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Abstract

A class of wave propagation algorithms for three-dimensional conservation laws and
other hyperbolic systems is developed. These unsplit finite volume methods are based on
solving one-dimensional Riemann problems at the cell interfaces and applying flux-limiter
functions to suppress oscillations arising from second derivative terms. Waves emanating
from the Riemann problem are further split by solving Riemann problems in the transverse
directions to model cross-derivative terms. With proper upwinding, a method that is stable
for Courant numbers up to one can be developed. Stability theory for three-dimensional
algorithms is found to be more subtle than in two dimensions and is studied in detail. In
particular we find that some methods which are unconditionally unstable when no limiter
is applied are (apparently) stabilized by the limiter function and produce good looking
results. Several computations using the Euler equations are presented, including blast
wave and complex shock/vorticity problems. These algorithms are implemented in the
CLAWPACK software which is freely available.

Keywords: Finite-volume methods, high resolution, wave propagation, three dimensions,
Euler equations, software.
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1 Introduction

This paper describes an unsplit method for solving three-dimensional conservation laws, i.e.
equations of the form

gt + f(@)z +9(q)y +h(g). =0, (1)

where ¢ € IR™ is the conserved quantity. It is well known that these equations may develop
shock waves or contain other discontinuities. The existence of regions where the solution
changes abruptly places special requirements on the numerical methods to be used. Tradi-
tionally, simple numerical schemes suffer from dissipative and dispersive effects, resulting in
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inappropriate representation of these discontinuities. This is reflected in the solution as spuri-
ous oscillations or excessive smearing in the vicinity of the discontinuity. Since the occurrence
of discontinuous waves is a significant feature of hyperbolic problems, much effort has been
made in order to construct robust methods producing sharp and monotone representations.

One special initial value problem is of major importance, both in its own and in the
development of efficient numerical methods. This is the Riemann problem which consists of
the equation ¢; + f(gq), = 0 together with the initial condition

g =z<0
q(a:,o>—{ ‘s @

where ¢; and ¢, are constants. With certain assumptions on the flux function f, it is always
possible, in principle, to solve the Riemann problem if the states ¢; and ¢, are sufficiently
“close”, see [20], [38]. The solution consists of waves travelling with finite velocities. These
waves may either be discontinuous waves like shock waves or smooth rarefaction waves. The
similarity solution of this initial-value problem depends on the ratio z/t. Due to this simplifi-
cation, it is possible to solve any scalar problem. Also for many important nonlinear systems,
the Riemann problem can be solved, e.g., the Euler equations of gas dynamics [15], [38]. The
procedure for constructing the solution of a Riemann problem will be called a Riemann solver.

The history of the development of numerical methods for hyperbolic conservation laws is
long and rich. The wave propagation method described in this paper falls into the tradition of
methods based on solving Riemann problems which originated with the work of Godunov[14].
For a general overview of such methods and many references, see for example [13], [17], [23],
[43].

A common approach when solving multi-dimensional hyperbolic problems is to apply di-
mensional splitting, see [9],[40]. The idea is to iterate on one-dimensional problems. The
popularity of these algorithms is due to their simplicity and the fact that they produce surpris-
ingly good results. Any one-dimensional scheme is easily extended to the multi-dimensional
case using this approach. However, it is well known that dimensional splitting has several dis-
advantages. Since the strategy only involves flow in the coordinate directions, the solution is
affected by the grid orientation. Discontinuities travelling obliquely to the grid experience more
smearing than those travelling in the coordinate directions. The implementation of boundary
conditions may also be complicated using this strategy.

In unsplit methods, information is propagated in a multi-dimensional way. The unsplit
scheme to be presented was first described in an unfinished form in [18], and later in a state
close to the present, in the thesis of the first author [19]. One-dimensional Riemann problems
are solved at the interfaces. Limiter functions are applied to suppress spurious oscillations
arising from second derivative terms. The left-going and right-going waves are split into parts
propagating in the transverse direction by solving Riemann problems in coordinate directions
tangential to the interfaces. This models cross-derivative terms necessary for obtaining both a
stable and formally second order scheme. The scheme extends the approach used for two space-
dimensions [24], [26], and the advection scheme for three-dimensional problems considered in
[25]. The 3D wave propagation scheme is implemented in Fortran, and is included in the
software package CLAWPACK (Conservation LAW PACKage) [27]. This package includes routines
for solving a wide range of hyperbolic problems, and contains a selection of different Riemann
solvers, boundary conditions etc. CLAWPACK is freely available on the Web [27].



This method is similar in spirit to other multi-dimensional methods using one-dimensional
Riemann problems at the cell interfaces, see [2], [5], [7], [22], [29], [32], [35], [37], [44]. However,
an algorithmic difference is that the Riemann problem is based on the solution values at
the beginning of the time step, and that cross-derivative terms are implemented due to the
transverse propagation of the emanating waves. In other methods, such as that of Colella
[7], the states involved in the Riemann problem are based on an interpolation in which the
transverse terms are included before solving the Riemann problem.

In the wave propagation algorithm, it is not necessary to evaluate the flux functions explic-
itly. As a consequence, the algorithm may as well be applied on systems in non-conservative
form. In CLAWPACK, the scheme is implemented so that it is applicable on quasilinear problems
having the form

k(z,y, 2)qe + Alq, x, Y, 2,t) gz + B(q, x,y, 2, t)qy + C(q, z,y, 2, t)q, = ¥(q, K, Z,y,2,t).  (3)

Recent work on acoustic and elastic waves in heterogeneous media [11], [12] shows that these
methods can be extremely useful even for linear problems since the solution of the Riemann
problem accurately models the transmission and reflection of waves at a material interface.
The three-dimensional algorithm developed here should be applicable to problems of this type
as well. In this paper, we focus on the conservation law (2), and refer to [26] for a discussion of
how to apply CLAWPACK routines to this more general class of problems. In Section 2, the wave
propagation scheme is derived. In the process of deriving this scheme, the one-dimensional
and two-dimensional versions are briefly reviewed. In Section 3, numerical results are given
for three test problems involving the Euler equations: a radially symmetric smooth solution
where second order accuracy can be verified, an initially spherical shock wave expanding in a
slab between two parallel walls, and finally a fully 3D problem, in which shock waves are used
to produce vorticity.

Stability is the topic of Section 4. A von Neumann approach is used to shed some light on
the question of stability for the wave propagation scheme and how the use of limiters affects
this property. With proper upwinding, a method that is stable for Courant numbers up to
one can be developed. However, stability theory for three-dimensional algorithms is found to
be more subtle than in two dimensions and we study this in detail. In particular we find that
some methods which are unconditionally unstable when no limiter is applied are (apparently)
stabilized by the limiter function and produce good looking results.

2 Wave propagation algorithms

In this section we will derive the three-dimensional wave propagation scheme. This will gener-
alize the schemes for two-dimensional systems described in [26] and scalar three-dimensional
problems from [25]. We give a brief review of the one- and two-dimensional wave-propagation
methods, but in order to avoid substantial repetition we assume that the reader is familiar
with the notation and ideas of [25] and [26].

We assume that the three-dimensional system of conservation laws (1) is hyperbolic, i.e.
that the matrix af’(q) + B¢’ (q) +vh'(¢) has real eigenvalues and a complete set of eigenvectors
for any real a, (3, and v with |a| + |8 + |y| > 0. Define a regular grid with constant spacing
Az, Ay, and Az. Let Cyj denote the cell [z, 2;41] X [y, Yj41] X [2k, 2k+1], Where z; = iAxz,
etc. Likewise let At denote the time step, and t,, = nAt the time levels.



In order to derive the numerical scheme we primarily consider two linear problems, namely
the scalar equation
qt + uqy +vgy +wq, = 0, (4)

with positive velocities, and the linear system
gt + Agy + BQy +Cq, = 0. (5)

The essential ideas and difficulties in three-dimensional wave-propagation appear already with
these linear problems. The extension to nonlinear systems is then immediate following the
approach used already in two space dimensions in [26].

The wave propagation schemes will be written in the same form as in that paper,

Qijk = Qiji + A, — ﬁ_i(Fi-l—l,jk — Fyjg) — %(Gi,j—l—l,k — Gijk) — g(Hij,lH—l — Hiji), (6)
where Q) represents the numerical solution at the time step #,, ;1. The term A, includes the
donor-cell part, i.e. a (one-dimensional) first order upwind scheme applied coordinate-wise. The
F., G, and H terms take care of the approximations of the higher order derivatives, including
cross-derivative terms. The flux functions will not be needed explicitly, and as a consequence,
the scheme can easily be applied to a wider range of hyperbolic problems.

2.1 Schemes for linear 1D problems

Essential features of the wave propagation schemes are the so-called increment and correction
wave. The former refers to the constant state waves given from the solution of the (ap-
proximate) Riemann problem, while the correction waves are piecewise linear waves used for
obtaining second order accuracy. These features are best illustrated by using the simple scalar
advection equation

g +ugy =0, u>0. (7)

The conservative scheme for one-dimensional problems reads
At
T

Qi=Qi— A_(FH—I - F;), (8)

where the numerical flux F; approximates the exact flux, i.e.

]_ tn+1

F,~ —
AL tn

fla(zi,-))dt.

As in standard second order Godunov methods ([23],[46]), assume that the solution at time
t,, is piecewise linear. The solution at time #,; is obtained by simply shifting the profile a
distance uAt. The situation close to the interface z; then looks as depicted in Figure 1. Since
the problem is linear, the wave entering cell C; may be split into a piecewise constant and a
piecewise linear wave. These waves are named increment and correction waves respectively. It
is easily seen that the numerical flux in this case reads

1 At
Fi=uQ; 1+ o (1 - UA—x> Azo; 1, 9)
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Figure 1: The piecewise linear function can be split into a constant state wave (the increment
wave) and a piecewise linear wave with integral zero (the correction wave).

where ;1 denotes the slope of the solution in cell C;_;. The first term at the right hand
side of (9) corresponds to the flux contribution from the increment wave, while the last term
is the contribution from the correction wave. Note that the increment wave alone yields the
first order upwind scheme and that the correction wave may correct this into a second order
scheme if the slope is chosen correctly.

Next, consider the linear system f(q) = Aq, where A is a constant m X m matrix with
eigenvalues AP and eigenvectors 7. Since A has a complete set of eigenvectors, the matrix is
diagonalizable, i.e.

A=RAR !,
where R = [r!|r?|...|r™] is the eigenvector matrix and A = diag(A!,A2,...,A\™). For a € R
let
a’ = max(0,a), a~ = min(0,a).

Define the positive and negative parts of A as
AT =RATR™!, A" =RA R}, (10)

where AT = diag(A1F, \2%, ..., A™E),

The solution of the Riemann problem defined by @;_1 and @; consists of m discontinuities
moving with velocities A\?. Each jump is a scalar multiple of the eigenvector, i.e. WP = ofrP.
Hence the jump AQ; = Q; — Q;—1 may be written as

AQ; =) W
p

The first order Godunov flux is defined as

FF = §(QY),

where Q? denotes the solution at z/t = 0 of the Riemann problem with left state @;_1 and
right state ();. For the linear system this intermediate state equals

Q=Qii+ Y W=0Qi— > W

AP0 AP>0

Hence, the Godunov flux reads

FF = AQim1 + A AQ; = AQ; — ATAQ;.



