Immersed Interface Methods for Fluid Dynamics Problems

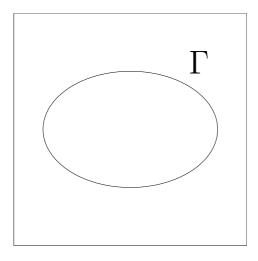
Randall J. LeVeque Department of Applied Mathematics University of Washington

> Joint work with Zhilin Li, NCSU Long Lee, UNC

Supported in part by NSF, DOE

Incompressible Navier-Stokes

$$u_t + (u \cdot \nabla)u + \nabla p = \mu \nabla^2 u + f$$
$$\nabla \cdot u = 0$$



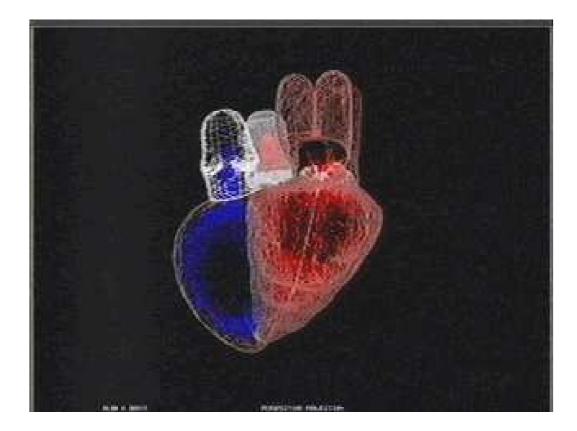
An immersed elastic membrane Γ exerts a singular force on the fluid,

$$f(x,y) = \int_{\Gamma} F(s) \,\delta(x - X(s)) \,\delta(y - Y(s)) \,ds,$$

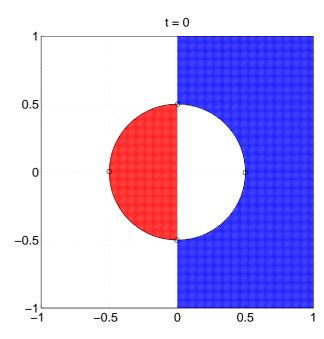
and moves with the fluid.

Peskin's Heart Model

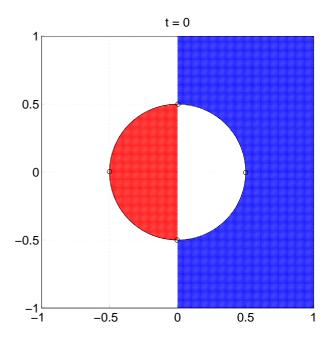
Originally developed to model blood flow in a beating heart and the operation of artificial heart valves.

