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Abstract. Systems of hyperbolic partial differential equations with source terms (balance laws) arise

in many applications where it is important to compute accurate time-dependent solutions modeling small

perturbations of equilibrium solutions in which the source terms balance the hyperbolic part. The f-wave

version of the wave-propagation algorithm is one approach, but requires the use of a particular averaged

value of the source terms at each cell interface in order to be “well balanced” and exactly maintain steady

states. A general approach to choosing this average is developed using the theory of path conservative

methods. A scalar advection equation with a decay or growth term is introduced as a model problem for

numerical experiments.
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1 Introduction

The goal of this paper is to present a new approach to incorporating source terms into high-resolution
finite volume methods for problems of the form

qt + f(q)x = ψ(q)σx(x) (1)

or
qt +A(q)qx = ψ(q)σx(x) (2)

where q(x, t) ∈ lRm, ψ : lRm → lRm, σ : lR→ lR and we either have a flux function f : lRm → lRm

in (1) or a matrix-valued function A : lRm → lRm×m in (2). The equation (1) can be written in the
quasi-linear form (2) by defining the Jacobian A(q) = f ′(q), but (2) is more general. In any case we
assume the homogeneous equation with ψ ≡ 0 is hyperbolic, i.e. that f ′(q) or A(q) is diagonalizable
with real eigenvalues.

The method is designed to work for problems where the solution is near a steady state equilibrium
solution for which qt = 0 and the source terms exactly balance the hyperbolic terms. In practical
problems it is often necessary to solve “quasi-steady” problems close to such steady states. It is
well known that fractional step methods, in which one alternates between solving the homogeneous
equation and the pure source term problem, often fails for quasi-steady problems (see, e.g., [22]).

A method is called “well-balanced” if equilibrium initial data is exactly preserved by the method.
The hope is that the method then also accurately resolves solutions that are small perturbations to
equilibrium data. Many different well-balanced methods have been developed for specific problems,
particularly shallow water equations, see for example [2, 5, 6, 7, 8, 10, 16, 17, 18, 21, 26, 27, 28].
However, there are still problems for which it is not clear how to define such a method and the need
for more general strategies.

In [3] an approach was proposed using the f-wave version of the wave-propagation algorithm,
which is reviewed in Section 2. These methods are based on solving Riemann problems at the
interface between each pair of grid cells, so that the jump from Qi−1 and Qi is resolved into waves
propagating into neighboring cells. The main idea of the f-wave approach is to split the flux difference
f(Qi) − f(Qi−1) into waves. Source terms are incorporated by modifying the flux difference by a
quantity based on some average of the source terms between the two states before doing the splitting.
For some problems, such as the “ocean-at-rest” steady state in the shallow water equations, a simple
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averaging formula yields a well-balanced method (as reviewed in Section 3). However, for other
problems it is not clear how to define a suitable average.

In this paper an approach is explored that is based on the idea of “path conservative” methods
for solving nonconservative problems of the form (2). The idea of an f-wave method is extended to
this problem by replacing the flux difference by an integral of A(q̂(s))q̂ ′(s) over a path in state space
connecting Qi−1 to Qi. The source term is incorporated in this path in a manner that effectively
defines the proper average to use for quasi-steady problem, although in the formulation below the
source term itself drops out of the resulting equations. This approach is based on incorporating σ(x)
as an additional component in an augmented vector w = (q, σ) and considering the Riemann problem
for the resulting hyperbolic system. This idea appears in several previous papers on source terms
of this form, including the work of Gosse [16, 17], who introduced a similar approach to using the
path conservative framework based on Riemann solutions to this expanded system. The simplified
paths chosen here to define an approximate Riemann solution and its use in high resolution f-wave
methods appears to be different from previous suggestions and may be a promising general approach
to developing high-resolution well-balanced methods for a wide class of systems of this form. The
details are explained in Section 5 after reviewing the existing methods that form the basis for the
new approach.

Some examples are used to illustrate the method, including both the ocean-at-rest and more
general flowing equilibria for shallow water equations in Section 3, and a new model problem of
scalar advection with a source term in Section 7. Numerical results are presented for the latter
problem. The tests are done using Clawpack [24] and all codes and additional plots may be found
at www.clawpack.org/links/wbfwave10.

2 The f-wave approach

One approach to developing well-balanced finite volume methods is the so-called f-wave approach
first formulated in [3, 25]. General discussions can also be found in [23] and [7]. This approach has
been used in a number of applications with success, e.g. [1, 4, 20, 29, 30]. The f-wave formulation
is a variant of the “wave-propagation algorithms” described in detail in [23] and implemented in
Clawpack [24].