For the numerical scheme (8) we get

Qi=Qi— %(A+AQi + AT AQi1)- (11)
The expression ATAQ; = Zp()\p)"' WP gives the flux contribution from the waves entering
cell C; from the Riemann problem at the left interface, while A~ AQ;+1 gives the flux from the
waves entering the same cell from the Riemann problem at the right interface. These piecewise
constant waves, emanating from the Riemann problems, will be named increment waves, as a
generalization of similar waves in the scalar case.

2.2 Second order corrections

The scheme considered above is first order accurate only. In order to increase the order, (8) is
rewritten as

. At - N
Qi= Qi+ A" — A_x(Fi—H - Fy), (12)

where A}? equals the upwind flux (or Godunov flux) obtained from (11), i.e.
up At o _
A" = =7 (ATAQi + ATAQi)- (13)

The term F; is used to update the solution so that second order accuracy is achieved. This is
based on the Lax-Wendroff scheme, though in Section 4 we will discuss the possible merits of
using other second order schemes as the starting point.

The flux for the Lax-Wendroff scheme may be written as follows:

1 At
F;=FF + 54l (1 — A—£|A|) AQ;,

where |[A| = AT — A~. Hence, a natural choice for F; is

1 At
F;, = §\A| (1 — A—$|A|> AQ;
1 At
= 5 Z I NP (1 — A—x|/\1’|) WP, (14)
p

The Godunov scheme exhibits strong numerical dissipation, and discontinuities in the solution
are smeared causing low accuracy. The Lax-Wendroff scheme, on the other hand, is more accu-
rate in smooth parts of the solution. But near discontinuities, numerical dispersion generates
oscillations, also reducing the accuracy.

A successful approach to suppress these oscillations is to apply flux limiting. This is
obtained by replacing the wave WP = ofr? by

WP = B(6P)WP, (15)

where 7 measures the smoothness of the solution. A standard way of doing this is to consider
the ratio of wave strengths of in the upwind direction, i.e.

_ ) o /og, >0
%= { ajp/af, AP <O0. (16)



The limiters used here are originally constructed in order to ensure both second order accuracy
and TVD properties for scalar conservation laws. For a detailed discussion of such methods,
see [13], [23], [42], [43]. The TVD concept is not applicable in the system case directly, but
applying this strategy on the characteristic equations, as done implicitly here, produces steep
and monotone approximations of discontinuities.

Note that ® = 1 yields the Lax-Wendroff scheme, while ® = 0 yields the Godunov scheme.
In Section 4.3 we are also going to study the Fromm scheme and the Beam-Warming scheme,
both being second order accurate. Here we simply note that ® = 6 gives the latter scheme,
while ® = (1 + 6)/2 gives the former. Some common limiters are:

minmod: ®(f) = max(0, min(1,0))
superbee: ®(#) = max(0, min(1,26), min(2, §))

monotonized centered (MC): ®(#) = max(0, min((1 + 6)/2,2,26))

Minmod is the most diffusive limiter of the above, in the sense that it adds less downwind
contribution. This limiter selects the wave with the smallest norm of the two compared,
provided the jumps across the waves are in the same direction, i.e. the wave strengths have
common sign. If not, the wave is entirely suppressed. On the other hand, the superbee limiter
is known to be “overcompressive”, i.e. it tends to sharpen profiles into discontinuities. The
MC-limiter seems to be a good choice in most situations.

As a generalization of the correction waves in the scalar case, the piecewise linear waves
used in the second order update will also be referred to as correction waves.

2.3 The propagation of the increment wave

Also in the three-dimensional case, we solve one-dimensional Riemann problems. The structure
of multi-dimensional Riemann problems is so complex that it is not beneficial to use them as
building blocks in a numerical scheme, cf. [36]. The increment and correction waves in 3D
are simple extensions of those obtained in 1D. Hence, waves originating from an interface in
z are functions of z and ¢ only. The description below will focus primarily on the solution of
the Riemann problem defined at the interface z;, and how the emanating waves update the
upwind term A;‘ﬁc, ﬁijk and nearby G and H fluxes. An analogous procedure is followed at
each interface in the y-direction and in the z-direction.

Propagating the waves in different ways transverse to the interface leads to a family of
possible methods with different accuracy and stability properties. These will be built up over
the next several sections. Stability analysis is presented in Section 4.

2.3.1 Scalar equation

For the scalar equation (4), a simple first order scheme can be made by considering first order
upwind terms in each coordinate direction. This yields a donor-cell type of scheme in which
the upwind part reads

At At At

AP = ——uQ;i 15— —vQii 1k — —wQijk 1-
Z]k A.’L' QZ 5]k Ay QZ:] 7k AZ Qlj,k
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(u,v,w) Volume = 1/3 uvw At3
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(2) (b)

Figure 2: (a) The volume covered by the increment wave, when the velocities are positive. (b)
The volume used in updating the cells Cjj x+1 and Cj j 41 p41.

The stability condition of this scheme is easily seen to be u Ai +v At +w ﬁt <1 (see Section 4).
In order to increase both stability and accuracy, the increment wave is advected in the direction
of the velocity vector (u,v,w) (Figure 2). This yields the “shift and average” scheme, in which
the piecewise constant function defined by the cell values @;j; is shifted according to the
velocity, and then averaged back onto the grid. This method is clearly stable for Courant
numbers up to 1.

To see how the “shift and average” scheme is defined in a flux formulation, consider the
updates of the éi,j+1’k given by the increment wave originating from the interface z = z;.
(The wave is defined by the jump —A;Q;jx = Qi—1,jx — Qijr and the velocity vector.)

~ ~ lntl  f2E4+1 zitu(t—tn)
Gijt1e = Gijrip— At s A:v/t /z+w(t . / VAL Qijk dxdzdt,
n k n Zj
~ 1 At 1 At At
= Gijt1e— N —uvAzQijr + FUVW A Ay Qijk- (17)

Another way of deriving this expression is to consider the volume in cell C; ;11 covered by the
wave, which equals %uvAtQAz — %uvat?’. Since the wave carries the constant jump —AzQ;;,
the appropriate flux update equals (17). Likewise, the volume covered by this wave in the
other neighboring cells are

1 1
Cijk+1: iuvAtZAz - guvat?’
1 3
Cijit1k+1: guvat

These volumes are shown in Figure 2b. The actual change in the solution equals these volumes
times the jump —A;Q;jx, and are obtained by updating the fluxes. There are several ways
of distributing the solution updates between the fluxes in the scalar case. Here, a different
approach than in [25] will be used, since this will be in agreement with the appropriate terms
in the system case.



When the velocities are positive, the flux updates are

Gijiig = Gijrip— % Uﬁ; Ay Qijk + luv’wit ﬁt Az Qijk

Gijrikrr = Gijiipsr — éuvw%% +Qijk (18)
Hippr = Hipr— % ’vﬁi «Qijk + luvwﬁt it Az Qiji

Hijiige1 = Hijripsr — éuvw%% 2 Qijk-

Doing the same for increment waves originating from interfaces in y and z gives a scheme
identical to the “shift and average” scheme. Hence, we have obtained a first order scheme
with the desired stability limit, i.e. stability for Courant numbers less than or equal to one, as
described further in Section 4.

Note that the update of éi,j+1,k consists of two terms. The first term, also found in the
two-dimensional wave propagation schemes, cf. [26], corresponds to the part of the wave moving
into cells sharing an interface with either of the cells defining the Riemann problem, i.e. C;_q j
and Cjj. This feature will be named transverse propagation. The last update, named double
transverse propagation, is a pure three-dimensional contribution, and is caused by the part of
the wave moving into cells only sharing an edge with one of these cells.

Also note that the updates of G and H above contains a difference in z. Hence these
updates will account for terms like 2 FUVGy and §UVWYgy, in a Taylor expansion. This will be
studied to some detail in the next section.

2.3.2 Linear systems

Here we consider the propagation of the increment waves for the linear system (5). Since the
problem is assumed to be hyperbolic, A, B, and C are diagonalizable. We define the positive
and negative parts of B similar to what was done for A in (10), i.e

Bf =wWM*w1, (19)

where W is the eigenvector matrix, and M the diagonal eigenvalue matrix. The eigenvalues
are 9, and the associated eigenvectors w?. Likewise, let ! and s' denote the eigenvalues and
eigenvectors of C. Then we define

C*=SN=s 1,

where S is the eigenvector matrix and N the diagonal matrix with the eigenvalues 1! as entries.

Before proceeding with the three-dimensional propagation of the increment wave, we ex-
pand q(z,y, z,t + At) in a Taylor series including terms up to third order in A¢. This is useful
for understanding how the specific wave propagation affects the solution. Due to the large
number of terms, we only consider those differentiated first in x.

The flux updates resulting from a single interface in x should lead to approximations of
these terms, which are

1 1
AtAg; + §At2 (A2wa + BAsz + CACIwz) - EAt?) (A3chzczc + ABA(]zyw + (20)
ACAQy,: + BAQszy + BQAway + BCAszy + CAZq.iC;CZ + CBAQ:cyz + CzAszz)-



The (full) wave propagation scheme to be derived will cover all these terms, except for the
A3¢yze term. In addition, some fourth order terms will also be accounted for. This is necessary
for stability, as discussed in Section 4.

Unless the matrices have a common set of eigenvectors it is not possible to decompose (5)
into a system of m scalar advection equations. Nevertheless, it is useful to talk about wave
propagation locally even in the general case.

The first step in the algorithm is to solve the one dimensional Riemann problem normal
to the interface, i.e. find (increment) waves ijk so that Qux — Qi—1,5k = 2, Wf’jk. This is
exactly the same approach as used in the one-dimensional case. For example,

AT Qi = D (W) Wiy, AYALQi =) (W)WY, (21)
and At
AT = A (A7 ArQiy1jk + AT A5Q4) -

it~ Ag
Doing the same in the y and z directions yields a scheme in which waves only propagate normal
to the cell interfaces, i.e. the donor-cell approach.

Next, every increment wave from the Riemann problem in z is split into waves moving in
the y-direction, i.e.

P Pq
Wijk = > i w- (22)
q

Each Wf’jk will then update any of the surrounding G fluxes depending on the sign of AP. For
example, if \? and u? are both positive, then

~ 1 At
Gijih = Gigrie — iA_x/\puqﬂf}f?kwq,

similar to the first term in the update in (17). The sum of all contributions to this flux gives

~ ~ 1 At

k
Gijrik = Gijyrk — SN > Z(/\p)+(ﬂq)+ﬁ%g w. (23)
a p
It is easily seen that this is equal to
~ ~ 1 At
Gijt1 = Gijrih — §A—xB+A+Ainjk- (24)

The proper updates for the rest of the G-fluxes are

~ ~ 1At .
Gi1jk = Gi1jk— §A_:1:B AT AL Qi
~ ~ 1At
Gijk = Gijgp— §A—mB AT AL Qijik (25)
~ ~ 1 At _
Gi—1j+1e = Gic1jt16 — §A—xB+A ApQijks

Exactly the same terms are found in the two-dimensional scheme described in [26].

