
Immersed Interface Methods for

Fluid Dynamics Problems

Randall J. LeVeque
Department of Applied Mathematics

University of Washington

Joint work with
Zhilin Li, NCSU
Long Lee, UNC

Supported in part by NSF, DOE

Incompressible Navier-Stokes

ut + (u · ∇)u + ∇p = µ∇2u + f

∇ · u = 0

PSfrag replacements

Γ

An immersed elastic membrane Γ exerts a singular force on the fluid,

f(x, y) =

∫

Γ

F (s) δ(x − X(s)) δ(y − Y (s)) ds,

and moves with the fluid.

Peskin’s Heart Model

Originally developed to model blood flow in a beating heart and
the operation of artificial heart valves.

Balloon in a driven cavity

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
t = 0

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
t = 8

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
t = 14

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
t = 30

Balloon in a driven cavity

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
t = 0

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
t = 8

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
t = 14

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
t = 30

Peskin’s Immersed Boundary Method

• Membrane represented by discrete control points Xn
k .

• Calculate force strength F n
k at each control point.

• Use discrete delta function to spread forces to nearby Cartesian grid points,
yielding nonzero fij at points near the interface.

• Advance the fluid equations on the uniform grid.

• Interpolate resulting velocity field un+1
ij to control points to obtain Un+1

k .

• Move control points by Xn+1
k = Xn

k + ∆t Un+1
k .

• Implicit or semi-implicit approach may be needed for stability.

Discrete delta function in 1D

Example: Hat function

PSfrag replacements

0 h−h

height 1/h

Singular force Fδ(x − α) ≈ Fdh(xi − α) on the grid.
This is nonzero at only two points (xj < α < jj+1):

PSfrag replacements
0

h
−h

height 1/h

xj xj+1

Spring model of forces

The force ~Fk at ~Xk is computed based on the shape of the boundary.

Example: Spring model

~Fk = σk+1/2(~Xk+1 − ~Xk) − σk−1/2(~Xk − ~Xk−1).

For ~X(s) parameterized by unstretched length,

f(s, t) =
∂

∂s
(T (s, t)τ(s, t)),

where

T (s, t) = T0

(
∣

∣

∣

∣

∂X(s, t)

∂s

∣

∣

∣

∣

− 1

)

.

Spring model of forces

The force ~Fk at ~Xk is computed based on the shape of the boundary.

Example: Spring model

~Fk = σk+1/2(~Xk+1 − ~Xk) − σk−1/2(~Xk − ~Xk−1).

For ~X(s) parameterized by unstretched length,

f(s, t) =
∂

∂s
(T (s, t)τ(s, t)),

where

T (s, t) = T0

(
∣

∣

∣

∣

∂X(s, t)

∂s

∣

∣

∣

∣

− 1

)

.

Jump conditions

With mass density m(s):

m(s)Xtt(s, t) = f(s, t) − [[p]]~n + µ

[[

∂u

∂n

]]

.

Massless membrane: m(s) = 0

f = elastic force (computed from Xn)
= fn~n + fτ τ

[[p]] = fn

µ

[[

∂u

∂n

]]

= −fτ τ

Projection Method (one form)

ut + (u · ∇)u + ∇p = µ∇2u + f

∇ · u = 0

1 Un → U∗ by solving

ut + (u · ∇)u = µ∇2u + f

2 U∗ → Un+1 by solving
ut + ∇p = 0

and requiring ∇ · Un+1 = 0:

Un+1 − U∗

∆t
+ ∇p = 0

=⇒ ∆t∇2p = ∇ · U∗

1 Un → U ∗ by solving ut + (u · ∇)u = µ∇2u + f

2 U∗ → Un+1 by solving ∆t∇2p = ∇ · U ∗

True solution:
• p should be discontinuous across Γ

• u should be continuous but not smooth

Numerical solution:
• Singular source in 1 leads to “delta function” in U ∗

• ∇ · U ∗ gives “dipole source” for ∇2p

• Results in “discontinuity” in p.

Immersed Interface Approach

ut + (u · ∇)u + ∇p = µ∇2u + f

∇ · u = 0

1 Un → U∗ by solving

ut + (u · ∇)u = µ∇2u + fτ

2 U∗ → Un+1 by solving

ut + ∇p = fn

and requiring ∇ · Un+1 = 0:

Un+1 − U∗

∆t
+ ∇p = fn

=⇒ ∆t∇2p = ∇ · U∗ + ∆t∇ · fn

Numerical solution:

• Singular source in 1 is tangential to interface, so u remains bounded

• ∇ · fn gives correct dipole source for ∇2p

• Use jump conditions on p and ∂p/∂n while solving

∆t∇2p = ∇ · U∗

using an immersed interface method.