We assume familiarity with these methods and review them briefly to recall the main ideas and
specify notation. In one dimension Qni represents the cell average over grid cell i, which is the interval
[xi−1/2, xi+1/2]. The Riemann problem between states Qi−1 and Qi consists of the homogeneous
hyperbolic equation with piecewise constant data, and the solution consists of Mw waves propagating
away from xi−1/2. Typically Mw = m for a system of m equations, though approximate solvers may
use a different number (e.g., HLLE uses Mw = 2). In the classic formulation of the wave-propagation
algorithm the jump in q between neighboring cell averages is split into waves,

Qi −Qi−1 =
Mw∑
p=1

Wp
i−1/2 (3)

and these waves Wp
i−1/2 ∈ lRm are simply vectors represnting jump discontinuities propagating at

some speeds spi−1/2. For nonlinear problems with rarefaction wave solutions, these are typically
obtained by some linearization of the problem, taking the Wp

i−1/2 to be eigenvectors of a Roe-
averaged Jacobian matrix, for example, and the speeds to be the corresponding eigenvalues. If
`pi−1/2 and rpi−1/2 are the left and right eigenvectors of the approximate Jacobian Âi−1/2, then
Wp
i−1/2 = (`pi−1/2)T (Qi −Qi−1)rpi−1/2.
The first-order upwind method can then be written as

Qn+1
i = Qni −

∆t
∆x

[A+∆Qi−1/2 +A−∆Qi+1/2] (4)
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where the symbols A±∆Qi−1/2 represent the “fluctuations”, the vectors

A±∆Qi−1/2 =
∑
p

(spi−1/2)±Wp
i−1/2 (5)

where s+ = max(s, 0) and s− = min(s, 0). Second order correction terms can be added that depend
on the waves and speeds, and by applying limiters to the waves it is possible to develop a very
general formulation of a high-resolution method that avoids oscillations near discontinuities while
giving second-order accuracy in smooth regions of the flow. The Clawpack software [24] is based on
this approach, and written in a general framework that easily applies to many hyperbolic systems.

The idea of the f-wave splitting for qt + f(q)x = 0 is to decompose the flux difference f(Qi) −
f(Qi−1) into waves rather than the q-difference used in (3), i.e. we split

f(Qi)− f(Qi−1) =
Mw∑
p=1

Zpi−1/2 (6)

for some vectors Zpi−1/2 ∈ lRm, e.g. again as eigenvectors of the approximate Jacobian: Zpi−1/2 =
(`pi−1/2)T (f(Qi)− f(Qi−1))rpi−1/2.

The upwind method still has the form (4) but now with

A±∆Qi−1/2 =
∑
p

sgn(spi−1/2)Zpi−1/2 (7)

where sgn is the sign-function with sgn(0) = 1/2. If eigenvector-splittings for an approximate
Jacobian are used as suggested above, then (7) agrees exactly with (5) provided that Âi−1/2(Qi −
Qi−1) = f(Qi) − f(Qi−1), exactly the Roe condition for a Roe-averaged Jacobian. Second order
correction terms have a similar minor modification and for Roe solvers are equivalent in the two
formulations except that in the f-wave formulation, limiters are applied to the f-waves Zp of (6)
rather than to the waves Wp.

One advantage of the formulation (6), (7) over (3), (5) is that the method will be conservative
even if the Roe condition is not satsified on the averaged Jacobian Âi−1/2. Another advantage
discussed extensively in [3] is that it naturally extends to spatially varying flux functions f(q, x).

A third advantage is of particular interest here: one can often incorporate source terms directly
into the f-wave splitting in a well balanced manner. A simple extension of the approach of [3] to (2)
suggests that the waves Zpi−1/2 should be obtained by splitting

f(Qi)− f(Qi−1)−Ψi−1/2(σi − σi−1) (8)

into eigenvectors. Here Ψi−1/2 is some suitable average of ψ(q, x) between the neighboring states
and σi − σi−1 = σ(xi)− σ(xi−1) reduces to ∆x for the case σ(x) = x considered in [3].

We expect the possibility of a well-balanced method because an equilibrium solution qe(x) satisfies∫ xi

xi−1

f(qe(x))x − ψ(qe(x))σ′(x) dx = 0 (9)

The term (8) is an approximation to this integral, and so if Ψi−1/2 is chosen properly we can hope
that the vector (8) will reduce to the zero vector. Decomposing this into waves gives zero-strength
waves and fluctuations, and hence a solution that does not change in time. Moreover, for quasi-
steady solutions that are near steady state, the limiters and second-order correction terms are applied
to the deviations from steady state modeled by (8), typically yielding very good accuracy even for
extremely small perturbations of a steady state.

