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Outline

• Tsunami modeling, shallow water equations

• Finite volume methods for hyperbolic equations

• Riemann problems and Godunov’s method

• Wave limiters and high-resolution methods

• Software: CLAWPACK

• Riemann problems for tsunamis: bathymetry and dry cells

• Adaptive mesh refinement

• AMR issues for tsunamis

• Validation and benchmarks
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Tsunamis

Generated by

• Earthquakes,

• Landslides,

• Submarine landslides,

• Volcanoes,

• Meteorite or asteroid impact

There were 97 significant tsunamis during the 1990’s,
causing 16,000 casualties.

There have been approximately 28 tsunamis with run-up
greater than 1m on the west coast of the U.S. since 1812.
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Tsunamis

• Small amplitude in ocean (< 1 meter) but can grow to
10s of meters at shore.

• Run-up along shore can inundate 100s of meters inland

• Long wavelength (as much as 200 km)

• Propagation speed
√
gh (bunching up at shore)

• Average depth of Pacific or Indian Ocean is 4km
=⇒ average speed 200 m/s ≈ 450 mph
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Cross section of Indian Ocean & tsunami

Surface elevation
on scale of 10 meters:

Cross-section
on scale of kilometers:
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Sumatra event of December 26, 2004
Magnitude 9.1 quake near Sumatra, where Indian tectonic plate
is being subducted under the Burma platelet.

Rupture along subduction zone
≈ 1200 km long, 150 km wide

Propagating at ≈ 2 km/sec (for ≈ 10 minutes)

Fault slip up to 15 m, uplift of several meters.

www.livescience.com

(Similar to Cascadia subduction zone off WA coast)
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Cascadia subduction fault

• 1200 km long off-shore fault stretching from northern California to
southern Canada.

• Last major rupture: magnitude 9.0 earthquake on January 26, 1700.

• Tsunami recorded in Japan with run-up of up to 5 meters.

• Historically there appear to be magnitude 8 or larger quakes every 500
years on average.
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Our work on tsunami modeling

• Original thrust:
NSF grant with Harry Yeh (OSU) and Joe Hammack /
Diane Henderson (PSU) to do 1D and 2D simulations to
complement wave tank experiments.
Small-scale computations near shore, uniform grids.

• After December 26, 2004:
Focus on Sumatra event.
Model of Bay of Bengal, Indian Ocean, initially with uniform
coarse grid.
Addition of AMR for propagating wave.
AMR near coastline to capture run-up and inundation.

• Latest results:
Zoom in on Madras harbor area.
Factor of 1024 refinement from coarsest to finest grids.
Next: Compare with field data taken by Harry Yeh.
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Tsunami simulations

• 2D shallow water +
bathymetry

• Finite volume method
• Cartesian grid
• Cells can be dry

(h = 0)
• Cells become wet/dry

as wave moves on
shore

• Mesh refinement on
rectangular patches

• Adaptive — follows
wave, more levels near
shore
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Tsunami simulations

Movies:

Fault area

Bay of Bengal

Sri Lanka

Indian Ocean

Zoom on Madras

Slice of Madras Harbor

For movies, see

http://www.amath.washington.edu/ ∼dgeorge/research.html
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Tsunami simulations

Latest simulation:

• 4 levels of refinement.

• Level 1: 1 degree resolution (∆x ≈ 60 nautical miles)

• Level 2 refined by 8.

• Level 3 refined by 8: ∆x ≈ 1 nautical mile (only near coast)

• Level 4 refined by 16: ∆x ≈ 100 meters (only near Madras)

≈ 6 hours on single CPU PC. (< 2 hours with only 3 levels)

Next:

• Obtain better topography (and bathymetry) data.

• Add seawall, buildings.

• Compare to field data collected by Harry Yeh in January.

• Global model on sphere, compare to tide gauge data.
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Satellite data

Jason-1 Satellite passed over the Indian Ocean during the
tsunami event.

Surface height on two passes
(one a week before)

Disparity shows tsunami:
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Comparison of simulation with satellite data
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Shallow water equations with topography B(x)

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2

)
x

= −ghBx(x)

h(x, t) = depth of water
u(x, t) = horizontal velocity

This has the form of a conservation law with a source term:

qt + f(q)x = ψ(q, x),

where

q =
[
h
hu

]
, f(q) =

[
hu

hu2 + gh2/2

]
, ψ(q, x) =

[
0

−ghB′(x)

]
.
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Shallow water equations with topography B(x, y)

ht + (hu)x + (hv)y = 0

(hu)t +
(
hu2 +

1
2
gh2

)
x

+ (huv)y = −ghBx(x, y)