Note that since
BTAT"+B AT+ BTA +B A =BA (26)

10



the flux updates above will result in an approximation to the %AtQBAqmy term in the Taylor
expansion.

Next, consider transverse propagation of the increment wave in the z-direction. This results
in an update of the H fluxes similar to (24) and (25),

Hivjr = Hi 16— %%C_A_AzQijk
Hijp = Hyy — %ﬁ—iC_A+Ainjk (27)
Hijpyr = Hijpo1— %%C+A+A$Qijk
Hiijpyr = Hiyjpi1— %2—;0+A—Azszk,

which account for %AtQCAqM in the Taylor series.

In an implementation, updates like (23) would require the solution of m Riemann problems,
in addition to the one necessary for obtaining WWP. In general, this involves too much work. It
is also in general too expensive to derive the A* and B* matrices explicitly, and then perform
matrix-vector multiplications. Instead the left-going flux difference A~ A;Q);; and the right-
going flux difference ATA;Q;; are split into eigenvectors w? of B, yielding transverse-moving
waves. This transverse flux difference splitting is obtained by solving the following equations

for 47,
jk
ATAQijk = Y (0F) " wl, AT ALQie =Y (8,) Tl (28)
q q

The computations of the flux updates in (24) and (25) are significantly simplified, for example

B+A+Asz’jk = Z(/f‘q)+(5gjk)+wq7 (29)
q
with similar expressions for the rest of the updates. (The number of Riemann problems per
interface is now five, regardless of the size of the system.)

Comparing with (18), the updates caused by the increment waves do not, so far, account
for full three-dimensional propagation. To do this, the waves should also move into cells only
sharing an edge with the cells defining the Riemann problem, i.e. double transverse propagation.
This yields approximations of cross-derivatives like %At3C’BAqmyz. For this term, the proper
updates can be shown to be

Hijpyr = Hijpo+ %%2_20+|B|A+Ainjk
Hijy = Hij+ %2—22_;0|B|A+Aw62ijk
Hijoihr = Hi1jpi— %2—;2—;0+B+A+Am@'jk (30)
Hijog = Hijiip— éﬁ—ii—;C_B+A+Ainjk
Hij g = Hijoip+ %2_22_;0+B_A+AIQUIC
Hij1p == Hij 1p+ éﬁ—iﬁ—;C_B_x‘ﬁAzszk-

11



Six additional updates are also required. These are obtained by replacing 7 by ¢ — 1 in the
fluxes above, and replacing AT A;Qijx by A~AzQijk. Note that the updates in (27) and (30)
generalize the changes in Hin (18). In order to approximate BCAgqy,,, similar updates are
made to the G fluxes.

The CT*BtATA;Qijk term in (30) may be interpreted as follows. Each wave ijk in the
expansion of A;Q;jx is split into waves moving in the y-direction as in(22). Then each FP9w?
is split into waves moving in the z-direction, i.e. BP%w? = 3", yP%s!. Tt is easily seen that

CF B AT AQun = TS (W) (uh)t () s, (31)
l q P

Regarding the implementation of these terms we do the same as done in (28) and (29).

The flux differences AiAinjk are split in the y-direction accordingly. This yields the
transverse wave strengths (6P)*. The transverse flux difference BT AT AzQijk is defined as in
(29). Note that this term already is computed when approximating the BAQ,, term. Next,
split this flux difference into waves propagating in the z-direction, i.e. solve

BYAYAQijr = Y 'S (32)
l

Using this, the update of .ﬁi,j+1,k+1 reads

Hijy1per:= Hijyiper — %ﬁ—;i—; ;(Vl)ﬂ?lé‘l-

In order to compute all updates in (30), also B~ A+t A;Q;jx and B¥A~A;Q;jx need to be split
in the z-direction. Hence, in addition to the Riemann problems needed in approximating the
second order cross-derivative terms like BAgygy, four new Riemann problems are introduced
per interface, by the third order terms.

The scheme obtained so far is the generalization of the “shift and average” scheme. The
two-dimensional version is identical to the Corner Transport Upwind (CTU) scheme discussed
by Colella [7]. The scheme is stable provided

At At At
P20 920 2 <

but the scheme is only first order accurate on smooth solutions.

2.4 The propagation of the correction wave

In this section we look at the propagation of the correction wave, so that the order of accuracy
increases. Note that the transverse propagation of the increment waves has already led to terms
modeling cross-derivatives needed in a second-order Taylor series expansion. To obtain full
second-order accuracy, it is thus formally necessary to only include the pure second-derivative
terms ¢z, gyy and g,,. This is accomplished by propagating the correction waves normal to
the interfaces.

However, the resulting second-order accurate method would have very poor stability prop-
erties. In order to maintain good stability properties, we must also perform a transverse
propagation of the correction waves in a multi-dimensional manner. This is developed in this
section and then stability analysis is presented in Section 4.
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2.4.1 Scalar equation

We will illustrate the transverse and double transverse propagation of correction waves in the
case of scalar advection. First the correction wave is added just as in the one-dimensional
case, which gives the terms formally needed for second-order correction but ruins the stability.
Again we present formulas only for the z-sweeps, with analogous modifications needed in the

other directions.
At

Azx
The flux (or slope) limiter is applied exactly as in the one-dimensional case, i.e. in (15) and
(16), let Wf) = Ozf = AzQij

In order to propagate the correction wave in the transverse direction, the natural approach
is to move it in the same way as the increment wave (17). Let

1
ka = Fzglc + 2“ (1 — U7 ) zngk (34)

c(z,t) = (z — z; + 0.5Az — a(t — t,)) Az Qij/ Az

denote the correction wave associated with cell C;_; ji. (Note that a limited version of AzQ;jx
could be used.) Then we have that

~ ~ tntl  [L2E41 Titu(t—tn)
Gij+1k = Gijtih— At s Am/ /ZHM t / v ¢z, t) dzdzdt,
k n T4
~ At 1 At
= Gijrx+ uv (Z %A, ) A Qijik (35)
At At 1 At
_ atat iz 2 AnOiin.
u wAz Az < 8 A ) = Qijk

With corresponding updates of the I;Ti,jﬂ,kﬂ flux, stability is restored. However, the stability
is not as good as wanted and the progation of the correction wave has to be done slightly
differently in order to obtain (33). Instead of (35), the following update will be used:

= ~ 1 At At
Gij+1ke = Gijyie+ 5“”5 (1 — uA ) A Qi
1 At At At
— _uUwA—:L'A_z (1 - A ) Z‘QZ]]C (36)

Note that only the coefficients are changed. Even if the wave is not advected with the velocity
field, it is possible to interprete the update as resulting from a wave propagation. The geo-
metrical interpretation of the total motion of the correction wave is that it consists of several
steps. In the first step, the wave is moved a distance uAt in the z-direction. This results
in the familiar 1D update (34). Next, the wave is moved a distance vAt in the y-direction
(transverse propagation), followed by a final step where the wave is moved a distance wA¢
in the z-direction (double transverse propagation). These three steps are shown in Figure 3.
Note that also G and H fluxes in the downstream direction are updated. Since there are two
coordinate directions covering the transverse propagation, the two last steps above have to be
repeated but now in reversed order, i.e. first propagation in z then in y. This will be discussed
in more detail below.
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Figure 3: The propagation of the correction wave when the velocities are positive. The wave
is first shifted a distance uAt in the z-direction, causing an update of ﬁ’wk Next the wave
is shifted a distance vAt, causing an update of G;_1 114 and G i1 Finally, the wave is
advected a distance wAt in the z-direction, causing a update of four H fluxes.

2.4.2 Linear systems

As for the scalar example above, the algorithm for propagating the correction wave starts by
updating the normal fluxes coordinate-wise,

~ 1 At —
Fii= P+ 5 X901 (1= S0 01) W0 (37)
p

The limiting is done exactly as in 1D. This is a potential weakness of the method since then the
limiter only takes into account waves propagating normal to the interfaces. At least for scalar
problems there exist ways of doing multi-dimensional limiting, but they are more expensive
in use (e.g., [1], [22], [34], and [48]). However, numerical experiments show that this simple
one-dimensional limiting is able to control oscillations in a satisfactory way.

Naturally, the 3D-propagation of the correction wave has much in common with the prop-
agation of the increment wave. Instead of propagating one wave at the time, a group of waves
will be split into waves moving in the transverse direction.

Define

At —~
§= LI (1= So0]) W (38)
p

This term is to be split in both y and z directions. For example, consider the splitting in the
y-direction of this correction term into an up-going and a down-going part, i.e., decompose S

as
S= Zegjkwq. (39)
q
The wave egjkwq will update two of the surrounding G fluxes depending on the sign of p?. For
example,
e e 1 At A
Gijik = Gigrre + 5 a2 (W) e, (40)
q
~ ~ 1 At
Gi-tjr1h = Gicvj41k — 5 A~ (u) e, (41)
q

14



Down-going waves would instead affect éijk and éi—l,jk- Recall that the flux updates made
in the tranverse direction consist of the same terms as in the 2D scheme augmented by purely
three-dimensional terms. In matrix notation, these two-dimensional updates are

Gijiik Gijiig+ ;ﬁt BT|A] (1 — |A| ) ApQijk
Gijk Gijk + ;ﬁtB |A| (1 - |A|—> AgQijk (42)
Gi 111k Gi 141k — ;ﬁt B*|A| (1 - |A| ) Az Qijk
Givjr = Gi_1jk— éﬁtB | A (1 - |A|A—:z;> Ay Qijk-

In two dimensions, it is possible to avoid the computation of the eigenvector expansion (or
Riemann problem) in (39), by including S in the 2D part of the flux differences in (21). The
proper modifications are

ATAQije = ATAQij— S (43)
ATAQijr = ATALQip+ S

Since %S already is computed in (37), including this transverse propagation requires virtually
no extra work.

In two dimensions, the inclusion of the transverse propagation of the correction wave neither
increases the order nor the stability limit of the method, but the accuracy may be improved.
However, in three dimensions this contribution is essential.