1 Un → U ∗ by solving ut + (u · ∇)u = µ∇2u + fτ

2 U∗ → Un+1 by solving ∆t∇2p = ∇ · U ∗ + ∆t∇ · fn

Numerical solution:
• Singular source in 1 is tangential to interface, so u remains

bounded
• ∇ · fn gives correct dipole source for ∇2p

• Use jump conditions on p and ∂p/∂n while solving

∆t∇2p = ∇ · U ∗

using an immersed interface method.

Simple 1D example: pxx = f(x) with boundary conditions

and jump condition [[p]] = c at x = α.

Or: pxx = f(x) + cδ′(x − α).

PSfrag replacements
xi

Want to set pxx(xi) = f(xi).

p(xi−1) = p(xi) − hpx(xi) + 1
2h2pxx(xi) − · · ·

p(xi+1) = p(xi) + hpx(xi) + 1
2h2pxx(xi) + · · ·

=⇒ pxx(xi) ≈
p(xi−1) − 2p(xi) + p(xi+1)

h2

So that
pi−1 − 2pi + pi+1

h2
= fi

pxx = f(x) + cδ′(x − α).

PSfrag replacements
xj

Want to set pxx(xj) = f(xj).

p(xj−1) = p(xj) − hpx(xj) + 1
2h2pxx(xj) − · · ·

p(xj+1) =
(

p(xj) + hpx(xj) + 1
2h2pxx(xj) + · · ·

)

+ c

=⇒ pxx(xj) ≈
p(xj−1) − 2p(xj) + p(xj+1)

h2
−

c

h2

So that
pj−1 − 2pj + pj+1

h2
= fj +

c

h2

and similarly
pj − 2pj+1 + pj+2

h2
= fj+1 −

c

h2

pxx = f(x) + cδ′(x − α).

PSfrag replacements
xj

Want to set pxx(xj) = f(xj).

p(xj−1) = p(xj) − hpx(xj) + 1
2h2pxx(xj) − · · ·

p(xj+1) =
(

p(xj) + hpx(xj) + 1
2h2pxx(xj) + · · ·

)

+ c

=⇒ pxx(xj) ≈
p(xj−1) − 2p(xj) + p(xj+1)

h2
−

c

h2

So that
pj−1 − 2pj + pj+1

h2
= fj +

c

h2

and similarly
pj − 2pj+1 + pj+2

h2
= fj+1 −

c

h2

Example: uxx + uyy =

∫

Γ
δ(x − X(s)) δ(y − Y (s)) ds

We use the Dirichlet boundary condition which is determined from the exact
solution

u(x, y) =

1 if r ≤ 0.5

1 + log(2r) if r > 0.5

where r =
√

x2 + y2.

Using dh(x): Using jump conditions:

Example with discontinuity in solution

n global error ratio local error ratio
20 4.37883 × 10−4 2.99215 × 10−2

40 1.07887 × 10−4 4.0587 1.52546 × 10−2 1.9615
80 2.77752 × 10−5 3.8843 7.70114 × 10−3 1.9808
160 7.49907 × 10−6 3.7038 3.87481 × 10−3 1.9875
320 1.74001 × 10−6 4.3098 1.93917 × 10−3 1.9982

Immersed Interface Method
• Represent interface by spline through smaller number of control points:

• Can compute force and hence pressure jump at any point on membrane.

f(s, t) =
∂

∂s
(T (s, t)τ(s, t)),

where

T (s, t) = T0

(
∣

∣

∣

∣

∂X(s, t)

∂s

∣

∣

∣

∣

− 1

)

,

• Incorporate jump conditions into Taylor series expansion to derive
finite-difference method that is pointwise second-order accurate.

Hybrid Finite-Volume / Finite-Difference Method

• Fluid equations solved on finite-volume grid.
• Cell-centered velocity advected using high-resolution

methods (CLAWPACK)
• Edge velocities needed in advection algorithm are obtained

by averaging cell-centered values.

V U V U

p

p

p
p

i, j+1
u u

v

v

VU i-1, j i-1, j

i-1, j

i, j i, j
i+1, j i+1, j

i-1/2, j i, j i+1/2, j

i, j-1/2

i, j+1/2

i, j-1

i, j+1

p

Hybrid Finite-Volume / Finite-Difference Method

• Divergence-free condition applied to the edge velocities.
• Finite-difference immersed interface method used to compute

pressure at cell centers.
• Pressure correction is then applied to cell-centered velocities.

V U V U

p

p

p
p

i, j+1
u u

v

v

VU i-1, j i-1, j

i-1, j

i, j i, j
i+1, j i+1, j

i-1/2, j i, j i+1/2, j

i, j-1/2

i, j+1/2

i, j-1

i, j+1

p

Explicit Method

Given Xn
k , Un, un at start of time step.