The trick is choosing an appropriate averaging of the source term. In the next section we see
that this can be easily done in one standard problem, but it is not always obvious how to do so in
general. The remainder of the paper provides a possible approach.
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3 Applications

We briefly review two problems where well-balanced methods are useful: shallow water flow over
topography and gas dynamics in a stratified atmosphere. In Section 7 a simpler scalar equation is
also used as a model problem.

Underwater topography is generally called bathymetry and we use B(x) to denote the bathymetry.
The shallow water equations then take the form

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2

)
x

= −ghBx(x).
(10)

This has the form (1) with

q =
[

h
hu

]
, f(q) =

[
hu

hu2 + 1
2gh

2

]
, ψ(q) =

[
0
−gh

]
, σ(x) = B(x). (11)

Example I (ocean-at-rest): An important special case for many applications is the ocean-at-
rest equilibrium where ue(x) ≡ 0 and he(x) +B(x) ≡ η̄, so the top surface of the water is flat at sea
level η̄. The f-wave method for this problem is well-balanced if we choose the arithmetic average of
hi−1 and hi in the source term, yielding

Ψi−1/2(σi − σi−1) =
[

0
− g2 (hi−1 + hi)(Bi −Bi−1)

]
, (12)

where we use σ = B.
Since the steady state solution has ui−1 = ui = 0, the second component of the flux difference

reduces to g
2 (h2

i − h2
i−1). Moreover, in this steady state hi−1 + bi−1 = hi + Bi = η̄, from which

it can be checked that this flux difference exactly cancels out with (12) and so (8) reduces to the
zero vector. The f-wave formulation of the shallow water equations has been used extensively in
tsunami modeling, an application where it is crucial that small perturbations on the ocean-at-rest
be accurately captured since the magnitude of a tsunami wave is generally one meter or less while
the bathymetry varies on the order of several kilometers. For more discussion of this application see
for example [13, 14, 15].

Note that this exact cancellation occurs when the arithmetic average is used in the source term
only because the hydrostatic pressure 1

2gh
2 is quadratic in the depth and h2

i −h2
i−1 = (hi+hi−1)(hi−

hi−1).
Example II (flowing shallow water): There are equilibrium solutions to the one-dimensional

shallow water equations in which the velocity is not zero, corresponding to steady flow through
a channel. In this case the momentum hu (also called the “discharge” in this context) must be
constant in space from the first equation of (10). Call this constant value of the momentum m̄. For
smooth steady states without shock waves, it can be shown by manipulating (10) that the energy

1
2
u2 + g(h+B) (13)

must also be constant. Replacing u in this equation by m̄/h and multiplying by h2 gives a cubic
equation for h in terms of B that can be solved to obtain the equilibrium solution for a given
bathymetry B(x). (In this paper we only consider the nonresonant case for which this is possible.)

Given an equilibrium solution of this form, using the f-wave method with the source term ap-
proximated by (12) does not give a method that is exactly well balanced. It typically performs quite
well, however, and from the literature it is not clear how important having an exactly well-balanced
method is for this case. Nonetheless, some methods have been developed that achieve this, such as
the method of Gosse [16] or the WENO method proposed in [28]. The method of this paper gives
another approach.

Example III (atmosphere-at-rest): A problem closely related to Example I is the atmosphere-
at-rest problem, in which a vertical pressure gradient exactly balances the force of gravity. Accurately
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computing small amplitude disturbances propagating through such an atmosphere again requires
well-balanced methods. In one space dimension, with x now the vertical coordinate and u the ver-
tical velocity, the simplest compressible equations are the equations of polytropic gas dynamics,

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p(ρ))x = −gρ,
(14)

where p(ρ) gives the pressure as a function of density, e.g. by the polytropic equation of state

p(ρ) = Kργ (15)

for some constants K and γ. This is of the form (1) if we set

ψ(q, σ) =
[

0
−gρ

]
, σ(x) = x. (16)

Note the special case K = 1/2, γ = 2, in which case (14) is just the shallow water equations on a
linear beach with B(x) = x. For air, γ ≈ 1.4 and the pressure is not a quadratic function, which
means that using the arithmetic average 1

2 (ρi−1 + ρi) in defining Ψi−1/2 in (8) will not yield a
well-balanced method. An averaging formula that does give a well-balanced method is derived in
Section 6. The full Euler equations in which (14) is augmented by an energy equation is also briefly
discussed in Section 6.