(hv)t + (huv)x +
(
hv2 +

1
2
gh2

)
y

= −ghBy(x, y)

Applications:

• Tsunamis

• Estuaries

• River flooding, dam breaks

• Debris flows from volocanic eruptions
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High resolution finite volume methods

Hyperbolic conservation law:

1D : qt + f(q)x = 0 2D : qt + f(q)x + g(q)y = 0

1D : qt + f ′(q)qx = 0 2D : qt + f ′(q)qx + g′(q)qy = 0

Variable coefficient linear hyperbolic system:

1D : qt +A(x)qx = 0 2D : qt +A(x, y)qx +B(x, y)qy = 0

Def: Hyperbolic if eigenvalues of Jacobian f ′(q) in 1D or
αf ′(q) + βg′(q) in 2D are real and there exists a complete set of
eigenvectors.

Eigenvalues are wave speeds, eigenvectors yield
decomposition of data into waves.
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Finite-difference Methods

• Pointwise values Qn
i ≈ q(xi, tn)

• Approximate derivatives by finite differences

• Assumes smoothness

Finite-volume Methods

• Approximate cell averages: Qn
i ≈

1
∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx

• Integral form of conservation law,

∂

∂t

∫ xi+1/2

xi−1/2

q(x, t) dx = f(q(xi−1/2, t))− f(q(xi+1/2, t))

leads to conservation law qt + fx = 0 but also directly to
numerical method.
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Godunov’s Method for qt + f(q)x = 0

1. Solve Riemann problems at all interfaces, yielding waves
Wp

i−1/2 and speeds sp
i−1/2, for p = 1, 2, . . . , m.

Riemann problem: Original equation with piecewise constant
data.
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Godunov’s Method for qt + f(q)x = 0

Then either:

1. Compute new cell averages by integrating over cell at time
tn+1,

or ...
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Godunov’s Method for qt + f(q)x = 0

Then either:

1. Compute new cell averages by integrating over cell at time
tn+1,
or...

2. Compute fluxes at interfaces and flux-difference,

Qn+1
i = Qn

i −
∆t
∆x

[Fn
i+1/2 − F

n
i−1/2]
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Godunov’s Method for qt + f(q)x = 0

or ...

3. Update old cell averages by contributions from all waves
entering the cell.

Qn+1
i = Qn

i −
∆t
∆x

[A+∆Qi−1/2 +A−∆Qi+1/2]

where A±∆Qi−1/2 =
m∑

i=1

(sp
i−1/2)

±Wp
i−1/2.
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The Riemann problem

The Riemann problem for qt + f(q)x = 0 has special initial data

q(x, 0) =
{
ql if x < xi−1/2

qr if x > xi−1/2

Dam break problem for shallow water equations

R. J. LeVeque CIMMS/IPAM Workshop, Caltech, November 17, 2005



The Riemann problem

The Riemann problem for qt + f(q)x = 0 has special initial data

q(x, 0) =
{
ql if x < xi−1/2

qr if x > xi−1/2

Dam break problem for shallow water equations

R. J. LeVeque CIMMS/IPAM Workshop, Caltech, November 17, 2005



The Riemann problem

The Riemann problem for qt + f(q)x = 0 has special initial data

q(x, 0) =
{
ql if x < xi−1/2

qr if x > xi−1/2

Dam break problem for shallow water equations

R. J. LeVeque CIMMS/IPAM Workshop, Caltech, November 17, 2005



The Riemann problem

The Riemann problem for qt + f(q)x = 0 has special initial data

q(x, 0) =
{
ql if x < xi−1/2

qr if x > xi−1/2

Dam break problem for shallow water equations

R. J. LeVeque CIMMS/IPAM Workshop, Caltech, November 17, 2005



The Riemann problem

The Riemann problem for qt + f(q)x = 0 has special initial data

q(x, 0) =
{
ql if x < xi−1/2

qr if x > xi−1/2

Dam break problem for shallow water equations

R. J. LeVeque CIMMS/IPAM Workshop, Caltech, November 17, 2005



Riemann solution for the SW equations

The Roe solver uses the solution to a linear system

qt + Âi−1/2qx = 0, Âi−1/2 = f ′(qave).

All waves are simply discontinuities.

Typically a fine approximation if jumps are approximately
correct.
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Upwind wave-propagation algorithm

Qn+1
i = Qn

i −
∆t
∆x

 m∑
p=1

(sp
i−1/2)

+Wp
i−1/2 +

m∑
p=1

(sp
i+1/2)

−Wp
i+1/2


where

s+ = max(s, 0), s− = min(s, 0).