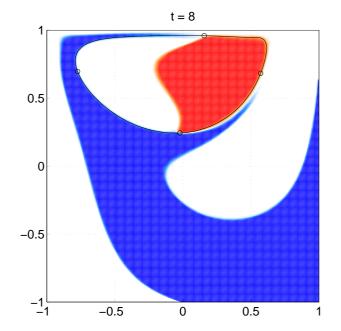


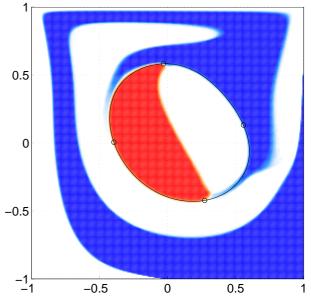
Balloon in a driven cavity

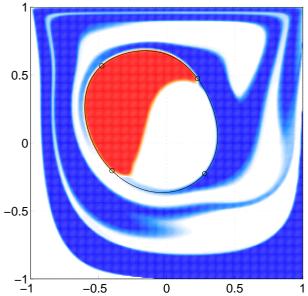


Balloon in a driven cavity

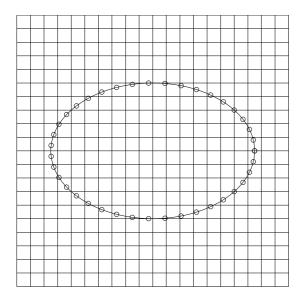








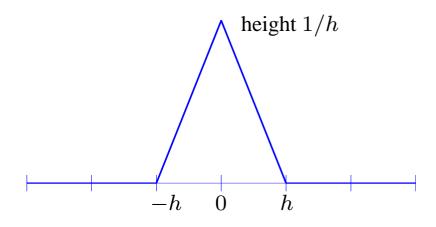
Peskin's Immersed Boundary Method



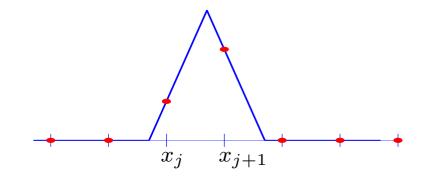
- Membrane represented by discrete control points X_k^n .
- Calculate force strength F_k^n at each control point.
- Use discrete delta function to spread forces to nearby Cartesian grid points, yielding nonzero f_{ij} at points near the interface.
- Advance the fluid equations on the uniform grid.
- Interpolate resulting velocity field u_{ij}^{n+1} to control points to obtain U_k^{n+1} .
- Move control points by $X_k^{n+1} = X_k^n + \Delta t U_k^{n+1}$.
- Implicit or semi-implicit approach may be needed for stability.

Discrete delta function in 1D

Example: Hat function

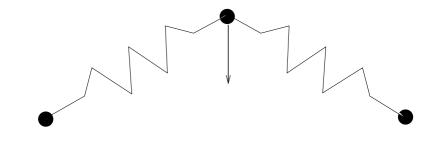


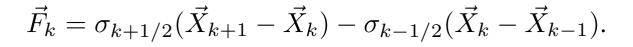
Singular force $F\delta(x - \alpha) \approx Fd_h(x_i - \alpha)$ on the grid. This is nonzero at only two points $(x_j < \alpha < j_{j+1})$:



Spring model of forces

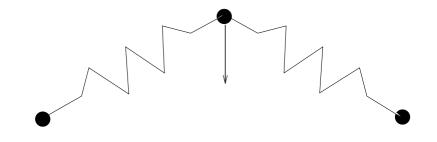
The force \vec{F}_k at \vec{X}_k is computed based on the shape of the boundary. Example: Spring model





Spring model of forces

The force \vec{F}_k at \vec{X}_k is computed based on the shape of the boundary. Example: Spring model



$$\vec{F}_k = \sigma_{k+1/2}(\vec{X}_{k+1} - \vec{X}_k) - \sigma_{k-1/2}(\vec{X}_k - \vec{X}_{k-1}).$$

For $\vec{X}(s)$ parameterized by unstretched length,

$$f(s,t) = \frac{\partial}{\partial s} (T(s,t)\tau(s,t)),$$

where

$$T(s,t) = T_0 \left(\left| \frac{\partial X(s,t)}{\partial s} \right| - 1 \right).$$

Jump conditions

With mass density m(s):

$$m(s)X_{tt}(s,t) = f(s,t) - \llbracket p \rrbracket \vec{n} + \mu \left[\frac{\partial u}{\partial n}\right].$$

Massless membrane: m(s) = 0

$$f = \text{elastic force (computed from } X^n)$$
$$= f_n \vec{n} + f_\tau \tau$$
$$\left[p \right] = f_n$$
$$\mu \left[\frac{\partial u}{\partial n} \right] = -f_\tau \tau$$

Projection Method (one form)

$$u_t + (u \cdot \nabla)u + \nabla p = \mu \nabla^2 u + f$$
$$\nabla \cdot u = 0$$

 $1 U^n \to U^* \text{ by solving}$

$$u_t + (u \cdot \nabla)u = \mu \nabla^2 u + f$$

2
$$U^* \rightarrow U^{n+1}$$
 by solving
 $u_t + \nabla p = 0$
and requiring $\nabla \cdot U^{n+1} = 0$:
 $U^{n+1} - U^*$

$$\frac{\partial - \partial t}{\Delta t} + \nabla p = 0$$

$$\implies \Delta t \, \nabla^2 p = \nabla \cdot U^*$$

$$\boxed{1} U^n \to U^* \text{ by solving } u_t + (u \cdot \nabla)u = \mu \nabla^2 u + f$$

$$2 U^* \to U^{n+1}$$
 by solving $\Delta t \nabla^2 p = \nabla \cdot U^*$

True solution:

- p should be discontinuous across Γ
- u should be continuous but not smooth

Numerical solution:

- Singular source in $\fbox{1}$ leads to "delta function" in U^*
- $\nabla \cdot U^*$ gives "dipole source" for $\nabla^2 p$
- Results in "discontinuity" in *p*.

Immersed Interface Approach

$$u_t + (u \cdot \nabla)u + \nabla p = \mu \nabla^2 u + f$$
$$\nabla \cdot u = 0$$

 $1 U^n \to U^*$ by solving

$$u_t + (u \cdot \nabla)u = \mu \nabla^2 u + f_\tau$$

 f_n

2
$$U^* \to U^{n+1}$$
 by solving
 $u_t + \nabla p = f_n$
and requiring $\nabla \cdot U^{n+1} = 0$:
 $\frac{U^{n+1} - U^*}{\Delta t} + \nabla p = f_n$
 $\implies \Delta t \nabla^2 p = \nabla \cdot U^* + \Delta t \nabla \cdot f_n$

1
$$U^n \to U^*$$
 by solving $u_t + (u \cdot \nabla)u = \mu \nabla^2 u + f_{\tau}$
2 $U^* \to U^{n+1}$ by solving $\Delta t \nabla^2 p = \nabla \cdot U^* + \Delta t \nabla \cdot f_n$

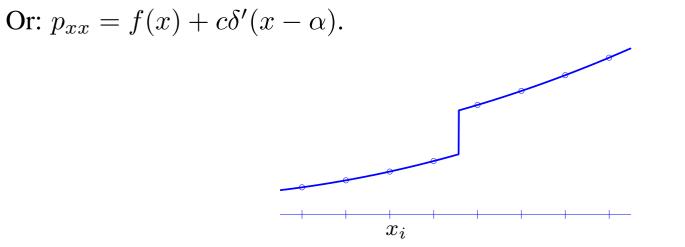
Numerical solution:

- Singular source in $\boxed{1}$ is tangential to interface, so u remains bounded
- $\nabla \cdot f_n$ gives correct dipole source for $\nabla^2 p$
- Use jump conditions on p and $\partial p/\partial n$ while solving

$$\Delta t \, \nabla^2 p = \nabla \cdot U^*$$

using an immersed interface method.

Simple 1D example: $p_{xx} = f(x)$ with boundary conditions and jump condition $[\![p]\!] = c$ at $x = \alpha$.



Want to set $p_{xx}(x_i) = f(x_i)$.

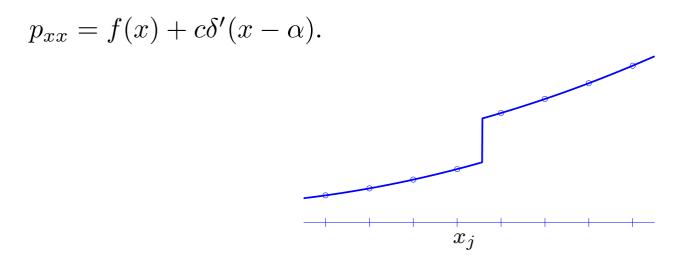
$$p(x_{i-1}) = p(x_i) - hp_x(x_i) + \frac{1}{2}h^2 p_{xx}(x_i) - \cdots$$

$$p(x_{i+1}) = p(x_i) + hp_x(x_i) + \frac{1}{2}h^2 p_{xx}(x_i) + \cdots$$

$$\implies \qquad p_{xx}(x_i) \approx \frac{p(x_{i-1}) - 2p(x_i) + p(x_{i+1})}{h^2}$$