Step 1. Solve Ut + (un · ∇)U = 0. Takes Un → U †.

Step 2. Solve Ut = µ∇2U + fτ . Takes U † → U∗.

Step 3. Average U∗ from adjacent grid cells to obtain u∗ at edges.

Step 4. Solve ∆t∇2pn+1 = ∇ · u∗ with [[pn+1]] = fn

to obtain pn+1.

Step 5. Update u∗ based on pn+1 to get un+1 (div free).

Step 6. Update U∗ based on pn+1 to get Un+1.

Step 7. Interpolate Un+1 to marker points Xn to obtain
Un+1(Xn). Move membrane using

Xn+1 = Xn + ∆tUn+1(Xn).

Trapezoidal Method

Un(Xn) = velocities at marker points Xn, interpolated from Un,

Un+1(Xn+1) = velocities at marker points Xn+1, interpolated
from

Un+1, determined by stepping forward from Un with forces

1
2(f(Xn) + f(Xn+1)).

Would like:

Xn+1 = Xn +
1

2
∆t (Un(Xn) + Un+1(Xn+1)).

Problem: Implicit in Xn+1 and computing Un+1(Xn+1)) requires
solving fluid equations and Poisson problem.

Implicit Method

Given Xn
k , Un, un at start of time step.

Apply Quasi-Newton method to solve for Xn+1.

Step I1. Apply Step 1, the advection step. Un → U †.

Step I2. Make a guess X [0] for Xn+1 and set I = 0.

Step I3. Perform Steps 2–6 but replacing f(Xn) by 1
2 (f(Xn) + f(X [I]))

This gives provisional velocity field Un+1.

Step I4. Evaluate

g(X [I]) = X [I] − Xn −
1

2
∆t (Un(Xn) + Un+1(X [I]))

Step I5. Convergence check: If ‖g(X [I])‖ ≤ ε then set Xn+1 = X [I], done.

Otherwise, update X [I] to X [I+1], set I = I + 1, and go to step I3.

Oscillating balloon

0

equilibrium

resting

initial

-1 1

1

-1

0

Volume Conservation and Accuracy

0 5 10 15 20 25 30 35 40
0.5

0.55

0.6

0.65

0.7

0.75

time

ra
di

i i
n

ho
riz

on
ta

l o
r

ve
rt

ic
al

 d
ire

ct
io

ns

256 x 256 (IIM)
256 x 256 (IB)

20 25 30 35 40
0.608

0.609

0.61

0.611

0.612

0.613

0.614

0.615

0.616

0.617

0.618

time

ra
di

i i
n

ho
riz

on
ta

l o
r

ve
rt

ic
al

 d
ire

ct
io

ns

 ↓ r
x

 ↑ r
y

10
−3

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

grid size

re
la

tiv
e

er
ro

r

IIM
IBM
2nd−order
first−order

Balloon in driven cavity

IIM:

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
t = 4

IIM 256x256
IIM 128x128

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
t = 8

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
t = 14

IBM:

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
t = 4

IIM 256x256
IB 256x256
IB 128x128

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
t = 8

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
t = 14

Summary

• High-resolution finite volume for convective terms
• Finite difference immersed interface method for pressure

Poisson problem
• Tangential component of force is spread using discrete delta

functions
• Normal component of force gives jump in pressure, built into

Poisson solver
• Easy modification of existing immersed boundary codes?
• Implicit method for moving the boundary
• Membrane mass can also be incorporated

Adding mass to the membrane

m(s)Xtt(s, t) = f(s, t) − [[p]]~n + µ

[[

∂u

∂n

]]

.

Force now used in pressure and fluid solve:

f̃(s, t) = f(s, t) − m(s)Xtt(s, t).

Split this into normal and tangental components.

Easy to incorporate into implicit algorithm:

Step I3. Replace 1
2(f(Xn) + f(X [I])) by

1

2
(f(Xn) + f(X [I])) −

m(s)

∆t2
(X [I] − 2Xn + Xn−1).

	
	Incompressible Navier-Stokes
	Peskin's Heart Model
	Balloon in a driven cavity
	Balloon in a driven cavity

	Peskin's Immersed Boundary Method
	Discrete delta function in 1D
	Spring model of forces
	Spring model of forces

	Jump conditions
	Projection Method (one form)
	
	Immersed Interface Approach
	
	Example with discontinuity in solution
	Immersed Interface Method
	Hybrid Finite-Volume / Finite-Difference Method
	Hybrid Finite-Volume / Finite-Difference Method
	Explicit Method
	Trapezoidal Method
	Implicit Method
	Oscillating balloon
	Volume Conservation and Accuracy
	Balloon in driven cavity
	Summary
	Adding mass to the membrane