4 Path conservative methods

Path conservative methods were introduced to extend the idea of conservative finite volume methods
to equations containing nonconservative products such as (2) (see, e.g., [9, 10, 11, 12]). First consider
the homogeneous system qt + A(q)qx = 0 and the Riemann problem between states Qi−1 and Qi.
Suppose we know the physically correct solution to the Riemann problem, a similarity solution
depending only on (x − xi−1/2)/t. This similarity solution corresponds to some path q̂(s) in state
space connecting Qi−1 and Qi, as the parameter s goes from 0 to 1. Then we can define an f-wave
method in which we split

A∆Qi−1/2 ≡
∫ 1

0

A(q̂(s))q̂ ′(s) ds (17)

into left- and right-going fluctuations A±∆Qi−1/2, and further into waves Zpi−1/2 for second-order
corrections. If A(q) is the Jacobian of a flux function, A(q) = f ′(q), then (17) reduces to f(Qi) −
f(Qi−1) regardless of what path is chosen and we recover the standard f-wave method. However,
more generally the value of A∆Qi−1/2 defined by (17) depends on the path.

Note that if the Riemann solution involves discontinuities then qx contains delta functions sup-
ported at the same points where A(q) is discontinuous, and so the “nonconservative product” A(q)qx
is not well defined, even in the distribution sense. The path chosen in state space resolves this ambi-
guity by determining how q varies within the discontinuity, since the path q̂(s) is continuous in state
space even for the portion of the path that corresponds to the jump discontinuity. This is the power
of the path conservative approach: it makes sense of the nonconservative product. But we can only
do so properly by assuming we know the correct path for each Riemann problem that arises, which
generally requires more knowledge about the physics of the problem. For example, we may need to
know what higher-order terms are ignored in deriving the hyperbolic problem, since, for example,
adding a diffusive term and letting the coefficient vanish may give different limiting paths depending
on the form of diffusion chosen.

Unfortunately, in practical problems it is frequently difficult to determine the correct path and
often a straight-line path is used to compute the integral (17) in numerical methods, i.e.,

q̂(s) = (1− s)Qi−1 + sQi for 0 ≤ s ≤ 1. (18)
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This at least resolves the ambiguity in some manner, and experiments have shown that this may be
adaquate for some practical problems. See [9] for more discussion and some examples. The choice
of correct path for specific applications is an active area of research. In this paper we choose paths
to simplify the integrals that arise when source terms are included.

To incorporate source terms, note that (2) can be rewritten as a homogeneous system if we view
σ(x) as another component in the hyperbolic system satisfying σt = 0. We set

w =
[
q
σ

]
, B(w) =

[
A(q) −ψ(q)

0 0

]
(19)

and then (2) becomes
wt +B(w)wx = 0. (20)

For this problem a path in state space takes the form ŵ(s) = (q̂(s), σ̂(s)). Using a path-conservative
method for this problem, we find that (17) is replaced by

A∆Qi−1/2 ≡
∫ 1

0

A(q̂(s))q̂ ′(s)− ψ(q̂(s))σ̂′(s) ds. (21)

If A(q) is a Jacobian, i.e., if we had started with (1), then the first term of the integral would be
path-independent and this reduces to

A∆Qi−1/2 =
∫ 1

0

f ′(q̂(s))q̂ ′(s)− ψ(q̂(s))σ̂′(s) ds

= f(Qi)− f(Qi−1)−
∫ 1

0

ψ(q̂(s))σ̂′(s) ds.
(22)

We will only consider this case for the remainder of the paper, since the examples considered all
have the form (1), but the ideas should carry over more generally to equations of the form (2).

Note that choosing an approximation to the remaining integral in (22) can be viewed as equivalent
to choosing an average Ψi−1/2 as discussed in Section 2, since if we approximate ψ(q̂(s)) ≈ Ψi−1/2

for 0 ≤ s ≤ 1 and pull this out of the integral then (22) reduces to (8). However, in order to use the
path integral idea to choose such an average we will keep A∆Qi−1/2 in the form of the first line of
equation (22).

