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Incompressible Navier-Stokes

ut + (u · ∇)u + ∇p = µ∇2u + f

∇ · u = 0

PSfrag replacements

Γ

An immersed elastic membrane Γ exerts a singular force on the fluid,

f(x, y) =

∫

Γ

F (s) δ(x − X(s)) δ(y − Y (s)) ds,

and moves with the fluid.



Peskin’s Heart Model

Originally developed to model blood flow in a beating heart and
the operation of artificial heart valves.



Balloon in a driven cavity
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Balloon in a driven cavity
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Peskin’s Immersed Boundary Method

• Membrane represented by discrete control points Xn
k .

• Calculate force strength F n
k at each control point.

• Use discrete delta function to spread forces to nearby Cartesian grid points,
yielding nonzero fij at points near the interface.

• Advance the fluid equations on the uniform grid.

• Interpolate resulting velocity field un+1
ij to control points to obtain Un+1

k .

• Move control points by Xn+1
k = Xn

k + ∆t Un+1
k .

• Implicit or semi-implicit approach may be needed for stability.



Discrete delta function in 1D

Example: Hat function

PSfrag replacements

0 h−h

height 1/h

Singular force Fδ(x − α) ≈ Fdh(xi − α) on the grid.
This is nonzero at only two points (xj < α < jj+1):

PSfrag replacements
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h
−h

height 1/h

xj xj+1



Spring model of forces

The force ~Fk at ~Xk is computed based on the shape of the boundary.

Example: Spring model

~Fk = σk+1/2( ~Xk+1 − ~Xk) − σk−1/2( ~Xk − ~Xk−1).

For ~X(s) parameterized by unstretched length,

f(s, t) =
∂

∂s
(T (s, t)τ(s, t)),

where

T (s, t) = T0

(
∣

∣

∣

∣

∂X(s, t)

∂s

∣

∣

∣

∣

− 1

)

.
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Jump conditions

With mass density m(s):

m(s)Xtt(s, t) = f(s, t) − [[p]]~n + µ

[[

∂u

∂n

]]

.

Massless membrane: m(s) = 0

f = elastic force (computed from Xn)
= fn~n + fτ τ

[[p]] = fn

µ

[[

∂u

∂n

]]

= −fτ τ



Projection Method (one form)

ut + (u · ∇)u + ∇p = µ∇2u + f

∇ · u = 0

1 Un → U∗ by solving

ut + (u · ∇)u = µ∇2u + f

2 U∗ → Un+1 by solving
ut + ∇p = 0

and requiring ∇ · Un+1 = 0:

Un+1 − U∗

∆t
+ ∇p = 0

=⇒ ∆t∇2p = ∇ · U∗



1 Un → U ∗ by solving ut + (u · ∇)u = µ∇2u + f

2 U∗ → Un+1 by solving ∆t∇2p = ∇ · U ∗

True solution:
• p should be discontinuous across Γ

• u should be continuous but not smooth

Numerical solution:
• Singular source in 1 leads to “delta function” in U ∗

• ∇ · U ∗ gives “dipole source” for ∇2p

• Results in “discontinuity” in p.



Immersed Interface Approach

ut + (u · ∇)u + ∇p = µ∇2u + f

∇ · u = 0

1 Un → U∗ by solving

ut + (u · ∇)u = µ∇2u + fτ

2 U∗ → Un+1 by solving

ut + ∇p = fn

and requiring ∇ · Un+1 = 0:

Un+1 − U∗

∆t
+ ∇p = fn

=⇒ ∆t∇2p = ∇ · U∗ + ∆t∇ · fn

Numerical solution:

• Singular source in 1 is tangential to interface, so u remains bounded

• ∇ · fn gives correct dipole source for ∇2p

• Use jump conditions on p and ∂p/∂n while solving

∆t∇2p = ∇ · U∗

using an immersed interface method.



1 Un → U ∗ by solving ut + (u · ∇)u = µ∇2u + fτ

2 U∗ → Un+1 by solving ∆t∇2p = ∇ · U ∗ + ∆t∇ · fn

Numerical solution:
• Singular source in 1 is tangential to interface, so u remains

bounded
• ∇ · fn gives correct dipole source for ∇2p

• Use jump conditions on p and ∂p/∂n while solving

∆t∇2p = ∇ · U ∗

using an immersed interface method.



Simple 1D example: pxx = f(x) with boundary conditions

and jump condition [[p]] = c at x = α.

Or: pxx = f(x) + cδ′(x − α).

PSfrag replacements
xi

Want to set pxx(xi) = f(xi).

p(xi−1) = p(xi) − hpx(xi) + 1
2h2pxx(xi) − · · ·

p(xi+1) = p(xi) + hpx(xi) + 1
2h2pxx(xi) + · · ·

=⇒ pxx(xi) ≈
p(xi−1) − 2p(xi) + p(xi+1)

h2

So that
pi−1 − 2pi + pi+1

h2
= fi



pxx = f(x) + cδ′(x − α).