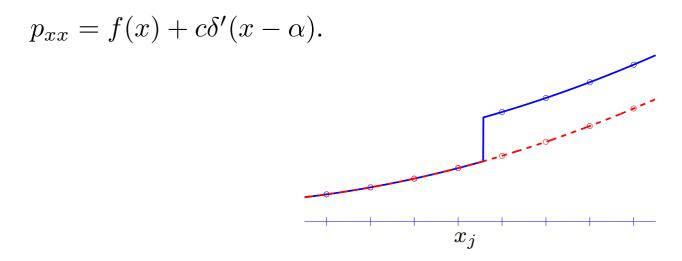
So that

$$\frac{p_{i-1} - 2p_i + p_{i+1}}{h^2} = f_i$$



Want to set $p_{xx}(x_j) = f(x_j)$.

$$p(x_{j-1}) = p(x_j) - hp_x(x_j) + \frac{1}{2}h^2p_{xx}(x_j) - \cdots$$



Want to set $p_{xx}(x_j) = f(x_j)$.

$$p(x_{j-1}) = p(x_j) - hp_x(x_j) + \frac{1}{2}h^2 p_{xx}(x_j) - \cdots$$

$$p(x_{j+1}) = \left(p(x_j) + hp_x(x_j) + \frac{1}{2}h^2 p_{xx}(x_j) + \cdots\right) + c$$

$$\implies \qquad p_{xx}(x_j) \approx \frac{p(x_{j-1}) - 2p(x_j) + p(x_{j+1})}{h^2} - \frac{c}{h^2}$$

So that

$$\frac{p_{j-1} - 2p_j + p_{j+1}}{h^2} = f_j + \frac{c}{h^2}$$

and similarly

$$\frac{p_j - 2p_{j+1} + p_{j+2}}{h^2} = f_{j+1} - \frac{c}{h^2}$$

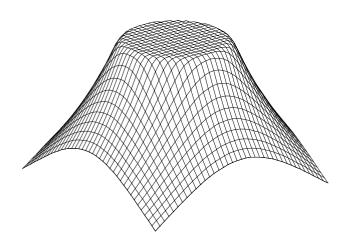
Example:
$$u_{xx} + u_{yy} = \int_{\Gamma} \delta(x - X(s)) \,\delta(y - Y(s)) \, ds$$

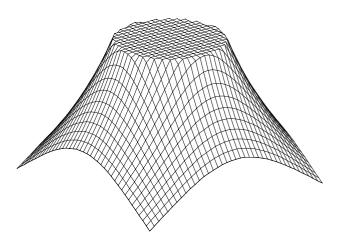
We use the Dirichlet boundary condition which is determined from the exact solution

$$u(x,y) = \begin{cases} 1 & \text{if } r \le 0.5 \\ 1 + \log(2r) & \text{if } r > 0.5 \end{cases}$$

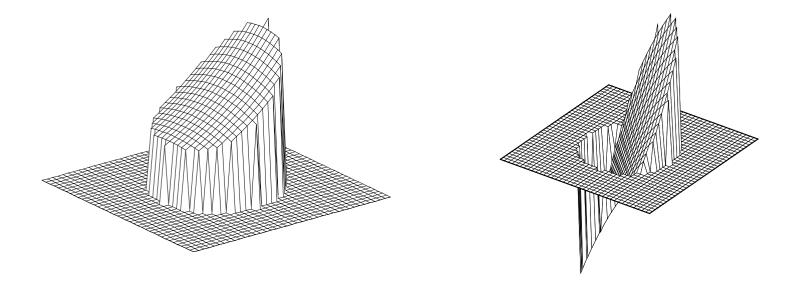
where $r = \sqrt{x^2 + y^2}$.