In the three-dimensional case, similar updates as in (42) have to be made to the H fluxes.
In matrix notation these terms are

~ ~ 1At
Hijrt1 == Hijgt1+ 5 5 AL —C™|A4] (1 - |A\ ) Az Qijk
~ ~ 1At
Hije = Hyr+ 5 2 Az ~—C7IAl {1 - |A|H A Qijk (44)
~ ~ 1At At
Hi k1 == Hi1jke1— §A—C+|A| (1 - |A|A—$> Ay Qijk
~ ~ 1 At At
Hi—vjr = Himigr— 550 —C 4] (1 - |A|A—x> A Qijk-

In order to compute these updates, the correction term S has to be split in the z-direction.
Above we mentioned that there are good reasons for using updates of the form (36) instead
of the more intuitive updates (35) resulting from pure advection of the correction wave. The
best reason for this is that the stability is increased, cf. Section 4. The updates in (36) are also
beneficial for accuracy reasons. Consider the Taylor expansion of g. Due to the large number
of terms, we begin by including only terms that arise in the 2D case. Assume that we want to
construct a third order accurate scheme. Then we have to approximate the following terms

1
_EAtg(A?’qngw + AQBQyww + ABAQCU?#U + ABQny;E (45)
+BA?quey + BABGyay + B> Aquyy + Bqyyy).
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In addition to these terms, we have to approximate terms arising in the truncation error in the
approximations of the first and second order terms already derived.
For example, the truncation error in the approximation of %AtQBAqu is dominated by

1 1
—ZAtzAa:(BJ’AJ’ —~BYA” + B A" — BTA )quuy = —ZAtQAa:B|A|qu. (46)
Then approximating
1 1At

will cancel the truncation error (46) and add the correct g4y term from (45). Deriving similar
expressions for the rest of the first and second order terms yields

1 1At
1 1 At
‘B|) Qyyz + At* Az (Z - EA—:B|B|> | B| AGzyy

1 1 1At
“At3ABA A?AzB|A (————
g2 Guye + ACATBIA|{ 7 = 610
1 1At
4 6Ax

) 14IBayzs
1
- EAt:’BAquxy + A Az A|B| (
1 343 1 33
+ EAt A Qze + EAt B Qyyy-

These terms have to be approximated in order to achieve a third order scheme. (Note that the
update in (35) results in an approximation to only one of these terms, that shown in (47).)

Assume that A and B commute, i.e. that AB = BA. Then the expression above, with g
and gy, omitted reduces to

1 At 1 At
FAPABIAN (1= SoA) 4y + 5ACAAIBI (1= S1Bl e (48)

The transverse propagation of the correction wave as done in (42), yields exactly the desired
approximation of the first term in (48). The second term is approximated by the similar
transverse propagation of the correction wave emanating from interfaces in the y-direction.

For scalar advection with constant coefficients, a third order accurate scheme is easily
obtained. Once transverse propagation of the correction waves is included, only the terms gy,
and gyyy need to be approximated, cf. [25].

Finally, consider the purely three-dimensional terms in the update, i.e. terms generalizing
the last term in (36). Note that since this update of the G flux contains two Az and one Az
and these fluxes are differenced in the y-direction, the contribution of this term approximates
the fourth order derivative qgz.y-

In a Taylor expansion of the scalar problem, all derivatives of fourth order involving two
derivatives in z, and one in both y and z, add up to

1 At
—§At3Ax UVW (1 — A—mu> Qrzyz- (49)
Above, we assumed that the matrices A and B commute, and we do the same here for A, B,
and C. Hence, (49) is split evenly between the G fluxes and the H fluxes in the system case,

l.e.

1, At 1, At
AP AT OBA (1 _ A—$|A|> Qe — 3 0°A BO|A| (1 - A—$|A|) ooy (50)
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The first term is approximated by the following flux updates

~ ~ 1 At At
Hipns = Hgrn =g a0 3 CTIBIAN (1= 14150 A:Qu
~ ~ 1 At At
o 1= M= 13raC1BIAI (1= 1415, )A Qi
~ ~ 1 At At
Hijriesr = Hiprjen+ 74 Ay —CTBT|4| (1—|A| )Ainjk (51)
~ ~ 1 At At
Hijire = Hijrie+ 1 Ay —C™BY|4] (1— Al )Ainjk
~ - 1 At At
Hij1k+1 = Hij-1p+1— 17z Ay —CTB7|4] (1 - |A| )AzQijk
~ ~ 1 At At
Hij 1, == Hij1k— 1Az Ay —C B~ |A‘ (1 - |A|E> AzQz’jk-

In addition to these updates, six additional updates are required in which 7 is replaced by 7 —1
in the flux subscripts. The sign of the update is also switched.

Note that these updates involve the same interfaces as the double transverse propagation of
the increment wave (30). The updates above require the solution of four additional Riemann
problems. But due to the similarities, they may be included in the computation of the double
transverse propagation of the increment wave. The proper updates for this inclusion are

3 At
BYATAQijr = BTATALQijk — §B+|A\ (1 - |A|A—z> Az Qijk
_ _ 3 At
o L 3 At
BTATALQijr = BTATAQijr — 5B Al {1— |A|A_x Az Qijk
_ o 3 __ At
B™A AzQz]k = B7A AzQijk + EB |A‘ (1 — |A|A_a:) Aszgk

With these changes, both the double-transverse propagation of the increment wave and the
correction wave are covered by the updates in (30). Finally, doing similar updates for the G
flux will give approximations to the g ..y term in (50).

Above, it was necessary to assume that the matrices commute when propagating the cor-
rection wave in the transverse direction. Note that this only affects (some) third and fourth
order terms in a Taylor series. Not assuming this would require that a large number of new
terms, like ABAgzy, had to be approximated. This would lead to an extremely complex code,
and recall that we are interested in these terms for stability only. We have not been able to
find examples in the system case for which the assumption of commuting matrices yields a
more restrictive stability limit than the optimal we get for the scalar case.

2.5 Non-linear problems and extensions

So far, only linear problems have been considered. However, by the use of local linearizations,
only minor changes have to be made in order to apply the scheme on non-linear problems (1).
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Motivated by the notation used for linear systems, the upwind contribution in (6) reads

At _ At —
A = — A_x(-A—i—Ainjk + A7 AsQit1,5k) — A_y(B+AyQijk + B AQi 11k

At _
- A—m(c+AzQz’jk +CTALQijk+1)- (53)
Here, the terms A" A;Q;jk, etc. are to be understood as symbols. The scheme is conservative
provided

f(Qijk) — F(Qi—1jk) = ATALQijk + A AsQijk
9(Qijk) — 9(Qij-16) = B AyQijk + B AyQijk (54)
h(Qijk) — MQijk—1) = CTAQijk +C™ A Qiji-

The process of finding the terms A*tA;Q;jk, etc., so that (54) is satisfied is a form of fluz
difference splitting. In addition to this, wave strengths Wlpj x and wave velocities Af ik have to

be defined so that the flux terms ﬁ’ijk can be established. Note that waves and velocities are
space dependent. There are M,, waves involved, not necessarily equal to the dimension of the
system m.

The flux difference splitting and associated waves and velocities may be obtained in different
ways. The obvious one is to apply a local linearization that is conservative. A popular choice
is the Roe solver [31], where a local approximation A;j is made to the Jacobian f’(g). This
involves finding the state Q) i depending on Qi—1,k and Q;jx so that if A;;, = f(ijk) then

Aijr(Qijr — Qi—1,4k) = f(Qujr) — f(Qi1,5k)- (55)

This property ensures conservation. The waves WI; . and associated speeds )\ K are derived
exactly as in the linear case. A matrix satisfying (55) are found for several 1mportant systems
like the Euler equations of gas dynamics.

Since the solution only consists of discontinuities, rarefaction waves may cause problems.
If these waves are transonic, i.e. involve both positive and negative velocities, the numerical
solution may contain physically incorrect shocks. In order to correct this, an entropy fix should
be applied [16], [23], [33].

In the linear case, it is reasonable to compare wave strengths of (16) from neighboring
interfaces, since the eigenvectors rP are constants. In the nonlinear case, the waves WP ko
W%k, and WP 41,
limiting is based on a projection of WP jk onto W . The lengths of these projections are

. are not in general parallel, as vectors in IR™. In CLAWPACK, the default

compared to the length of WY, k- The limiting is performed according to

zg g

(szil,jk’ngjk)/(wzgk’w )’ Aij:

ik —
(W 1+1 gk:vW )/(W]kawz]k) )‘

2 1

where (-, -) represents the inner product in R™. Note that this limiting generalizes the limiting
used on linear systems, i.e. (15) and (16).
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We have used Roe-type Riemann solvers for the Fuler equations in the computations pre-
sented here. There exist many other ways of defining the flux difference splitting and associated
waves that can also be used in our formulation. In some situations it might be advantageous
to use the exact solution of the Riemann problem. For example, when applied to the Euler
equations, the Roe solver may produce negative pressure if the jump is large enough. Assume

that ng «» the exact solution for z = z;, has been found. Then the flux splitting can be defined
as

ATA Qi = f(Qujk) — f(Q)

A"DAQije = f(Qk) — f(Qi1k)-
The waves and the associated velocities needed for the correction waves also have to be speci-
fied. The states in the exact Riemann solution naturally define the jumps W% - 1f the original
waves are discontinuities, the velocities should be chosen according to the Rankine-Hugoniot
condition. If the waves are rarefaction waves, an average velocity could be used.

A third approach is worth considering; a hybrid version in which the exact solver defines
the flux splitting, and the Roe solver defines the waves and velocities.

Transverse and double transverse propagation of increment and corrections waves are ac-
complished by constructing matrices B;j; and Cjj;. These matrices are simply taken as the
Jacobians ¢'(g) and h'(q) respectively, evaluated at a state “close” to Q;_1 jx and Q;jx. A good
choice is to use the Roe-averaged state Q) already computed in the construction of the flux
difference splitting.

Each product between a matrix and a vector corresponds to a Riemann problem. While an
entropy fix may be necessary for the flux difference splitting, computations indicate that there
is no need for this correction in the transverse direction. Hence, the Riemann problems used
in computing these flux updates require less work than the Riemann problems in the normal
direction. No entropy fix is needed, and the state used in evaluating the Jacobians is already
computed.

A family of wave propagation schemes is defined by how the increment waves and correction
waves are propagated. The order, accuracy and stability depends on how the waves are treated.
It is useful to establish a notation refering to how the propagation is done. Let a specific
scheme be defined by the three parameters (mi, me, m3), where the integers mi, mo, ms have
the following meaning;:

1 The second order correction wave is not included,
my = thus the method is formally first order accurate.
2 The correction wave is included.

No transverse propagation.

Transverse propagation of the increment wave.
Transverse propagation of both increment and
correction wave. (Requires m; = 2.)

N — O

(0 No double transverse propagation.

1 Double transverse propagation of the increment

ms = A wave. (Requires mo > 0.)

2 Double transverse propagation of both increment and
correction wave. (Requires mgy = 2.)
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For example, Method (1,1,0) defines the first order scheme in which the increment wave moves
as in 2D. The complete wave propagation method is Method (2,2,2). (In CLAWPACK, mgy and
mg are specified by a two digit integer, hence the method is identified by only two parameters
mq and 10 - ma + mg3.)

The number of Riemann problems needed increases as the propagation gets more and more
complex. In the first order donor-cell method, i.e. Method (1,0,0), only one Riemann problem
has to be solved per interface. If the increment wave moves as in the 2D case (Method (1,1,0)),
four additional problems have to be solved. The generalization of the “shift and average”
scheme, i.e. Method (1,1,1) requires a total of 13 Riemann problems. Five Riemann problems
have to be solved per interface for (the unconditionally unstable) Method (2,1,0). The simple
generalization of the full 2D wave propagation scheme, Method (2,2,0), requires seven Rie-
mann problems. This number may be reduced to five as noted above. The shift and average
scheme plus propagation normal to the interface of the correction wave (Method (2,1,1)), re-
quires the solution of 15 Riemann problems per interface. The same number is required for
Method (2,2,2), the full three-dimensional wave propagation scheme.