PSfrag replacements
xj

Want to set pxx(xj) = f(xj).

p(xj−1) = p(xj) − hpx(xj) + 1
2h2pxx(xj) − · · ·

p(xj+1) =
(

p(xj) + hpx(xj) + 1
2h2pxx(xj) + · · ·

)

+ c

=⇒ pxx(xj) ≈
p(xj−1) − 2p(xj) + p(xj+1)

h2
−

c

h2

So that
pj−1 − 2pj + pj+1

h2
= fj +

c

h2

and similarly
pj − 2pj+1 + pj+2

h2
= fj+1 −

c

h2



pxx = f(x) + cδ′(x − α).

PSfrag replacements
xj
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Example: uxx + uyy =

∫

Γ
δ(x − X(s)) δ(y − Y (s)) ds

We use the Dirichlet boundary condition which is determined from the exact
solution

u(x, y) =







1 if r ≤ 0.5

1 + log(2r) if r > 0.5

where r =
√

x2 + y2.

Using dh(x): Using jump conditions:
  



Example with discontinuity in solution

n global error ratio local error ratio
20 4.37883 × 10−4 2.99215 × 10−2

40 1.07887 × 10−4 4.0587 1.52546 × 10−2 1.9615
80 2.77752 × 10−5 3.8843 7.70114 × 10−3 1.9808
160 7.49907 × 10−6 3.7038 3.87481 × 10−3 1.9875
320 1.74001 × 10−6 4.3098 1.93917 × 10−3 1.9982



Immersed Interface Method
• Represent interface by spline through smaller number of control points:

• Can compute force and hence pressure jump at any point on membrane.

f(s, t) =
∂

∂s
(T (s, t)τ(s, t)),

where

T (s, t) = T0

(
∣

∣

∣

∣

∂X(s, t)

∂s

∣

∣

∣

∣

− 1

)

,

• Incorporate jump conditions into Taylor series expansion to derive
finite-difference method that is pointwise second-order accurate.



Hybrid Finite-Volume / Finite-Difference Method

• Fluid equations solved on finite-volume grid.
• Cell-centered velocity advected using high-resolution

methods (CLAWPACK)
• Edge velocities needed in advection algorithm are obtained

by averaging cell-centered values.
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Hybrid Finite-Volume / Finite-Difference Method

• Divergence-free condition applied to the edge velocities.
• Finite-difference immersed interface method used to compute

pressure at cell centers.
• Pressure correction is then applied to cell-centered velocities.
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Explicit Method

Given Xn
k , Un, un at start of time step.

Step 1. Solve Ut + (un · ∇)U = 0. Takes Un → U †.

Step 2. Solve Ut = µ∇2U + fτ . Takes U † → U∗.

Step 3. Average U∗ from adjacent grid cells to obtain u∗ at edges.

Step 4. Solve ∆t∇2pn+1 = ∇ · u∗ with [[pn+1]] = fn

to obtain pn+1.

Step 5. Update u∗ based on pn+1 to get un+1 (div free).

Step 6. Update U∗ based on pn+1 to get Un+1.

Step 7. Interpolate Un+1 to marker points Xn to obtain
Un+1(Xn). Move membrane using

Xn+1 = Xn + ∆tUn+1(Xn).



Trapezoidal Method

Un(Xn) = velocities at marker points Xn, interpolated from Un,

Un+1(Xn+1) = velocities at marker points Xn+1, interpolated
from

Un+1, determined by stepping forward from Un with forces

1
2(f(Xn) + f(Xn+1)).

Would like:

Xn+1 = Xn +
1

2
∆t (Un(Xn) + Un+1(Xn+1)).

Problem: Implicit in Xn+1 and computing Un+1(Xn+1)) requires
solving fluid equations and Poisson problem.



Implicit Method

Given Xn
k , Un, un at start of time step.

Apply Quasi-Newton method to solve for Xn+1.

Step I1. Apply Step 1, the advection step. Un → U †.

Step I2. Make a guess X [0] for Xn+1 and set I = 0.

Step I3. Perform Steps 2–6 but replacing f(Xn) by 1
2 (f(Xn) + f(X [I]))

This gives provisional velocity field Un+1.

Step I4. Evaluate

g(X [I]) = X [I] − Xn −
1

2
∆t (Un(Xn) + Un+1(X [I]))

Step I5. Convergence check: If ‖g(X [I])‖ ≤ ε then set Xn+1 = X [I], done.

Otherwise, update X [I] to X [I+1], set I = I + 1, and go to step I3.



Oscillating balloon
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Volume Conservation and Accuracy
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Balloon in driven cavity

IIM:
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Summary

• High-resolution finite volume for convective terms
• Finite difference immersed interface method for pressure

Poisson problem
• Tangential component of force is spread using discrete delta

functions
• Normal component of force gives jump in pressure, built into

Poisson solver
• Easy modification of existing immersed boundary codes?
• Implicit method for moving the boundary
• Membrane mass can also be incorporated



Adding mass to the membrane

m(s)Xtt(s, t) = f(s, t) − [[p]]~n + µ

[[

∂u

∂n

]]

.

Force now used in pressure and fluid solve:

f̃(s, t) = f(s, t) − m(s)Xtt(s, t).

Split this into normal and tangental components.

Easy to incorporate into implicit algorithm:

Step I3. Replace 1
2(f(Xn) + f(X [I])) by

1

2
(f(Xn) + f(X [I])) −

m(s)

∆t2
(X [I] − 2Xn + Xn−1).
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