Using $d_h(x)$: Using jump conditions:





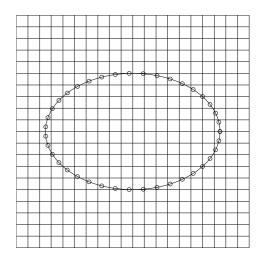
Example with discontinuity in solution

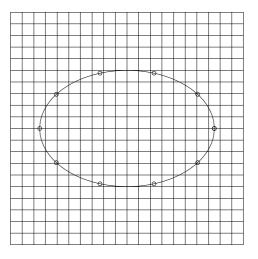


n	global error	ratio	local error	ratio
20	4.37883×10^{-4}		2.99215×10^{-2}	
40	1.07887×10^{-4}	4.0587	1.52546×10^{-2}	1.9615
80	2.77752×10^{-5}	3.8843	7.70114×10^{-3}	1.9808
160	7.49907×10^{-6}	3.7038	3.87481×10^{-3}	1.9875
320	1.74001×10^{-6}	4.3098	1.93917×10^{-3}	1.9982

Immersed Interface Method

• Represent interface by spline through smaller number of control points:





• Can compute force and hence pressure jump at any point on membrane.

$$f(s,t) = \frac{\partial}{\partial s} (T(s,t)\tau(s,t)),$$

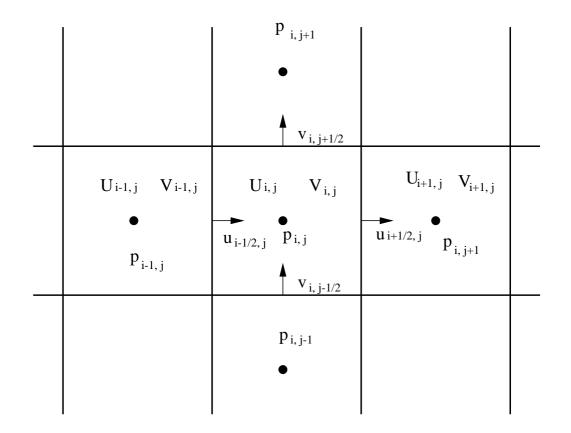
where

$$T(s,t) = T_0 \left(\left| \frac{\partial X(s,t)}{\partial s} \right| - 1 \right),$$

• Incorporate jump conditions into Taylor series expansion to derive finite-difference method that is pointwise second-order accurate.

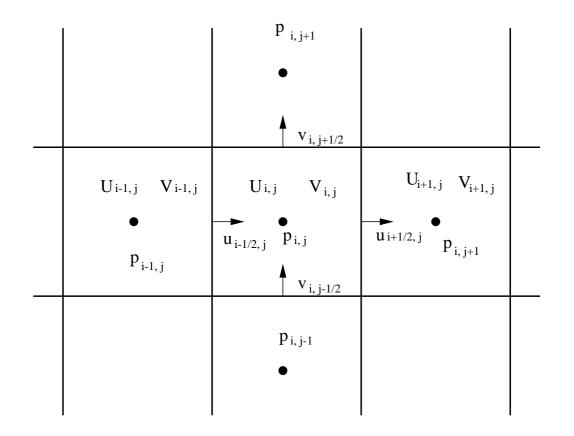
Hybrid Finite-Volume / Finite-Difference Method

- Fluid equations solved on finite-volume grid.
- Cell-centered velocity advected using high-resolution methods (CLAWPACK)
- Edge velocities needed in advection algorithm are obtained by averaging cell-centered values.



Hybrid Finite-Volume / Finite-Difference Method

- Divergence-free condition applied to the edge velocities.
- Finite-difference immersed interface method used to compute pressure at cell centers.
- Pressure correction is then applied to cell-centered velocities.



Explicit Method

Given X_k^n , U^n , u^n at start of time step.

Step 1. Solve $U_t + (u^n \cdot \nabla)U = 0$. Takes $U^n \to U^{\dagger}$.

Step 2. Solve $U_t = \mu \nabla^2 U + f_\tau$. Takes $U^{\dagger} \rightarrow U^*$.

Step 3. Average U^* from adjacent grid cells to obtain u^* at edges.

Step 4. Solve
$$\Delta t \nabla^2 p^{n+1} = \nabla \cdot u^*$$
 with $\llbracket p^{n+1} \rrbracket = f_n$ to obtain p^{n+1} .

Step 5. Update
$$u^*$$
 based on p^{n+1} to get u^{n+1} (div free).

Step 6. Update U^* based on p^{n+1} to get U^{n+1} .