The total number of Riemann problems needed per cell is three times the number per
interface. This indicates that the 3D wave propagation methods may be computationally
expensive, depending on the choice of Riemann solver. Using the Roe-solver approach, only
one of the Riemann problems, per interface, requires the entropy fix and computation of the
Roe-average state. The rest of the Riemann problems involve significantly less work, essentially
just a matrix-vector multiply to decompose a vector into eigencomponents.

The advantage of using (6) with the flux difference splitting (54) in the definition of the
upwind term Agﬁc, is that the flux functions are not explicitly needed. As a concequence,
the same scheme is applicable to a larger class of quasilinear hyperbolic problems of the form
(3). The matrices may depend on z, y, z, and ¢ in addition to the solution ¢. In the “flux
difference splitting” (which is called “fluctuation splitting” more generally in [26]), the waves,
and associated velocities are easily defined. However, note that spacially-varying matrices may
result in reflections in addition to transmission of waves across cell interfaces. This complicates
the problem, but may still be treated within the same framework, cf. [26] for details.

3 Applications

In this section we consider the Euler equations which models an inviscid, compressible and
non-heat conducting gas. The system may be written as

p pu pv pw
pu ,ou2 +p puv puw
pv | + pUv + 1 p?+p + pow =0, (56)
pw puw pow pw2 +p
E ], LuB+p) ], LvE+p |, LwE+p ],

where p and p denote the density and pressure. The velocity components in the z, y, and
z directions are u, v, and w, respectively. If we assume that the gas is polytropic, the total
energy density F is

1 1
E= 2p(u2+ 02+ w?
2p(u +v° +w )+7_1p,
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where v is a gas constant taken to be 1.4 in the examples below.

The Roe approximate Riemann solver is used in all the following examples. Thus, the
Jacobian matrices are evaluated at a specific state, as described in Section 2, in order to ensure
conservation and to define the waves needed in the algorithm. For details on this see [31] and
the Riemann solver routines in the CLAWPACK software [27]. In [26], the details concerning the
solution of the two-dimensional isothermal equations are given. We refer to that paper, since
the main principles are the same, when it comes to defining matrices and flux splitting, as in
the three-dimensional full Euler case.

3.1 Smooth Euler solution

In order to verify second order convergence, we consider an initial value problem with a smooth
solution, at least for the time interval considered. Initially, the gas is at rest and

p(z,y,2,0) = E(z,y,2,0) =1+ 0.16—30(1»_1)2’

where r = /12 + y2 + 22. The solution will remain spherically symmetric. Due to this, it is
possible to formulate (56) as a one-dimensional conservation law with a source term,

p pu 1 pu
pu | +| pu®+p = pu? . (57)
E |, [uE+p) ], u(E + p)

Here, u denotes the radial velocity. An accurate reference solution is obtained by solving this
equation using one-dimensional CLAWPACK routines. Due to the symmetry, the computational
domain for the three-dimensional scheme can be taken to be a single octant (z,y,2) € [0,2] x
[0,2] x [0,2]. At the boundaries z = 0, y = 0, and z = 0, symmetric boundary conditions are
used. The remaining boundaries are all of the outflow type described in [26].

Boundary conditions are imposed in exactly the same way as described in [26] for one and
two dimensions: two additional rows of “ghost cells” along each edge are introduced. Values
in the ghost cells are set in each time step in such a way as to give the correct behavior. Zero-
order extrapolation is used at the outflow boundaries while reflection is used at the symmetry
planes.

The solution is computed on an N X N X N grid at time ¢t = 0.5. In Table 1, the errors
for Method (1,1,1) are given for N = 20, 40 and 80. The errors are computed by comparing
with the one-dimensional reference solution. The rate of convergence is estimated using the
two finest grids according to the formula

error(Az) > .

convergence Order = —1n (W

In2

The errors in pv and pw equal the errors in pu. As expected, this scheme is approximately
first order accurate. In Table 2, the errors for the full wave propagation scheme Method (2,2,2)
are given. Since the solution is smooth, no limiting is performed. According to the figures
in this table, the scheme is second order accurate on this problem. In Figure 4, scatter plots
of the density using N = 20 and N = 40 are shown. Every value in the N x N x N grid is
plotted against r, the distance from the origin. The solid curve corresponds to the reference
solution. In the computations for both the first and second order scheme, fixed time steps are
used giving a Courant number of approximately 0.78.
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1.06

1.05

1.04

1.03

1.02

1.01

1

l-norm errors max-norm errors
N p pu E p pu E
20 |6.482-1073 2.498-10"3 9.425-1073 | 9.398 107> 7.496-10~° 1.373-102
40 |3.492-1073 1.338-107% 5.074-1073 | 5.292-10> 4.389-10"° 7.738-1073
80 |1.831-10~% 7.003-10% 2.658-1073 [ 2.729-10"3 2.350-10"% 3.984.107°
|order [ 0.93 0.93 093 | 096 0.90 0.96 |

Table 1: Errors for the smooth Euler problem computed with Method (1,1,1) ona N X N x N
grid. The errors in pv and pw equal the errors in pu. The convergence order is estimated on
the two finest grids.

1—IlOI‘IIl errors max-norm errors
N P pu E p ou E
20 |4.334-1073 1.705-10~% 6.290-103 | 6.985-10> 5.140-10~3 1.012-102
40 | 1.361-1073 4.767-10"* 1.961-10"3 | 2.331-10~> 1.761-10~° 3.368-103
80 | 3.541-10% 1.254-10~* 5.091-10"* | 6.387-10"* 4.931-10~% 9.216-10*
[order [ 1.94 1.93 195 [ 187 1.84 1.87 |

Table 2: Errors for the smooth Euler problem computed with Method (2,2,2) ona N x N x N
grid. The errors in pv and pw equal the errors in pu. The convergence order is estimated on
the two finest grids.
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Figure 4: (Example of Section 3.1) Scatter plots for the Euler equation with smooth solution,
computed with Method (2,2,2). The density is depicted against the distance from origin. In
the left picture, N = 20, while in the right picture N = 40. The solid curve is the reference
fine-grid solution from a one-dimensional spherically-symmetric calculation.
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Figure 5: (Example of Section 3.2) A schlieren type image showing the density at ¢ = 0.7.
The two-dimensional axisymmetric problem has been solved using a 600 x 400 grid on half the
domain (0 <z < 1.5, 0 <y < 1) and reflected to —1.5 < z < 0.

3.2 A spherical Riemann problem

In this example we consider a spherical Riemann problem between two parallel walls at z = 0
and z = 1. Initially the gas is at rest with density and pressure pout = 1 and po = 1
everywhere except in a sphere centered at (0,0,0.4) with radius 0.2. Inside the sphere p;, =1
and p;, = 5. The jump in pressure results in a strong outward moving shock wave and contact
discontinuity, and an inward moving rarefaction wave. This inward moving wave causes a local
“implosion”, and a second outward moving shock wave is created. The main features of the
solution are the interactions between these waves and between waves and the walls. Another
significant feature is the development of a near stationary low density region in the center of
the domain. Until the initial shock wave reaches the lower wall, the solution is spherically
symmetric. After this, the solution will remain cylindrically symmetric. Hence, it is possible
to formulate this as a two-dimensional problem with a source term,

p gu pw PU2
1
pu + pu” +p + P;“U __: pu ’ (58)
pw puw pwe +p T puw
E |, u(E + p) w(E + p) u(E + p)

T z

where u now denotes the radial velocity in the z — y plane. This equation is solved using two-
dimensional CLAWPACK routines, and the results are used for comparison. The two-dimensional
problem is solved on a 600 x 400 grid. Due to the symmetry, the computational domain is
(r,z) =[0,1.5] x [0,1], where r = \/z2 + y2. Figure 5 shows a schlieren picture of the solution
at ¢ = 0.7. This picture emulates a photographic technique used in physical experiments. The
magnitude of the density gradient is depicted. The larger the gradient, the darker is the region.
Strong nonlinear shading is used in order to enhance weak structures in the flow. In this figure,
also the symmetric part is depicted. Note the strong contact discontinuity surrounding the
low density region near the center. There is also an unphysical feature visible near the center
of the domain. It is caused by the wave focusing and is highly grid dependent. Due to the
nonlinear shading in this schlieren image, the magnitude of this feature is exaggerated. Its
influence on the rest of the flow field is actually very weak.
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Figure 6: (Example of Section 3.2) The pressure in the z — z plane at ¢ = 0.7 computed on
different grids: (a) 37 x 37 x 25, (b) 75 x 75 x 50, (¢) 150 x 150 x 100. In (d), results from the
corresponding 2D computation using a 600 x 400 grid is shown.

Due to the symmetry, the computational domain for the three-dimensional algorithm is
(z,y,2) € [0,1.5] x [0,1.5] x [0,1]. In Figure 6, the pressure in the z-z plane at ¢ = 0.7 is
shown using an increasing number of cells. The solution is computed using Method (2,2,2).
The two-dimensional results are also given for comparison.

Another way of graphically indicating convergence is to consider scatter plots, like those
used in the previous example. In Figure 7, the pressure is plotted against the distance from
the z-axis. The plane used is z = 0.4 at t = 0.7. These pictures indicate that not only are the
main features well resolved, but also the finer structures appear to be converging. In both the
two-dimensional and the three-dimensional computations MC-limiters are used on all waves.
In these computations the Courant number was approximately 0.9.

Additional images and animations from both the 2D and 3D computations may be found
on the Web page http://www.amath.washington.edu/"rjl/clawpack/3dpaper.html
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Figure 7: (Example of Section 3.2) Scatter plots of the pressure versus the distance from the
z-axis in the plane z = 0.4. In the left picture the computational grid is 75 x 75 x 50, while
in the right a 150 x 150 x 50 grid is used. The solid curve corresponds to the 600 x 400 2D
computation.

3.3 Vorticity generated by a shock wave

As an example of a pure three-dimensional problem, we consider the situation where shocks
interact with variable density regions. Similar problems have been considered for the study of
shocks propagating through inhomogeneous media. One such example is taken from the design
of SCRAM-jets, where shock waves may help to mix fuel and air by generating vorticity. The
problem is simplified by considering a single planar wave hitting a cylinder or sphere filled with
fuel, cf. [10], [28]. In these papers a two component gas is considered. Here, we only consider
a single component gas.

Initially, the gas is at rest. The pressure and the density equal unity everywhere, except
for two cylinders perpendicular to each other. Both cylinders contain constant state gas. The
radius of each cylinder is = 0.2. In the cylinder along the z-axis, i.e. with symmetry axis
z = y = 0, the density is p = 1 but the pressure is p = 10, and thus a cylindrical shock wave
will emanate from the pressure jump at the surface of this cylinder. The other cylinder is
parallel to the y-axis, with symmetry axis z = 0.4 and z = 0. In the latter cylinder, the the
pressure is p = 1 but the density is lower, p = 0.1. This contact discontinuty is stationary
until it is disturbed by the shock waves. The initial set up is depicted in Figure 8(a).

The experiment is set up in such a way that as the front shock hits the low density cylinder,
a huge amount of vorticity is produced. Let & = V x 4 denote the vorticity. The vorticity

equation reads

0d . Vp x Vp

The last term on the right hand side is called the baroclinic source term, and is responsible
for the vorticity production.

