
Thoughts for the Roundtable on
“Data and Code Sharing in the Computational Sciences”

Hosted by the Information Society Project, Yale Law School

November 21, 2009

Randall J. LeVeque1

My main research area is the development of numerical methods and software, and so my thoughts
primarily concern sharing of code rather than data.

There are different types of computer programs (codes, for short). Some programs are developed
as software packages that are meant to be distributed in some manner and used by people other
than the authors.

Here the focus is on research codes that are developed (perhaps using software packages) to solve
a particular problem or to test out a new algorithmic idea. The issues involved in sharing research
codes are somewhat different than software development and distribution.

Arguments against sharing code. Authors are naturally reluctant to share research codes for
many reasons. Below are some thoughts on a few of the reasons and how they might be addressed.
The points below are mostly adapted from [1], which contains a longer discussion.

• By the time a paper is published, the authors no longer possess the code that generated the
results shown. Research codes often evolve to solve new problems, and trying to go back and
reproduce earlier results may be impossible. This can even happen during the writing of a
single paper with multiple examples. This of course is a problem of scientific methodology in
computational science that goes well beyond the question of whether the code should be shared
with others. Regardless of what will ultimately be distributed, it’s important for researchers
in computational science to develop better reproducible research habits. There are many tools
available to help with this, in particular version control software such as Subversion, Mercurial,
GIT, and others that track changes to a set of files. Although originally developed to help
organize large software projects with multiple authors, such systems are very useful even for
personal projects since one can keep track of the version number used for creating a particular
result and revert to exactly that version at a later time if needed.

• It is a lot of work to clean up a code to the point where someone else can even use it, let alone
read it. While ideally all published programs would be nicely structured and easily readable
with ample comments, as a first step it would be valuable simply to provide and archive the
working code that produced the results in a paper. This can be extremely valuable simply in
order to check, for example, what parameter values were used for some part of an algorithm
that were omitted from the paper. The current culture in computational science is that codes
are often made publicly available only if they are being offered as software packages for others
to use, with the requirements that go along with this: easy installation on multiple platforms,
a nice user interface, adequate documentation, etc. It will be hard to convince people to
expose their research codes to public scrutiny. Moreover, posting such a code opens the door
for random people to send email asking for help getting the program to run or adapting it to
solve their problems. New paradigms and expectations are required, a cultural change that
will take some time to accomplish.

1 Department of Applied Mathematics, University of Washington, Box 352420, Seattle, WA 98195-2420,
rjl@uw.edu. Version of November 30, 2009.

1



• A working program for solving a scientific or engineering problem is a valuable piece of in-
tellectual property. This is a very real concern, particularly since many research codes have
taken years to develop and the authors hope to publish many more papers based on the code.
Why make it globally available along with the first publication? A possible counterargument
is that, as mentioned above, it is not generally easy to take someone else’s research code and
work with it, particularly a large code that is not designed as software. Those who want to
extend it to solve a new problem will often need assistance from the original authors, if they
are willing, and in return will give proper credit. If the culture changes to the point where all
authors are expected to share the code used in a paper, then it would be difficult to hide the
fact that the work is an extension of a prior code. Authors may also find that their work is
cited more frequently if they provide code that simplifies the use of their work by others. But
there are obviously legal and copyright issues to be carefully considered in regard to intellectual
property rights.

• It is impossible to share a research code if it is based on commercial, proprietary, or copy-
righted software that cannot be redistributed, or that only runs on hardware most readers do
not have access to. This may be true, but generally the original research portion of the code
is the authors’ own work. As mentioned above, making this portion of the code available for
inspection can be very useful in understanding and reproducing the results of a publication
even if the reader cannot run the full code.

Why the time is ripe to encourage change. In spite of the serious objections raised above,
there is a growing recognition among computational scientists and mathematicians that we need
to develop better ways to validate and compare new methods that are proposed, and to facilitate
building on past work. There has been an explosion of new methods proposed in the literature,
many of which are implemented and tested only by their inventors. Referees and readers often could
not reproduce the results of a publication from what is presented in the paper even if they were
inclined to try programming it from scratch. Meaningful comparison with other methods proposed
for the same problem is often nearly impossible. Frustration is growing with the current state of
affairs.

Luckily the tools to facilitate change are also growing rapidly. For example, there are now many
different version control systems available, most of them open source and readily available. There are
also many interesting ideas and packages to facilitate literate programming along with reproducible
research, making it easier to document codes as one goes along. These tools make it easier and
more enjoyable to write research codes in a way that the author can later understand and build
on, leading to personal advantages for the authors’ own research. The work of graduate students
and postdoctoral fellows also has a greater chance of being reused if they are encouraged to use
such tools. Researchers may first adopt reproducible and literate programming techniques for these
reasons, but then find that it also becomes easier to contemplate sharing the code with others.

Rapid improvements in internet speed, web interfaces, cloud computing, storage space, etc. also
make it much easier to archive and share codes than ever before. Even the largest research codes
are generally very small relative to the massive data sets people worry about sharing, so archiving
multiple copies of codes used to produce different published results is not unreasonable. (And an
advantage of version control software is that it stores only differences between versions, making it
trivial to store multiple versions with little wasted storage.)

The downside of all the new ideas and tools is that there are so many possible systems, each with
a certain startup cost and learning curve, that it can be daunting to know where to start. While
researchers may recognize that long-term productivity would increase by adopting these tools, the
startup costs take time away from current research. The rapid pace of development and evolution
of these tools also means that documentation is often inadequate and that tools keep changing or
disappearing, supplanted by a better approach. This is a natural part of the evolution, but until
things have settled down a bit more there may be a relatively small number of researchers willing
to participate in the process.

2



What journals might do. Some journals provide authors with the opportunity to submit
supplementary material that is available online but not in the printed article. Often this consists
of color versions of figures or animations that complement the printed copy in a natural way. In
some cases authors are allowed or even encouraged to post the computer codes that generated the
results in the paper, but this seems to be fairly rare. This is a service that more journals could be
encouraged to provide. A permanent archive that would not disappear when the author changes
institutions or rearranges webpages and forgets to update links would be greatly preferable to the
current informal system that many authors adopt.

In this regard one journal to watch is the newly established Mathematical Programming Com-
putation. In fact they go further, strongly encouraging authors to provide source code or at least
executables for use by the referees in judging the paper. The description of their policies is available
on the journal’s webpage (mpc.zib.de). I think it is unlikely that well established journals will go
this far any time soon, for fear of mass exodus of authors and reviewers. However, providing the
opportunity for archiving codes and encouraging authors to take advantage of it may be viewed
favorably by journals as a way of adding value to their product. Reviewers may find access to the
codes very valuable in judging papers, as long as this does not place too much additional respon-
sibility on them. If these services are available and some authors start taking advantage of them,
others may be encouraged to follow.

The adoption of some sort of Reproducible Research Standard as proposed by Stodden[2], with a
recognizable logo that could be applied to a paper, would help make readers aware of such archives
and convince authors that they should follow suit.

References

[1] R. J. LeVeque. Python tools for reproducible research on hyperbolic problems. Computing
in Science and Engineering, 11:19–27, 2009. Codes to accompany paper are available at
http://www.clawpack.org/links/cise09

[2] V. Stodden. Enabling reproducible research: licensing for scientific innovation. Int. J. Commun.
Law & Policy, 13:1–25, 2009.

3

http://mpc.zib.de
http://www.clawpack.org/links/cise09

