in a supersonic jet



Overpressured jet: Mach number and normal Mach number at t = 30 s.

No crater →

Crater 30◦ →

Normal Mach number of the mixture
(to highlight normal discontinuities)

Mm =
um · ∇pg

cm||∇pg ||
,

c2m =
ρgc2g

αgρm
, cg =

√

RTg ,

um =
αgρgug + αdρdud

ρm
,

ρm = αgρg + αdρd .



Comparison: CLAWPACK vs. PDAC2D (Neri–Ongaro, INGV, Pisa, Italy).

No crater Crater 30◦

Dust density at at t = 10 and 20 s.



Mount St. Helens



Blast zone at Mount St. Helens



Trees blown down by MSH blast

http://volcanoes.usgs.gov/Hazards/Effects/MSHsurge_effects.html



Mount St. Helens



High-pressure initial blast



AMR computation



Volcanic Debris Flow



Volcanic Debris Flow



Test flume studies

Cascade Volcano Observatory (CVO), Vancouver, Washington

http://vulcan.wr.usgs.gov/



Sand flume with topography

Recent results of Dick Iverson and Roger Denlinger, CVO

Experiments on small-scale sand flume with topography.

Compared to predictions from shallow-flow Savage-Hutter type
model for granular avalanches.

Coulomb friction for shear and normal stresses on internal and
bounding surfaces.

Finite-volume wave propagation method using finite element
computation of stresses in Riemann solver.

Flow over steep topography.



Sand flume with topography



Sand on a flume with topography



Tsunamis

Generated by
• Earthquakes,
• Landslides,
• Submarine landslides,
• Volcanos,
• Meteorite or asteroid impact

• Small amplitude in ocean (< 1 meter) but can grow to
10s of meters at shore.

• Run-up along shore can inundate 100s of meters inland
• Long wavelength (as much as 200 km)

• Propagation speed
√
gh

• Average depth of Pacific is 4km =⇒ average speed 200 m/s
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1993 Okushiri tsunami

http://www.pmel.noaa.gov/tsunami/aerial_photo_okushiri.html



Catalina Workshop — June, 2004

3rd Int’l workshop on long-wave runup models

Benchmark Problem 2:



Shallow water equations with topography B(x, y)

ht + (hu)x + (hv)y = 0

(hu)t +

(

hu2 +
1

2
gh2

)

x

+ (huv)y = −ghBx(x, y)

(hv)t + (huv)x +

(

hv2 +
1

2
gh2

)

y

= −ghBy(x, y)

Applications:

• Tsunamis
• Estuaries
• River flooding, dam breaks

• Debris flows from volocanic eruptions



Frame 11



Frame 26



Frame 41



Frame 56



Channel 5
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Hyperbolic Partial Differential Equations

Model advective transport or wave propagation

Advection equation:
qt + uqx = 0, qt + uqx + vqy = 0

First-order system:
qt + Aqx = 0, qt + Aqx +Bqy = 0

where q ∈ lRm and A,B ∈ lRm×m.

Hyperbolic if

1D: A is diagonalizable with real eigenvalues,
2D: cos(θ)A+ sin(θ)B is diagonalizable with real

eigenvalues, for all angles θ.

Eigenvalues give wave speeds, eigenvectors the wave forms.



Nonlinear conservation laws

qt + f(q)x = 0, where f(q) is the flux function.

Quasi-linear form: qt + f ′(q)qx = 0.

Hyperbolic if f ′(q) is diagonalizable with real eigenvalues.

Eigenvalues depend on solution

=⇒ characteristics may converge.

=⇒ Shock formation and discontinuous solutions.



Finite-difference Methods

• Pointwise values Qn
i ≈ q(xi, tn)

• Approximate derivatives by finite differences
• Assumes smoothness

Finite-volume Methods

• Approximate cell averages: Qn
i ≈ 1

∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx

• Integral form of conservation law,

∂

∂t

∫ xi+1/2

xi−1/2

q(x, t) dx = f(q(xi−1/2, t)) − f(q(xi+1/2, t))

leads to conservation law qt + fx = 0 but also directly to
numerical method.



Finite volume method

Qn
i ≈ 1

∆x

∫ xi+1/2

xi−1/2
q(x, tn) dx

Integral form:
∂

∂t

∫ xi+1/2

xi−1/2

q(x, t) dx = f(q(xi−1/2, t)) − f(q(xi+1/2, t))

PSfrag replacements

Qn
i−1

Qn
i

Qn+1
i

Qn
i+1

F n
i−1/2

F n
i+1/2

tn

tn+1

Numerical method: Qn+1
i = Qn

i − ∆t

∆x
(F n

i+1/2 − F n
i−1/2)

Numerical flux: F n
i−1/2 ≈ 1

∆t

∫ tn+1

tn

f(q(xi−1/2, t)) dt.



The Riemann problem

The Riemann problem for qt + f(q)x = 0 has special initial data

q(x, 0) =

{

ql if x < xi−1/2

qr if x > xi−1/2

Dam break problem for shallow water equations



The Riemann problem

The Riemann problem for qt + f(q)x = 0 has special initial data

q(x, 0) =

{

ql if x < xi−1/2

qr if x > xi−1/2

Dam break problem for shallow water equations



The Riemann problem

The Riemann problem for qt + f(q)x = 0 has special initial data

q(x, 0) =

{

ql if x < xi−1/2

qr if x > xi−1/2

Dam break problem for shallow water equations



The Riemann problem

The Riemann problem for qt + f(q)x = 0 has special initial data

q(x, 0) =

{

ql if x < xi−1/2

qr if x > xi−1/2

Dam break problem for shallow water equations



The Riemann problem

The Riemann problem for qt + f(q)x = 0 has special initial data

q(x, 0) =

{

ql if x < xi−1/2

qr if x > xi−1/2

Dam break problem for shallow water equations



Riemann solution for the SW equations
PSfrag replacements
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Godunov’s method

Qn
i defines a piecewise constant function

q̃n(x, tn) = Qn
i for xi−1/2 < x < xi+1/2

Discontinuities at cell interfaces =⇒ Riemann problems.