Note: Requires only waves and speeds.

Applicable also to hyperbolic problems not in conservation form.

For qt + f(q)x = 0, conservative if waves chosen properly,
e.g. using Roe-average of Jacobians.

Great for general software, but only first-order accurate (upwind
method for linear systems).
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Wave-propagation form of high-resolution method

Qn+1
i = Qn

i −
∆t
∆x

 m∑
p=1

(sp
i−1/2)

+Wp
i−1/2 +

m∑
p=1

(sp
i+1/2)

−Wp
i+1/2


− ∆t

∆x
(F̃i+1/2 − F̃i−1/2)

Correction flux:

F̃i−1/2 =
1
2

Mw∑
p=1

|sp
i−1/2|

(
1− ∆t

∆x
|sp

i−1/2|
)
W̃p

i−1/2

where W̃p
i−1/2 is a limited version of Wp

i−1/2 to avoid oscillations.

(Unlimited waves W̃p = Wp =⇒ Lax-Wendroff for a linear
system =⇒ nonphysical oscillations near shocks.)
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CLAWPACK
http://www.amath.washington.edu/~claw/

• Fortran codes with Matlab graphics routines.

• Many examples and applications to run or modify.

• 1d, 2d, and 3d.

• Adaptive mesh refinement, MPI for parallel computing.

User supplies:

• Riemann solver, splitting data into waves and speeds
(Need not be in conservation form)

• Boundary condition routine to extend data to ghost cells
Standard bc1.f routine includes many standard BC’s

• Initial conditions — qinit.f

• Source terms — src1.f
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Some other applications

• Volcanic flows, dusty gas jets, pyroclastic surges
• Acoustics, ultrasound, seismology, lithotripsy
• Elasticity, plasticity, nonlinear elasticity
• Electromagnetic waves, photonic crystals
• Flow in porous media, groundwater contamination
• Oil reservoir simulation
• Geophysical flow on the sphere
• Hyperbolic equations on general curved manifolds (CLAWMAN)
• Chemotaxis and pattern formation
• Semiconductor modeling
• Traffic flow
• Multi-fluid, multi-phase flows, bubbly flow
• Incompressible flow (projection methods or streamfunction vorticity)
• Combustion, detonation waves
• Astrophysics: binary stars, planetary nebulae, jets
• Magnetohydrodynamics, plasmas
• Relativistic flow, black hole accretion
• Numerical relativity — gravitational waves, cosmology
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Riemann solver for tsunamis

Issues:

• Bottom topography varies on scale of 4km

• Wave amplitude on scale of 1m

• Some cells are dry

• Cells become wet or dry as wave moves along shore
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Approximate Riemann Solvers

Approximate true Riemann solution by set of waves consisting
of finite jumps propagating at constant speeds.

Local linearization:

Replace qt + f(q)x = 0 by

qt + Âqx = 0,

where Â = Â(ql, qr) ≈ f ′(qave).

Then decompose

qr − ql = α1r̂1 + · · ·αmr̂m

to obtain waves Wp = αpr̂p with speeds sp = λ̂p.
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HLLE Solver

Harten – Lax – van Leer: Use only 2 waves with
s1 =minimum characteristic speed
s2 =maximum characteristic speed

Conservation implies unique value for middle state qm.

Einfeldt: Also use Roe speeds in min and max.
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Relaxation Schemes (Jin and Xin)
ut + f(u)x = 0 is replaced by the relaxation system

ut + vx = 0

vt +D2ux =
1
τ

(f(u)− v)

whereD = diag(d1, . . . , dm) (or more general...)

Gives linear hyperbolic system plus a relaxation source term:[
u
v

]
t
+

[ 0 I
D2 0

] [
u
v

]
x

=
[ 0

(f(u)− v)/τ
]
.

Eigenvalues are±dj .

Convergence to original solution asτ → 0 if the subcharacteristic
condition holds:

min(−dj) ≤ λ ≤ max(dj) for eigenvalues off ′(u).
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Relaxation Scheme

1 GivenUn andV n, update over time∆t by solving the homogeneous
linear hyperbolic system[

u
v

]
t
+

[ 0 I
D2 0

] [
u
v

]
x

= 0.

Call the new valuesU∗ andV ∗.

2 UpdateU∗, V ∗ toUn+1, V n+1 by solving the equations

ut = 0

vt =
1
τ

(f(u)− v)

Note:

• Un+1 = U∗.

• For τ → 0 (the relaxed scheme of Jin and Xin),

V n+1 = f(U∗) = f(Un+1).
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Another view of relaxed scheme
1 GivenUn andV n, update over time∆t by solving the linear system[

u
v

]
t
+

[ 0 I
D2 0

] [
u
v

]
x

= 0.