The computational domain is [0,1.5] x [0,1] x [0,0.5]. Symmetry across the plane z = 0
is assumed, though this is not physically correct for such a problem due to the turbulent
behaviour. The computation is performed on a 300 x 200 x 100 grid with Method (2,2,2), and
the MC-limiter.

(59)
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As the incident shock wave hits the cylinder, it separates into a reflected smooth wave and
a penetrating shock wave. Due to the higher sound speed inside the cylinder, the latter wave
will speed up. As the shock wave runs through the cylinder, the latter collapses leaving a
major counter-clockwise rotating vortex, with smaller vortex tubes on the rim. The dynamics
are extremely complex as the vortex tubes rotate around each other, get twisted, stretched
and burst.

Figure 8 shows volume rendering of the absolute value of the density gradient for three
t-values, i.e. the same quantity as displayed in a schlieren image. It is especially useful to
study this quantity in the context of shock problems, since the density jumps across both
shock waves and contact discontinuities.

At t = 0.1, Figure 8(b), the incident shock wave has partially encapsulated parts of the
low density cylinder. The two essentially cylindrical surfaces are, from the left, the contact
surface and the shock wave. Note that this part of the shock wave has a lower speed than the
one encapsulating the low density cylinder. As mentioned above, this is due to the increased
sound speed inside this cylinder. Also note that the low density cylinder has started to collapse
due to the interaction with the shock wave. In Figure 8(c), at ¢ = 0.3, the roll-up of the low
density cylinder gives rise to a major vortex. Note that the incident shock wave has passed this
vortex in most of the computational domain, and is connected to the vortex by a triple shock
configuration. In Figure 8(d), the time is ¢ = 0.5, and the incident shock has started to leave
the computational domain. To the left, the near cylindrically shaped contact discontinuity
dominates. Note the “fingers” on the rim of the main vortex tube. Inside each of these finger-
shaped regions, there is a loop of smaller vortex tubes. This is illustrated more clearly at a
later time ¢ = 0.8 in Figure 9, where two different quantites are visualized together as described
below. These vortex loops are advected by the the main vortex. The weak shock located at the
top of the main vortex is an implosion shock, similar to the one that appeared in the previous
example.

The images in Figure 8 were produced using the visualization tool Viz [49], freely available
for non-commersial use. Viz is a highly interactive tool for displaying large voxel-based data
sets. It was initially created to utilize the potential of hardware accelerated 3D textures. The
voxel is the 3D generalization of the pixel, including both a color value and a opacity value.
Due to the possibilities of adding opacity to the dataset, a range of values can be studied, in
contrast to the more common iso-surface technique. So even though the images in Figure 8
appear to be iso-surfaces, they are not. Both stronger and weaker discontinuities are displayed,
the latter appear more transparent than the former, cf. Figure 8(d).

In Figure 9, another application of voxels graphics and Viz is shown. The time is ¢ = 0.8
and only a subset of the data is shown, centered along the main vortex. Two scalar fields are
displayed in the same scene. In order to visualize the smaller vortex tubes on the rim of the
main vortex, the enstrophy is used, i.e. |&|?. Note that the surface of these tubes are made
darker to enhance the shape of these features. The other quantity shown is the dominating
low pressure region. In contrast to the enstrophy, the surface of this region is made lighter.
Animations and additional images from this computation may be found on the Web page

http://www.amath.washington.edu/"rjl/clawpack/3dpaper.html
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Figure 8: (Example of Section 3.3) (a) The initial condition. The rest of the images depict the
quantity |Vp|, also used in schlieren pictures, at different time: (b) ¢ = 0.1, (c¢) ¢ = 0.3, (d)
t =0.5.
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Figure 9: (Example of Section 3.3) A subset of the computational domain shown at ¢ = 0.8.
Both enstrophy and (low) pressure are visualized in this picture (cf. text).

4 Stability

In this section we investigate the stability properties of the algorithms introduced in Section 2
when applied to linear advection and acoustics problems. Initially we study the case with no
limiter, so that the numerical scheme itself is linear and we can use von Neumann analysis. In
Section 4.5 we also investigate the effect of limiters by running the algorithm and calculating
amplification factors for different sets of initial data. This is of interest because we have found
that some methods which are unstable without limiters due to exponential growth of high
frequency components are stabilized by the use of limiters.

We consider two linear problems, first the scalar advection equation with constant coeffi-
cients in Section 4.1 and then the linearized Euler equations in Section 4.4. We find that the
algorithms have similar stability properties in each case.

For a general linear system ¢; + Aq, + Bqy + Cq, = 0 in which the matrices A, B, C have
eigenvalues N, u9, and v/}, respectively, we define the directional Courant numbers as

wy = %mgxl/\pL wy = ﬁ—ngx\/ﬂL w3 = i—imlaxh/ll, (60)
and set @ = (w1, ws,ws3), not to be confused with the vorticity in the previous section. The
Courant number is the maximum of these three quantites. The best we can hope for with
methods of the type developed here is that they will be stable for all Courant numbers up to
1, i.e., for

max (w1, ws,ws) < 1. (61)

This set is a cube in wi-ws-ws space. For most methods the stability restriction is most severe
along the diagonal of the cube, i.e., for the special case where w; = we = w3, and it is often
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possible to obtain analytic expressions for the amplification factor in this special case. When
this case is considered we will denote the common value of & by wy,

Wy = w1 = w2 = w3, along diagonal.
Von Neumann analysis is based on inserting the Fourier mode

QIJK — ei(§I+77J+9K), (62)
into the numerical scheme. We use capital letters IJ K as the grid index here to avoid confusion
with ¢ = «/—1. For a linear method on a linear problem, this will result in an expression of
the form

Qrix =T(&,1,0,38)Qrsk, (63)

where ) denotes the numerical solution at the next time step. For scalar advection T is a
scalar, while for a system of m equations 7T is an m X m matrix. In the scalar case, the method
is stable for given @ if

T(@) = max [T(&,n,0,0)] < 1, (64)
where maximum is taken for —7 < £,7,0 < «w. In fact for all the methods considered,
T7(0,0,0,&) =1 for all &, so (64) will be satisfied with equality in the stability region.

Only in simple cases is it possible to obtain analytic expressions for 7(&J). The diagonal
case where & = &g = (wg,wq,wq) will be denoted by 7 (Jg). In most cases we must estimate
T (&) or T(&g) numerically by calculating T'(&,n,0,d) over a discrete set of £, n, 6 values
in the cube —7 < &,7,0 < 7 and take the maximum over these values. This was done for
two-dimensional analysis in [25].

For a system of equations, when T is a matrix, the method is stable at some & if T
is diagonalizable and the spectral radius r(7") is no larger than 1. For the class of wave
propagation schemes considered, the amplification matrix is not proved to be diagonalizable.
For those problems we have considered, numerical studies indicate that 7" has this property
in major parts of the wave number domain. For those wave numbers where the matrix is
indicated to be non-diagonalizable, ||T"|| is computed for different values of n. In these cases,
|77 stays nicely bounded, and the spectral radius is always less than unity. Based on these
observations, the wave propagation schemes is said to be stable for given & if

T (&) = max r(T(&,n,0,d)) =1,
&m0

where maximum is taken for —m < &,1,0 < 7. In general, this is only a necessary condition
for stability in the system case, but we have not observed that it fails for our applications.

4.1 Scalar advection

We start with the advection equation (4), where u, v, and w are positive constants. The
directional Courant numbers are then
At At At

W1 =U—— Wy = V—— w3 =wW——.
Az’ Ay’ Az
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maxg ¢ |T'| for
Wq
100 | 110 | 111 | 210 | 211 | 220 | 221 | 222 | LW
0.1 1.00 | 1.00 | 1.00 | 1.06 | 1.05 | 1.00 | 1.00 | 1.00 | 1.00
0.2 1.00 | 1.00 | 1.00 | 1.24 | 1.18 | 1.00 | 1.00 | 1.00 | 1.00
0.3 1.00 | 1.00 | 1.00 | 1.54 | 1.32 | 1.00 | 1.00 | 1.00 | 1.03
0.4 140 | 1.00 | 1.00 | 1.96 | 1.45 | 1.00 | 1.00 | 1.00 | 1.17
0.5 || 2.00 | 1.00 | 1.00 | 2.50 | 1.50 | 1.00 | 1.50 | 1.00 | 1.57
0.6 2.60 | 1.72 | 1.00 | 3.16 | 1.43 | 1.06 | 2.02 | 1.00 | 2.21
0.7 3.20 | 2.68 | 1.00 | 3.94 | 1.26 | 1.37 | 2.33 | 1.00 | 3.01
0.8 3.80 | 3.88 | 1.00 | 4.84 | 1.11 | 2.00 | 2.33 | 1.00 | 3.97
0.9 4.40 | 5.32 | 1.00 | 5.86 | 1.02 | 3.92 | 1.92 | 1.00 | 5.08
1.0 5.00 | 7.00 | 1.00 | 7.00 | 1.00 | 7.00 | 1.00 | 1.00 | 6.32
1.01 || 5.06 | 7.18 | 1.06 | 7.12 | 1.12 | 7.37 | 1.14 | 1.12 | 6.45

Table 3: The amplification factor 7(&4) versus the CFL number wy = wi = wp = w3 for the
scalar problem.

As an example of this stability analysis, consider the donor cell upwind method

Qrik = Qi —w(Qrixk —Qr-17x) — w2 (Qrix — Qry-1.x) — w3(Qrix — Qrix-1)
= Qrix —wiD;Qrrx —weDyQrix —w3D,Qryk,

where D;, Dy, D, denote the upwind difference operators. This is the wave-propagation
Method (1,0,0) from Section 2. Inserting the Fourier mode (62) into this method yields

T(f’n’ 0’ (:)‘): . . .
T =1 — (1 —e %) —wy(1 — e™™) —wy(1 — e ).

Here and below the superscripts on 7" and 7 (&) refer to the labels (mq,mo, m3) denoting the
method. This donor cell method can be shown to be stable only when

wi +wy +ws <1,

which is more restrictive than our desired bound (61). In particular, along the diagonal we
find that
T(&Bq) = max(1, |1 — 6wqgl).

so that the method is only stable for wy; < 1/3.

In Table 3 we present the values of 7 (&Jy) found numerically for each method of the type
presented in Section 2, and also for the classical Lax-Wendroff method. The column labelled
T, for example, shows that the method is stable for wy = 0.3 but not for wy = 0.4, since in
the latter case the amplification factor is 1.40.

