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ESWT Background

» Similar treatment to Shock wave Lithotripsy (ESWL)
» Shock waves are used to treat musculoskeletal
conditions
Typical Treatment
» 1000-4000 shocks
» 1-4 shocks per second

(C) www.urinarystones.
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ESWT Shock Wave Properties

Shock Wave Generated by a spark plug source
(electrohydraulic lithotripter)

Focalsize (-6dB)

Focal Point F2 ! .\» 5.5x 61 mm at 20kV

Primary shock wave Focused shock wave

Ellipsoid Electrode

Typical Wave Form

Shock waves in lithotripsy are weak and can be modeled as
discontinuities.
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ESWT - material heterogeneities

Numerical Representation of Lithotripter
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Interfaces: Brass/Water, Air/Water, Water/Bone
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ESWT Shock Wave Propagation

Wave Propagation in Heterogeneous media

medium 1 rmedium 1 medium 1

medium 2 medium 2
redium 2

Reflection Refraction Diffraction
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Introduction

Finite volume methods ESWT

. Background
» Integral form of the conservation law,

Numerical method

. Finite Volume Method
a Tit+1/2 The Riemann problem
& / q(a:, t) dr = f(Q($i71/2)) — f(Q(J;i+l/2)) Godunov's Method
Ti—1/2 Numerical model
of ESWT

can be written in PDE form as ¢; + f(q). = 0 and used | e Yok
to define the numerical method.
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Define: Q7 ~ [F1/2 g(x,t,) da

i—1/2

Numerical method: Q?H QY — ( i+1/2 = Fi—1/2)

Numerical flux: Fz—1/2 ~ At ftn+1 f (l‘i_]_/2,t))dt
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Introduction

ESWT

The Riemann problem for ¢; + f(¢)» = 0 has special initial Background
data Numerical method
1 Finite Volume Method
q(‘,r 0) — QZ If T < 0 The Rienvmnn problem
) (_I’r‘ nc x > 0 Godunov’s Method
Numerical model
Solutions to this problem are used to define the numerical of ESWT

| E Work
fluxes which update cell averages. uture Wor



The Riemann Problem for Linear Acoustics

The Linear Acoustics Equations with spatially varying
material parameters are:

This is a linear system ¢; + Aq, = 0. The eigenvalues and
eigenvectors of A are :

A= —co(z), A2 = co(x), co = /Ko/po(x)

7“1 — [ —Z{)(z) ] 7 7"2 — [ —Zi)(:v) ]
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Riemann Problem for Linear Acoustics

General solution to linear acoustics problem:
[ pEx’ ) ] = wl(z — A\t + w?(z — N2t)r?

where w! and w? are dependent upon the initial condition
and are found by setting t = 0 and solving
Rw = qo

where R is the matrix of eigenvectors of A.
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Riemann Problem for Linear Acoustics omereal
- ohod e
ConSIder Thgrapy with
Finite Volume

Methods
4172 'I-'l.::]+.3 M 'I-I’;:'+,! bl Kirsten Fagnan
NEAN T |
I III'I, | |I Introduction
)
\ g=qrh || 9=89% | ESWT
iy i Background
Fi-1/z Fitl'z Fi43/2 Numerical method
Finite Volume Method
. . The Riemann problem
We can represent the right and left states as linear Godunov's Method
combinations of the eigenvectors

Numerical model
of ESWT
qr = w}rl + wfrz andq; = wllrl + wl2r2 Future Work
The jump in q across the interface can be written as
(¢ — q) = ot +®r? = W+ W?
We can get alpha by solving Ra = (¢ — qp).
Combining these equations and solving for the middle state:

¢ (z,t) = gl + ot = ¢, — a?r?



REA Algorithm Numerica

Modeling of
Extracorporeal
Shock Wave
Therapy with
Finite Volume
Methods

Kirsten Fagnan

Introduction

» Reconstruct a piecewise polynomial function ¢"(,t,) cowr
defined for all x, from the cell averages Q. Background

Numerical method

Finite Volume Method
The Riemann problem
Godunov's Method

Numerical model
of ESWT

Future Work



REA Algorithm Numerica

Modeling of
Extracorporeal
Shock Wave
Therapy with
Finite Volume
Methods

Kirsten Fagnan

Introduction
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defined for all x, from the cell averages Q. Zee gt
. . N ical method
» Evolve the hyperbolic equation exactly (or Finite Volume Method
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» Average this function over each grid cell to obtain new
cell averages.
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Characteristics of ESWT

We would like our model for ESWT to:

» Capture wave behavior at sharp interfaces due to
inhomogeneities

» Be able to represent weak shock wave as discontinuities
» Handle varying material parameters

» Model propagation of specific ESWT pressure wave
form
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» There are two types of waves in a solid body: Introduction

» P-waves are a result of compression or normal stresses Eockaround
» S-waves are a result of shearing

Numerical method

» Modeling these waves gives information about Numerical model
. . . . of ESWT
compression, tension and shear in the physical system.

Elasticity Equations
Elasticity Results
Euler Equations of

> In water there are no shear waves and the linear s
elasticity equations are equivalent to acoustics. e S

Results

. . .. Future Work
IDEA: Model pressure wave in ESWT using elasticity ‘
equations.



Elasticity Equations

The linear elasticity equations are a result of assuming a
linear relationship between the stress and strain (Hooke's

law). The 3D Linear Elasticity Equations are:

ot — (A + 2u)ug — Avy — Aw, =0
o — My — (A +2p)v, — Aw, =0
o3 — Mg — Avy — (A +2p)w, =0
1% = (v + uy) = 0
o — (v, +wy) =0
o — pw(uz +wy) =0

11 12 13
put — oy —o, —o0,” =0
12 _ 22 23
puy —o,- —o, —o; =0
13 23 _ 33
pw — oy —o,” —o; =0
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Introduction
qt + Agz + qu +Cq. =0 ESWT
Background

Where Numerical method

11 Numerical model
—(A+2p) of ESWT
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The eigendecomposition of these matrices is used to find
solutions to the Riemann problem.



2D Linear Elasticity Results

Click to start
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2D Linear Elasticity Results
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2D Linear Elasticity Results

Maximum shear
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3D Linear Elasticity Results

Ellipsoidal reflection, focusing of pressure wave
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Euler Equations of Gas Dynamics

In conservative form the 3D Euler equations are:

@t + (@) +9(0)y + h(q). =0

where
P pu
2
pu pu” +p
q = PV 5 f(q) = puv 5
pw puw
E (E + p)u
pv pw
puv puw
gl@)=| »7+» |, h(@)=| e
pow pw +p
(E + p)v (B + p)w

Here p is the density, p is the pressure, E is the total energy
which we often decompose as F = pe + %puz, and e is the

internal energy. These equations represent conservation of
mass, momentum and energy.
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Tait equation of state (EOS)

To close the above system we need a relationship between p,
p and e (state variables). For ESWT we use:

P+Po _ <p>7
Do + Poo PO

which is known as the Tait or stiffened gas EOS.
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Pressure wave form
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Resolve memory issues

» A better model/integrated Riemann solver ESWT
Background

> Stab|||ty iSSUeS? Numerical method

» Correlation of results to experimental data Numerical model

» Mapped grids for simple geometries Future Work

>

>

Model shock wave behavior with 3D bone geometry
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