Step 7. Interpolate U^{n+1} to marker points X^n to obtain $\mathcal{U}^{n+1}(X^n)$. Move membrane using

$$X^{n+1} = X^n + \Delta t \,\mathcal{U}^{n+1}(X^n).$$

Trapezoidal Method

 $\mathcal{U}^n(X^n)$ = velocities at marker points X^n , interpolated from U^n , $\mathcal{U}^{n+1}(X^{n+1})$ = velocities at marker points X^{n+1} , interpolated from

 U^{n+1} , determined by stepping forward from U^n with forces $\frac{1}{2}(f(X^n) + f(X^{n+1})).$

Would like:

$$X^{n+1} = X^n + \frac{1}{2}\Delta t \, (\mathcal{U}^n(X^n) + \mathcal{U}^{n+1}(X^{n+1})).$$

Problem: Implicit in X^{n+1} and computing $\mathcal{U}^{n+1}(X^{n+1})$) requires solving fluid equations and Poisson problem.

Implicit Method

Given X_k^n , U^n , u^n at start of time step. Apply Quasi-Newton method to solve for X^{n+1} .

Step I1. Apply Step 1, the advection step. $U^n \rightarrow U^{\dagger}$.

Step I2. Make a guess $X^{[0]}$ for X^{n+1} and set I = 0.

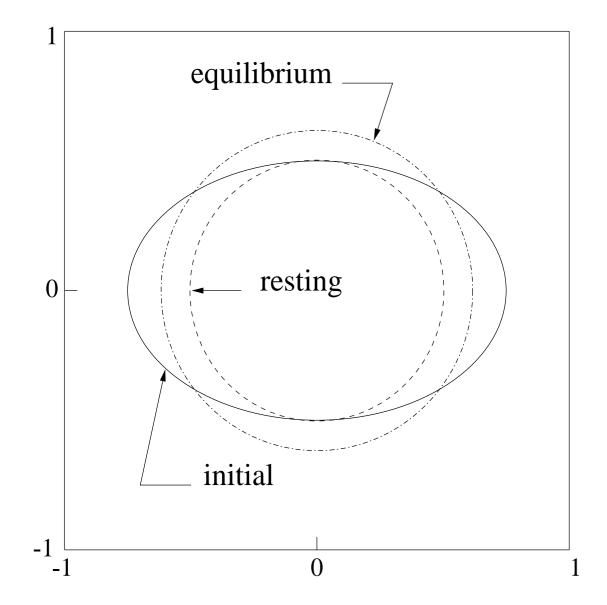
Step I3. Perform Steps 2–6 but replacing $f(X^n)$ by $\frac{1}{2}(f(X^n) + f(X^{[I]}))$ This gives provisional velocity field U^{n+1} .

Step I4. Evaluate

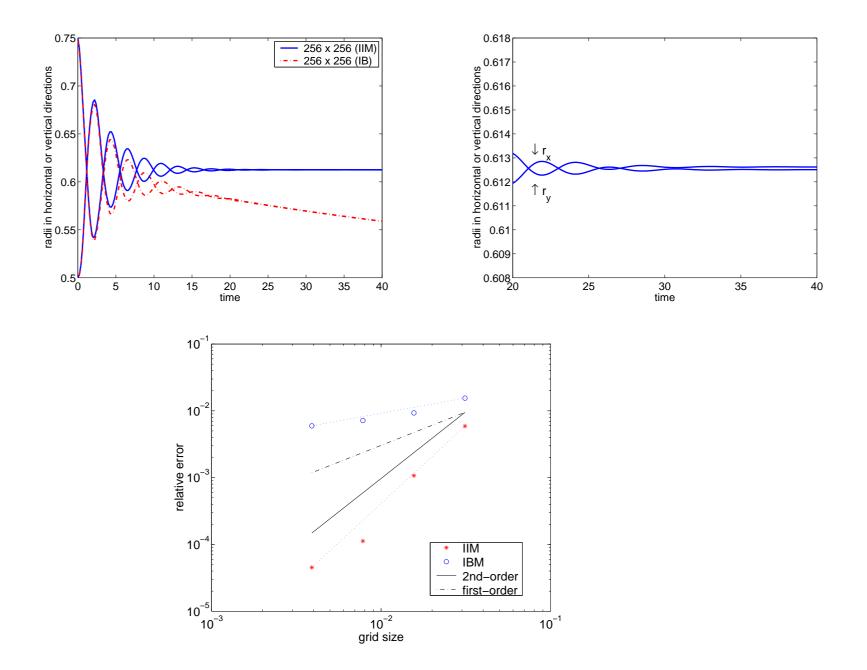
$$g(X^{[I]}) = X^{[I]} - X^n - \frac{1}{2}\Delta t \left(\mathcal{U}^n(X^n) + \mathcal{U}^{n+1}(X^{[I]})\right)$$