We can improve the stability properties of the upwind algorithm by moving up to Method
(1,1,0), in which we introduce transverse propagation of the increment waves into adjacent
cells. The amplification factor is then

T = 710 4 iwe(1 — e ) (1 — ™) + wiws(1 — e %) (1 — e~ %) (65)
+  wows(l—e M1 —e ).
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In the diagonal case we find that the amplification factor is maximized by takingé =n=0=n=
which results in
THO(B,) = max(1, |1 — 6wg + 12w3]),

and hence the method is stable for wy < 1/2 as indicated in Table 3.
By also introducing double-transverse propagation, as discussed in Section 2.3.1, we obtain
Method (1,1,1). Tt is possible to write T''! in the compact form

TH = (1 —wi(1— e ) (1 —wp(l — e ™)) (1 — w3(1 — e ®)). (66)

It can easily be shown that 7'1() = 1 for all & in the cube (61) and hence this method has
optimal stability. (This is expected since Method (1,1,1) is the “shift and average” scheme.)
Note that even though Method (1,1,1) is only first order accurate, it includes approxima-
tions to the third derivative term gy, coming from the double-transverse propagation (and
apparent from the product wjwsws appearing in the expression for T'11). We will see for second
order methods that obtaining optimal stability requires including approximations to certain

fourth order derivatives (obtained by the double-transverse propagation of correction waves in
Method (2,2,2)).

4.2 Second-order methods

The simplest wave-propagation method which is second order accurate is Method (2,1,0).
Taking m1 = 2 includes correction waves modeling the second derivative terms ¢z, gyy and g,
in the Taylor expansion. Taking mo = 1 gives transverse propagation of the increment waves,
which models the cross-derivative terms gy, gy, and g;,. The amplification matrix is

770 = TN L (- @) (L (L ) sl @)1 - (L) (67)
b sl —ws)(1— (1 — ).

In the diagonal case we find
T2 (1, 70,7, &4) = 1 + 6w?, (68)

and hence this method is unstable for any wy. The method is stable in the special case where
one of the velocities is zero, say w = 0 (and hence the corresponding directional Courant
number is also zero, ws = 0). In this case the problem reduces to a two-dimensional problem
and this method is optimally stable in two dimensions (this is what was called Method 3 in
[25]). So Method (2,1,0) is stable on faces of the cube (61), e.g., for all & = (w1, ws,0) with
0 < wq, wo <1, but nowhere in the interior as indicated in Table 3 and by the diagonal. Note
that (68) gives the values in the table. This indicates that for this scheme the maximum is
taken for wave numbers equal 7.

In a fully three-dimensional problem our experience with first-order methods indicates that
good stability requires including the corner-coupling terms g,,., and hence we must at least
take mg = 1. The next simplest method includes transverse and double-transverse propagation
of the increment waves, along with correction waves in the normal direction, and is Method
(2,1,1). The expression for 72! is given by (67) with 7''0 replaced by T''''. Unfortunately
this scheme is still unconditionally unstable for a fully three-dimensional problem, although
the amplification factors are smaller than for Method (2,1,0). From the table also note that
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the scheme has an isolated point of stability at wy = 1.0. For this value the scheme happens
to be exact.

Transverse propagation of the correction wave must also be used in order to obtain a stable
second order accurate method for fully three-dimensional problems. This means that mo = 2
and perhaps also m3 = 2.

Method (2,2,0) has amplification factor

1 . . .
T220 _ T21O + 5(4)1(4)2(1 o wl)(eZE . 1)(1 . e—Zf)(l _ e—zn)

el @)~ (1 - e (1 - e )

b sl @) 1) —e M1 e )
b (1l — ) (€ — 1)1 — )1 - )
b el - wn)(e — 1)1 - (1 - )
ol - ws)(e —1)(1 - e (1 — ),

According to Table 3, this scheme is stable for wy < 0.5, which is reasonable but still not
optimal.

In Method (2,2,1), the increment wave propagates as in Method (1,1,1). The amplification
factor is given by (69) but with 72! replaced by T?!!. Like Method (2,1,0), T2?!! takes its
maximum in the unstable regime for wave numbers equal 7. In this case T2?! (7, ,m,&g) =
1 — 18w? + 164w* and the method is stable for wy < (1 + v/33)/16 = 0.4215, in agreement
with the table. Compared to Method (2,2,0), the stability region is slightly reduced, but the
amplification factor outside of the stable region is smaller and, as for Method (2,1,1), the
scheme is exact for wy = 1.0.

Finally, if the correction wave also propagates in a three-dimensional manner we obtain the
full Method (2,2,2). The amplification factor for this method is

1 : : : :
T222 _ 221 §w1w2w3(1 _ wl)(ezs —1)(1 - 6716)(1 —e M1 - 6710)

- %wl“’?“’?’(l —wy) (¢ —D(1—e M1 —e ) (1 —e) (70)
— el —ws)(e? — 11— e )1 - e (1 - e

According to Table 3, the wave propagation scheme is stable for wy < 1, which is the best one
can expect.

4.3 Other second order discretizations

In this section we compare the stability results found for the wave-propagation algorithms with
that of the standard Lax-Wendroff method. We also consider what happens if the centered
approximations to second derivatives used in Lax-Wendroff, which forms the basis for the
correction waves in our methods, are replaced by other standard approximations such as those
used in the 1-dimensional Beam-Warming or Fromm methods.
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Consider a general method of the form
Qijk = Qijk — w1 Dz Qijk — waDyQijk — w3 D, Qijk + E1 + E, (71)

The term FE; includes the approximations of the pure second order derivatives in the Taylor
series while Fy models cross-derivative terms. Taking Ey = FE3 = 0 gives the Donor Cell
upwind method, while the standard Lax-Wendroff method has

1 1
EfW = _Ewl(l — w1)(DgQit1,5k — DaQijk) — §w2(1 —w2)(Dy Qi jv16 — DyQij)
1
—§w3(1 — w3)(D,Qijr+1 — D, Qijk)- (72)
Ey" = wiwaDiDEQijk + wiwsDEDEQijk + waws DDE Qs (73)

where DQ; i denotes the centered difference (Q;y1,jx — Qi—1,jx)/2. The Lax-Wendroff ampli-
fication factor is

THW = 1-— %wl(ei’5 — %) — %wQ(ei” —e ) — %wg(ei“’ — e W)
b 1)1 - e ) + 2w — 1)1 — e )+ Lud(e 1)1 - e )
+ iwlwz(ei£ — e %) (e — e7) + iwlwg(eig — e %) (e — g7 W)
+ %(UQ(Ug(ei" — e*i")(ei“’ — e*i“’).

Along the diagonal, Lax-Wendroff is stable for wy < 0.1925.
One might attempt to improve stability by replacing the centered approximations to cross-
derivative terms by upwind approximations, using

E5P = wiwaDy Dy Qi + wiws D, DyQijk + wows D, Dy Qi
in place of EIW. This gives Method (2,1,0) which was seen above to be unconditionally

unstable. However, if we also replace ELY by an upwind-biased approximation, stability can
be restored. One possibility is to use the fully-upwind Beam-Warming approximation

1 1
EBV = —§w1(1 —w1)(DzQijk — Dz Qi—1,jk) — §w2(1 — w2)(DyQijk — DyQij—1,k)
1
—§w3(1 —w3)(D,Qijk — D, Qsjk—1)-

while another is to use centered differences such as D;Qrsx in place of the upwind difference
D;Q;sx in EFW. This corresponds to Fromm’s method in one dimension, so we call this

1 1
Ef"= — 701 (1 = w1)(DgQijk — DgQi-1,jk) — ywa(1 — w2) (DyQijr — DyQij—1,k)
1
— —w3(l - w3)(D;Qi — D5 Qij k1)
4

Replacing EFfW by one of these and using E5” gives methods we label Method BW(2,1,0)
and Method Fr(2,1,0) for Beam-Warming and Fromm, respectively. One could then add in
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maxg .9 |T'|, Beam—Warming max¢ p 9 |T'|, Fromm
Wy Wq
7210 | 211 | 220 | 221 | 222 7210 | 211 | 220 | 221 | 222
0.1 1.00 | 1.00 | 1.00 | 1.00 | 1.00 0.1 1.00 | 1.00 | 1.00 | 1.00 | 1.00
0.2 1.00 | 1.00 | 1.00 | 1.00 | 1.00 0.2 1.00 | 1.00 | 1.00 | 1.00 | 1.00
0.3 || 1.00 | 1.20 | 1.00 | 1.00 | 1.00 0.3 || 1.00 | 1.00 | 1.00 | 1.00 | 1.00
0.4 | 1.00 | 1.43 | 1.38 | 1.00 | 1.00 0.4 | 1.00 { 1.00 | 1.00 | 1.00 | 1.00
0.5 || 1.00 | 1.50 | 2.50 | 1.50 | 1.00 0.5 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
0.6 || 1.00 | 1.45 | 3.74 | 2.01 | 1.00 0.6 || 1.72 | 1.00 | 1.72 | 1.01 | 1.00
0.7 || 1.42 | 1.32 | 4.95 | 2.20 | 1.00 0.7 || 2.68 | 1.00 | 2.68 | 1.03 | 1.00
0.8 | 292 | 1.18 | 5.99 | 1.90 | 1.00 0.8 || 3.88 | 1.00 | 3.88 | 1.02 | 1.00
0.9 || 478 | 1.05 | 6.72 | 1.19 | 1.00 0.9 5.32 | 1.00 | 5.32 | 1.02 | 1.00
1.0 || 7.00 | 1.00 | 7.00 | 1.00 | 1.00 1.0 || 7.00 | 1.00 | 7.00 | 1.00 | 1.00
1.01 | 7.24 | 1.08 | 7.00 | 1.25 | 1.00 1.01 | 7.18 | 1.06 | 7.18 | 1.11 | 1.06

Table 4: The amplification factor 7(&g) versus the CFL number wy = wi = wp = w3 for the
scalar problem. In the left table, Beam—Warming type discretization is used for (pure) second
order derivatives. In the left table, Fromm discretization is used.

transverse propagation of the correction terms and perhaps double-transverse propagation as
well, giving methods such as BW(2,2,2), etc. Only minor changes have to be made in the
expressions for the amplification factors 7210, 7211 7220 7221 and 7222, in order to account
for this change in the underlying approximation. For the BW-type approximation, the change

is
replace (e% —1)(1 —e™%) by (e —1)(1 — e %)e %,

Similar changes have to be made for corresponding terms involving 1 and 6. Likewise, the
changes to be made for the inclusion of Fromm-type discretization are

1

5 (1 —e %) (e — e7).

replace (e —1)(1 —e %) by
These modified methods are interesting to study since the effect of adding certain limiters is to
give an upwind bias towards one of these methods. The full effect of adding a limiter is more
complicated since the methods are then nonlinear and von Neumann analysis does not apply,
but nonetheless it may be reassuring to know that we are switching to a method which is also
stable in its own right.

Table 4 gives a summary of stability results along the diagonal for these modified methods.
One significant result is that none of these methods is unconditionally unstable in the manner
of Method LW(2,1,0) and LW(2,1,1). In general the Fromm methods have the largest stabil-
ity regions, though in the case of Method (2,2,2) all three approaches give optimally stable
methods.