PSfrag replacements
tn

tn+1

Qn
i

Qn+1
i

q̃n(xi−1/2, t) ≡ q∨
|
(Qi−1, Qi) for t > tn.

F n
i−1/2 =

1

∆t

∫ tn+1

tn

f(q∨
|

(Qn
i−1, Q

n
i )) dt = f(q∨

|

(Qn
i−1, Q

n
i )).



Riemann solution for the SW equations
PSfrag replacements
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The Roe solver uses the solution to a linear system

qt + Âi−1/2qx = 0, Âi−1/2 = f ′(qave).

All waves are simply discontinuities.

Typically a fine approximation if jumps are approximately correct.



Wave decomposition for shallow water

q =
[

h
hu

]

, f(q) =

[

hu
hu2 + 1

2
gh2

]

Jacobian: f ′(q) =

[

0 1
gh− u2 2u

]

Eigenvalues: λ1 = u−
√
gh, λ2 = u+

√
gh,

Eigenvectors: r1 =

[

1
u−

√
gh

]

, r2 =

[

1
u+

√
gh

]

Wave decomposition:

Qi −Qi−1 =
m

∑

p=1

αp
i−1/2r

p ≡
m

∑

p=1

Wp
i−1/2.



Challenges for tsunami modeling

Want robust method with high resolution corrections that “captures”
moving shoreline location

Need robust dry state Riemann solver

Modified HLLE solver that avoids negative h

Bottom bathymetry / topography

Source term incorporated into Riemann solver

f-wave formulation for qt + f(q)x = ψ(q):

Split f(Qi) − f(Qi−1) − ∆xΨi−1/2 =
∑

p β
p
i−1/2r

p
i−1/2



Wave-propagation viewpoint

For linear system qt + Aqx = 0, the Riemann solution consists of

waves Wp propagating at constant speed sp.

PSfrag replacements

s2∆t

W1
i−1/2

W1
i+1/2

W2
i−1/2

W3
i−1/2

Qi −Qi−1 =
m

∑

p=1

αp
i−1/2r

p ≡
m

∑

p=1

Wp
i−1/2.

Qn+1
i = Qn

i − ∆t

∆x

[

s2W2
i−1/2 + s3W3

i−1/2 + s1W1
i+1/2

]

.



Upwind wave-propagation algorithm

Qn+1
i = Qn

i − ∆t

∆x

[

m
∑

p=1

(sp
i−1/2)

+Wp
i−1/2 +

m
∑

p=1

(sp
i+1/2)

−Wp
i+1/2

]

where
s+ = max(s, 0), s− = min(s, 0).

Note: Requires only waves and speeds.

Applicable also to hyperbolic problems not in conservation form.

Conservative if waves chosen properly,
e.g. using Roe-average of Jacobians.

Great for general software, but only first-order accurate (upwind).



Wave-propagation form of high-resolution method

Qn+1
i = Qn

i − ∆t

∆x

[

m
∑

p=1

(sp
i−1/2)

+Wp
i−1/2 +

m
∑

p=1

(sp
i+1/2)

−Wp
i+1/2

]

− ∆t

∆x
(F̃i+1/2 − F̃i−1/2)

Correction flux:

F̃i−1/2 =
1

2

Mw
∑

p=1

|sp
i−1/2|

(

1 − ∆t

∆x
|sp

i−1/2|
)

W̃p
i−1/2

where W̃p
i−1/2 is a limited version of Wp

i−1/2.



CLAWPACK

http://www.amath.washington.edu/˜claw/

• Fortran codes with Matlab graphics routines.
• Many examples and applications to run or modify.
• 1d, 2d, and 3d.
• Adaptive mesh refinement.

User supplies:
• Riemann solver, splitting data into waves and speeds

(Need not be in conservation form)

• Boundary condition routine to extend data to ghost cells
Standard bc1.f routine includes many standard BC’s

• Initial conditions — qinit.f



Adaptive Mesh Refinement (AMR)

• Berger / Oliger / Colella
• Flag cells needing refinement
• Cluster into rectangular

patches
• Refine in time also on patches
• Software:

AMRCLAW (Berger, RJL)
CHOMBO (Colella, et.al.)
CHOMBO-CLAW (Calhoun)
BEARCLAW (Mitran)
AMROC (Deiterding)



Some other applications
• Acoustics, ultrasound, seismology
• Elasticity, plasticity, soil liquifaction
• Flow in porous media, groundwater contamination
• Oil reservoir simulation
• Geophysical flow on the sphere
• Chemotaxis and pattern formation
• Multi-fluid, multi-phase flows, bubbly flow
• Streamfunction–vorticity form of incompressible flow
• Projection methods for incompressible flow
• Combustion, detonation waves
• Astrophysics: binary stars, planetary nebulae, jets
• Magnetohydrodynamics, plasmas
• Relativistic flow, black hole accretion
• Numerical relativity — gravitational waves, cosmology



Summary and extensions

• Applications to geophysical flows

• Scientific enquiry and hazard mitigation

• General formulation of high-resolution finite volume methods

• Applies to general conservation laws and nonconservative
hyperbolic problems

• F-wave formulation for spatially varying fluxes and source
terms

• Multi-dimensional extensions
• Adaptive mesh refinement

• CLAWPACK Software:

http://www.amath.washington.edu/˜claw
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