Step I5. Convergence check: If $||g(X^{[I]})|| \le \epsilon$ then set $X^{n+1} = X^{[I]}$, done. Otherwise, update $X^{[I]}$ to $X^{[I+1]}$, set I = I + 1, and go to step I3.

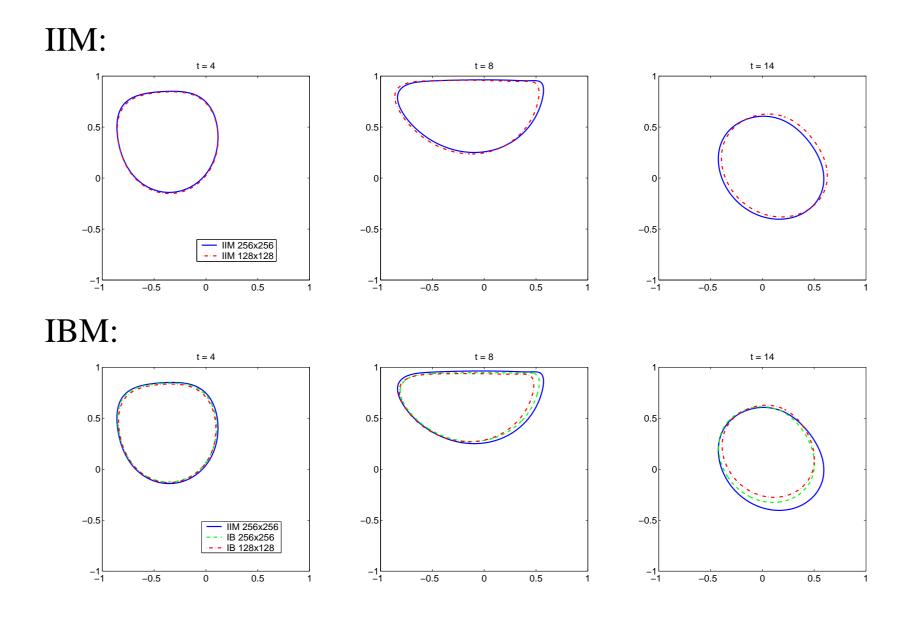
Oscillating balloon



Volume Conservation and Accuracy



Balloon in driven cavity



Summary

- High-resolution finite volume for convective terms
- Finite difference immersed interface method for pressure Poisson problem
- Tangential component of force is spread using discrete delta functions
- Normal component of force gives jump in pressure, built into Poisson solver
- Easy modification of existing immersed boundary codes?
- Implicit method for moving the boundary
- Membrane mass can also be incorporated

Adding mass to the membrane

$$m(s)X_{tt}(s,t) = f(s,t) - \llbracket p \rrbracket \vec{n} + \mu \left[\frac{\partial u}{\partial n}\right]$$

Force now used in pressure and fluid solve:

$$\tilde{f}(s,t) = f(s,t) - m(s)X_{tt}(s,t).$$

Split this into normal and tangental components.

Easy to incorporate into implicit algorithm:

Step I3. Replace $\frac{1}{2}(f(X^n) + f(X^{[I]}))$ by $\frac{1}{2}(f(X^n) + f(X^{[I]})) - \frac{m(s)}{\Delta t^2}(X^{[I]} - 2X^n + X^{n-1}).$