4.4 Linearized Euler equations (acoustics)

In the previous sections we have studied stability for the scalar advection equation. Applying
the wave-propagation algorithms to a system of equations is considerably more complicated
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since solving each Riemann problem now corresponds to splitting jumps into eigenvectors.
For a particular linear system it is still possible to analyze stability using the von Neumann
approach by computing the amplification matrices which arise. As an example, we consider a
linearization of the Euler equations in the primitive variables p, u, v, w, and p. The equations
are linearized using the constant state (po, uo, v, wo, po). This gives the equations for acoustics
in a uniformly-moving flow. The matrices involved are

Uugp Po 0 0 0 () O £0 0 0
0 wp 0 0 1/po 0 v O 0 0
A= 0 0 wu O 0 , B=[0 0 w 0 1/p |, (74)
0 0 0 wu 0 0 0 0 9 0
0 v9p0 0 0 ug 0 0 ypo 0

S
[e=]
o
o

0
0 0 wo 1 / Po
0 0 9po wo

The eigenvalues are A = {ug — ¢, ug, ug, ug, uo + co}, 4 = {vo — ¢o,v0,v0,v0,v0 + o}, and
v = {wp — co, wo, wo, wy, wy + co}. Here co = /ypo/po denotes the sound speed.

The stability region depends on these constant values. Taking ug = vg = wg = 0, ypo =
po = 1, the stability results turn out to be very close to what was achieved for the scalar
problem, in spite of the fact that this is a fully coupled system of acoustics equations.

Here we present a slightly more interesting case in which the background velocity is nonzero,
so acoustic waves move relative to a fixed flow field. The following values are used: ug = vy =
wo =1, ypp = 2 and py = 1.

The expressions for T'(¢,7,0,d) are not hard to derive, but involve a large number of terms
as the algorithm includes an increasing number of updates of neighboring cells. For example,
the amplification matrix for the very simple Method (1,0,0) reads

T — 1 2—;[A+(1 —e %) + A (e —1)]
- BT 4 B - )
— 2—2[(#(1 —e )+ 0 (ef —1)).

The spectral radius of the amplification matrix for each method on this linear system is given
in Table 5. With the constant state used in the linearization, the Courant number wy is given
by

At
=(1 2)—
Wq ( + \/_) Az’
assuming that equal spacing is used in all directions, i.e. Az = Ay = Az.
The results are roughly the same as for scalar advection. Transverse propagation of the in-

crement waves in Method (1,1,0) adds stability compared to the simple Method (1,0,0). Adding
double-transverse propagation of the increment waves gives the optimally stable Method (1,1,1).
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maxe n,0 (’I“(T)) for
Wd
100 | 110 | 111 | 0210 | 211 | 220 | 221 | 222 LW
0.1 1.00 | 1.00 | 1.00 | 1.03 | 1.02 | 1.00 | 1.00 | 1.00 | 1.00
0.2 1.00 | 1.00 | 1.00 | 1.10 | 1.08 | 1.00 | 1.00 | 1.00 | 1.00
0.3 1.00 | 1.00 | 1.00 | 1.23 | 1.15 | 1.00 | 1.00 | 1.00 | 1.00
0.4 | 1.00 | 1.00 | 1.00 | 1.41 | 1.22 | 1.00 | 1.00 | 1.00 | 1.02
0.5 | 1.32 | 1.00 | 1.00 | 1.63 | 1.28 | 1.00 | 1.00 | 1.00 | 1.12
0.6 | 1.79 | 1.00 | 1.00 | 1.91 | 1.31 | 1.00 | 1.05 | 1.00 | 1.37
0.7 || 225|101 | 100 | 224 | 1.31 | 1.00 | 1.37 | 1.00 | 1.80
0.8 2.72 | 1.53 | 1.00 | 2.62 | 1.37 | 1.01 | 1.55 | 1.00 | 2.34
0.9 3.18 | 2.19 | 1.00 | 3.05 | 1.42 | 1.17 | 1.53 | 1.00 | 2.99
1.0 | 3.65 | 2.98 | 1.00 | 3.54 | 1.46 | 1.63 | 1.23 | 1.00 | 3.74
1.01 || 3.69 | 3.07 | 1.02 | 3.59 | 1.47 | 1.72 | 1.23 | 1.04 | 3.82

Table 5: The amplification factor 7(&Jg) versus the CFL number wy for the linearized Euler
system.

Replacing the centered approximations of cross-derivatives in the Lax-Wendroff scheme
with upwind approximations results in an unconditionally unstable Method (2,1,0). The degree
of instability is reduced in Method (2,1,1), but still the scheme is unconditionally unstable.
Introducing transverse propagation of the correction wave adds stability. Still, the stability
area of Method (2,2,0) is larger than for Method (2,2,1), but the latter has less pronounced
instability than was observed for the scalar example. When both the increment wave and the
correction wave propagate in a three-dimensional manner we obtain Method (2,2,2), a method
which is again optimally stable.

Note that the difference in stability between Method (2,2,0) and Method (2,2,2) is less
than for the scalar problem. From experiments involving other parameters and equations,
the most restrictive stability limit for Method (2,2,0) appears to be wy < 1/2. As discussed
in Section 2, the updates resulting from one single interface in Method (2,2,2) involve 15
Riemann problems, while the same number for Method (2,2,0) is 5. Hence, Method (2,2,0)
may, for certain applications, be computationally more efficient than Method (2,2,2).

Recall from the previous sections that the transverse propagation of the correction wave
gives rise to an approximation of several terms from a Taylor expansion added together. This
is obtained under the assumption that the matrices involved commute. The matrices in the
system (74) do not commute, but the stability does not seem to suffer from this. This is
also experienced when considering other systems. At least for these cases, the stability limit
appears to be insensitive to the commutation of the matrices.

4.5 Limiter influence and wave number dependency

The numerical example in Section 3.2 was also studied in [18]. The method used was (2,1,1)
at a Courant number of about 0.9, and the computation did not suffer from any instability
problems. From other numerical experiments we have observed that the unconditionally unsta-
ble methods (2,1,0) and (2,1,1) do not behave as badly as the discussion above may indicate.
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Figure 10: The absolute value of the amplification factor versus the wave number ¢
for the scalar problem. The Courant numbers are held fixed: (a) wg = 0.2, (b) wy =
Wy = 0.9.

This is especially true for Method (2,1,1). But even Method (2,1,0) may produce nice results
when applied on nonlinear problems if limiters are used. This indicates that the instability is
strongest for large wave numbers. Limiters are assumed to be most effective in this range. In
this section we reconsider the two test problems from the previous section, and examine how
the amplification factor depends on wave numbers and to some extent on limiters.

In order to simplify the discussion, we consider the case when the wave numbers are equal,
ie. £ =n = 6. In Figure 10, the absolute value of the amplification factor versus the wave
number for the scalar problem is depicted for three different values of the Courant number
wq. The analytical expressions derived in the previous section are used. For all schemes, |T'| is
symmetric about £ = 0, and in the figures only 0 < ¢ < 7 is given.

As expected, the stable methods (1,1,1) and (2,2,2) are uniformly bounded by one, and the
former scheme is more dissipative than the latter. When it comes to the unstable schemes,
Method (2,1,0) is more unstable than Method (2,1,1) for nearly all wave numbers and Courant
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numbers.
These results may be utilized to find initial conditions that trigger instabilities in the
schemes. Consider the initial condition

qo(z,y, z) = sin(2mnz + 27ny + 27nz), (75)

where n is a positive integer. Assume that the computational domain is [0, 1] x [0, 1] x [0,1],
that Az = Ay = Az, and that periodic boundary conditions are used on all boundaries. The
wavelength in the Fourier mode (62) is 2rAz /¢, and in (75) the wavelength is 1/n. Hence

2mn
§= N
where N is the number of cells in each coordinate direction. Since the shortest wavelength
obtainable on the grid is 2Ax, acceptable values for n are 1,2,..., N/2, assuming that N is
even.

An estimate for the amplification factor is obtain by considering the ratio

max |Qryx|/ max|Qryx|. (76)
An average value of this ratio for a number of steps is used. Due to roundoff errors, a com-
putation may trigger instabilities, even though the wavenumbers used should give stability. In
such cases, the average is estimated based on “stable steps”.

In Figure 11, the estimated amplification factor is depicted with “o” symbols for Method (2,1,1).
In these computations N = 40 and n = 5,10, 15,20 are used. The symbols lie very close to the
curves as expected.

It is now possible to study the effect of limiters on stability. The computations are redone,
but now with the MC-limiter turned on. The estimates for the ratio (76) are marked using
x-marks. The overall picture is that the limiters may prevent the solution from going unstable
for all Courant numbers. Note that when n = 20, yielding a wavelength of 2Ax, the gradient in
the numerical solution changes sign from one cell to the other. In this case the limiter becomes
zero, the high order terms are switched off and the scheme is equivalent to Method (1,1,1).

In the previous section we also considered the linearized Euler equations. In Figure 12,
the wave number dependency is depicted for some of the schemes for three different Courant
numbers. Compared to the behavior of the schemes when applied to the scalar problem, the
situation is clearer. For a given wave number, the tendency is that r(T'!'!) < r(T?%?) <
r(THY) < r(T?0). Also note that for both the unstable schemes, r(T) stays close to unity
except for “large” wave numbers. This is especially the case for Method (2,1,1). Since limiters
tend to damp the influence of large wave numbers, the expected instability may be hard to
observe when limiters are used.

Limiters are constructed in order to reduce oscillations near discontinuities. They are not
intended to increase the stability range of the scheme. Nevertheless, it seems that the use of
limiters has a positive effect on Method (2,1,1). Similar computations as those reported above
show that this also is the case to some extent for Method (2,1,0). Note however that there
is no reason to use Method (2,1,1), since it involves nearly the same amount of work as the
stable Method (2,2,2). Method (2,1,0) should probably not be trusted in general, even though
it produces good looking results on certain problems.
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Figure 11: The absolute value of the amplification factor versus the wave number ¢ =7 = 0
for Method (2,1,1) applied to the scalar problem. The Courant numbers are: (a) wg = 0.2,
(b) wg = 0.5, (c) wg = 0.9. The circles (o) correspond to numerical experiments, while the
x-marks show the same numerical experiments when the MC limiter is incorporated.
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Figure 12: The spectral radius of the amplification matrix versus the wave number £ =7 =0
for the linearized Euler equations. The Courant numbers are held fixed: (a) wg = 0.2, (b)

Wyq = 0.5, (C) Wq = 0.9.
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5 Conclusions

In this paper, a class of three-dimensional wave propagation methods for conservation laws
is constructed. By using proper wave propagation, a method is obtained which is stable for
Courant number up to one. Simpler versions of the method appear to be stable in practice due
to the effects of the nonlinear limiter function even though the unlimited versions are unstable
for linear problems. This has been analyzed in Section 4.

The 3D scheme generalizes the two-dimensional approach for systems in [26], and the 3D
scheme for scalar advection in [25]. The wave propagation method is implemented in Fortran,
and is included in the software package CLAWPACK, freely available on the Web.

The methods have been applied to the Euler equations as a sample application. Though
the examples used in this paper are written in conservative form, the methods, as implemented
in CLAWPACK, handle the more general class of hyperbolic equations (3) as discussed in [26].

A three-dimensional version of the AMRCLAW package is also under development in joint
work with Marsha Berger. This implements adaptive mesh refinement as described in two
space dimensions in [4]. For large three-dimensional problems it may be necessary to use
parallel processing. The ZPLCLAW package being developed with Turkiyyah and Wu [45] using
the ZPL programming language of Snyder [39] may be useful in this context. Pointers to both
AMRCLAW and ZPLCLAW can be found from the CLAWPACK webpage.
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