This gives the new valueUn+1.

2 SetV n+1 = f(Un+1).

Even simpler:Store onlyUn.

As “approximate Riemann solver”, decompose[
Ur − Ul

f(Ur)− f(Ul)

]
into eigenvectors of [ 0 I

D2 0

]
.

Use resulting waves to updateU . Note: There are now2m waves.

RJL and M. Pelanti: Relaxation Riemann Solvers (JCP 2001)
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Riemann problem for spatially-varying flux

qt + f(q, x)x = 0

Applications:

• Wave propagation in heterogeneous nonlinear media

• Flow in heterogeneous porous media

• Traffic flow with varying road conditions

• Solving conservation laws on curved manifolds
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Riemann problem for spatially-varying flux

qt + f(q, x)x = 0

Cell-centered discretization: Flux fi(q) defined in ith cell.

Need fi−1(Q∗
i−1/2) = fi(Q∗

i−1/2) =⇒ m propagating waves
plus jump in q (= m waves for the m components of q).
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Total of2m waves, which can be found by decomposing[
Qi −Qi−1

fi(Qi)− fi−1(Qi−1)

]
= α1

[
r1

s1r1

]
+ · · ·+ αm

[
rm

smrm

]
+ αm+1

[
e1
0

]
+ · · ·+ α2m

[
em

0
]
.

Note that this simplifies to first solving forα1, . . . , αm from

fi(Qi)− fi−1(Qi−1) = α1s1r1 + · · ·+ αmsmrm

In fact this is all we need for the wave-propagation algorithms.
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Flux-based wave decomposition (f-waves)

Choose waveforms rp (e.g. eigenvectors of Jacobian on each
side).

Then decompose flux difference:

fi(Qi)− fi−1(Qi−1) =
m∑

p=1

βprp ≡
m∑

p=1

Zp
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Wave-propagation algorithm using f-waves

Qn+1
i = Qn

i −
∆t
∆x

[A+∆Qi−1/2 +A−∆Qi+1/2]

− ∆t
∆x

[F̃i+1/2 − F̃i−1/2]

Standard version: Qi −Qi−1 =
∑m

p=1W
p
i−1/2

A−∆Qi+1/2 =
m∑

p=1

(sp
i+1/2)

−Wp
i+1/2

A+∆Qi−1/2 =
m∑

p=1

(sp
i−1/2)

+Wp
i−1/2

F̃i−1/2 =
1
2

m∑
p=1

|sp
i−1/2|

(
1− ∆t

∆x
|sp

i−1/2|
)
W̃p

i−1/2.
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Wave-propagation algorithm using f-waves

Qn+1
i = Qn

i −
∆t
∆x

[A+∆Qi−1/2 +A−∆Qi+1/2]

− ∆t
∆x

[F̃i+1/2 − F̃i−1/2]

Using f -waves: fi(Qi)− fi−1(Qi−1) =
∑m

p=1Z
p
i−1/2

A−∆Qi−1/2 =
∑

p:sp
i−1/2<0

Zp
i−1/2,

A+∆Qi−1/2 =
∑

p:sp
i−1/2>0

Zp
i−1/2,

F̃i−1/2 =
1
2

m∑
p=1

sgn(sp
i−1/2)

(
1− ∆t

∆x
|sp

i−1/2|
)
Z̃p

i−1/2
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Source terms and quasi-steady solutions
qt + f(q)x = ψ(q)

Steady-state solution:

qt = 0 =⇒ f(q)x = ψ(q)

Balance between flux gradient and source.

Quasi-Steady solution:

Small perturbation propagating against steady-state background.

qt � f(q)x ≈ ψ(q)

Want accurate calculation of perturbation.

Examples:
• Shallow water equations with bottom topography and flat surface
• Stationary atmosphere where pressure gradient balances gravity
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Fractional steps for a quasisteady problem

Alternate between solving homogeneous conservation law

qt + f(q)x = 0 (1)

and source term
qt = ψ(q). (2)

Whenqt � f(q)x ≈ ψ(q):
• Solving (1) gives large change inq
• Solving (2) should essentially cancel this change.

Numerical difficulties:

• (1) and (2) are solved by very different methods. Generally will not
have proper cancellation.

• Nonlinear limiters are applied tof(q)x term, not to small-perturbation
waves. Large variation in steady state hides structure of waves.
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Incorporating source term in f-waves

qt + f(q)x = ψ with f(q)x ≈ ψ.

Concentrate source at interfaces: Ψi−1/2 δ(x− xi−1/2)

Split f(Qi)− f(Qi−1)−∆xΨi−1/2 =
∑

pZ
p
i−1/2

Use these waves in wave-propagation algorithm.
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Incorporating source term in f-waves

qt + f(q)x = ψ with f(q)x ≈ ψ.

Concentrate source at interfaces: Ψi−1/2 δ(x− xi−1/2)

Split f(Qi)− f(Qi−1)−∆xΨi−1/2 =
∑

pZ
p
i−1/2

Use these waves in wave-propagation algorithm.

Steady state maintained:

If f(Qi)−f(Qi−1)
∆x = Ψi−1/2 then Zp ≡ 0

Near steady state:

Deviation from steady state is split into waves and limited.
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Riemann solver for shallow water with bathymetry

q =
[
h
hu

]
, f(q) =

[
hu

hu2 + 1
2gh

2

]
=

[
f1

f2

]
, ψ =

[
0

ghB′(x)

]
.

Robust solver (Dave George):

Split the vector


∆h

∆(hu)
∆f2

∆B

 into 4 waves.

Modifications for dry cell problem (One of neighboring cells is
dry or becomes dry).
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Adaptive Mesh Refinement (AMR)

• Cluster grid points where needed

• Automatically adapt to solution

• Refined region moves in time-dependent problem

Basic approaches:

• Cell-by-cell refinement
Quad-tree or Oct-tree data structure
Structured or unstructured grid

• Refinement on “rectangular” patches
Berger-Colella-Oliger style
(AMRCLAW and CHOMBO-CLAW)
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Time stepping algorithm for AMR

• Take 1 time step on coarse grid.

• Use space-time interpolation to set ghost cell values on
fine grid near interface.

• Take K time steps on fine grid. (K = refinement ratio)

• Replace coarse grid value by average of fine grid values on
regions of overlap — better approximation and consistent
representations.

• Conservative fix-up.
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AMR time stepping for tsunami model

Normally ∆x, ∆y, ∆t are all refined by same factor KL going
from level L to L+ 1.

(Courant number is then the same on all grids)

For tsunami: Max wave speed in each cell is |u|+
√
gh.

In deep ocean:
√
gh ≈ 200m/s, ∆t ≈ 0.005∆x.

Suppose finest grids are only near shore, where
|u|+

√
gh < 10, say. =⇒ can take ∆tf ≈ 0.1∆xf

Anisotropic refinement: In going from level L to L+ 1,
Refine ∆x by KLx, ∆y by KLy, ∆t by KLt.

Near shore: KLx = KLy = 8, KLt = 1.

R. J. LeVeque CIMMS/IPAM Workshop, Caltech, November 17, 2005



Grid refinement with bathymetry
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Grid refinement with bathymetry
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Grid refinement with bathymetry

Refining grid requires assigning interpolated Q values

• Simple linear interpolation of h doesn’t work

• From hi calculate ηi = hi +Bi

• Interpolate ηi to fine grid to obtain ηj for j = 1 : r
preserves constant surface!

• Compute hj on fine grid from hj = ηj −Bj

• Conservative provided 1
r

∑r
j=1Bj = Bi

Coarsening grid:

• Set hi = 1
r

∑r
j=1 hj

• Then hi +Bi = 1
r

∑
(hj +Bj)

R. J. LeVeque CIMMS/IPAM Workshop, Caltech, November 17, 2005



Validation of shallow water code

• 1d exact solutions of waves on a beach

• 2d benchmark problem with wave tank comparison

• Indian Ocean tsunami — lots of data
• Jason-1 satellite data
• run-up and inundation data from many coastal surveys
• Data near Madras from Harry Yeh’s survey
• Tide gauge data from around the world

R. J. LeVeque CIMMS/IPAM Workshop, Caltech, November 17, 2005



Catalina Workshop — June, 2004

3rd Int’l workshop on long-wave runup models

Benchmark Problem 2: Scale model of part of coastline of
Okushiri Island, site of 1993 tsunami.

Movie of wave tank ... Movie of simulation

R. J. LeVeque CIMMS/IPAM Workshop, Caltech, November 17, 2005



Tide gauge data
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Summary

• Tsunami model can handle global scale and local scale
simultaneously.

• Preliminary validation looks good.

• Wave propagation problems are generally formulated as
hyperbolic systems.

• Many practical applications in science and engineering.

• General software for high-resolution methods, AMR:
http://www.amath.washington.edu/~claw

• Papers and simulations:
http://www.amath.washington.edu/~rjl/research.html

http://www.amath.washington.edu/~rjl/research/tsunamis
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