The eigenvalues of B(w) consist of the eigenvalues of A(q) together with λ = 0, corresponding to
a new linearly degenerate field introduced by adding σ(x) as an element of w. If the original system
is hyperbolic (A(q) diagonalizable with real eigenvalues) then so is the extended system provided
that 0 is not an eigenvalue of A(q). The “resonant case” where A is singular and B has λ = 0 as a
repeated eigenvalue can be more difficult. Note that for the shallow water equations the eigenvalues
of A are u±

√
gh and the ocean-at-rest case is non-resonant for h > 0. The moving-water equilibrium

is non-resonant in the subcritical case with |u| <
√
gh. The transcritical case is more subtle and an

equilibrium typically contains stationary shock waves where the solution jumps from one solution
of the cubic equation described in Section 3 to another. Here we concentrate on the non-resonant
case.

Consider a state w∗ = (q∗, σ∗) for which A(q∗) is nonsingular. The matrix B(w∗) has m
eigenvectors given by the vectors (rp, 0)T , where rp is the pth eigenvector of A(q∗). In the non-
resonant case, the eigenvector for the new linearly degenerate field can be written as[

r∗
1

]
, (23)

with r∗ = A(q∗)−1ψ(q∗) ∈ lRm. Through the point w∗ there is a unique 1-parameter integral curve
ŵ(s) = (q̂(s), σ̂(s)) of the linearly degenerate field satisfying

A(q̂(s))q̂ ′(s)− ψ(q̂(s))σ̂′(s) = 0 (24)
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at each point. Note that this is exactly the expression appearing as the integrand in (21), which will
be important below. These means that varying w along the integral curve through w∗ yields nearby
states that are in equilibrium with w∗.

Since the final component of the eigenvector (23) is nonzero, we can view q as a function of σ
along this path, at least sufficiently close to w∗, and we will denote this path by

w[∗](σ) = (q[∗](σ), σ) (25)

for σ near σ∗.
Now recall that σ is a function of x. Let w∗ be the solution at one point x, then w[∗](σ(x)) gives

a solution that varies in x. The fact that (24) is satisfied along this solution means that the given
state w∗ can be viewed as one pointwise state of an equilibrium solution as σ varies near σ∗. Some
examples follow.

For Example I from Section 3 (the ocean-at-rest), given any state w∗ = (h∗, 0, B∗) with zero
velocity, some non-negative depth h∗, and bathymetry B∗, this is clearly one state in an ocean at
rest. Given any other bathymetry value B, the corresponding depth is h[∗](B) = min(h∗+B∗−B, 0)
(taking the minimum to allow dry states). In this case σ = B and w[∗](s) = (h[∗](B(s)), 0, B(s)).
Example III (atmosphere-at-rest) is similar and is considered further in Section 6.

For Example II (a flowing equilibrium), consider a state w∗ = (h∗,m∗, B∗) where the momentum
m∗ = (hu)∗ need not be zero (but is subcritical). Then for a nearby bathymetry value B we can
follow the integral curve to find w[∗](B) = (h(B,m∗), m∗, B), where h(B,m∗) is obtained by solving
a cubic equation as described in Section 3.

5 A well-balanced path conservative method

Finally we come to the main idea of the new approach. Given states Qi−1 and Qi for which we
wish to define A∆Qi−1/2 via (22), construct the local equilibrium solution Q[i−1](σ) passing through
(Qi−1, σi−1) and let Q̂i = Q[i−1](σi) be the value of this local equilibrium solution at σi. We do this
by following the integral curve of the linearly degenerate field as discussed in the previous section.

Now consider the following path in state space:

(Qi−1, σi−1) −→ (Q̂i, σi) −→ (Qi, σi) (26)

with an arbitrary parameterization s ∈ [0, 1], chosen with the intermediate point (Q̂i, σi) reached
at s = 1/2. Along the first half of this path, σ varies from σi−1 to σi while moving along the
local equilibrium solution. Along the second half, Q varies from Q̂i to Qi while keeping σ constant.
Splitting the path integral (22) into two pieces yields∫ 1/2

0

f ′(q̂(s))q̂ ′(s)− ψ(q̂(s))σ̂′(s) ds+
∫ 1

1/2

f ′(q̂(s))q̂ ′(s)− ψ(q̂(s))σ̂′(s) ds. (27)

By our choice of path, the first integral is zero (since we move along an equilibrium solution) while
in the second integral the source term vanishes (since σ̂ is constant for s ∈ [1/2, 1] and so σ̂′(s) = 0).
Hence the only remaining term is the integral of f over the second portion of the path and the entire
integral reduces to

f(Qi)− f(Q̂i) (28)

regardless of the parameterization.
There is a second equally plausible choice of paths:

(Qi−1, σi−1) −→ (Q̂i−1, σi−1) −→ (Qi, σi) (29)

where Q̂i−1 = Q[i](σi−1). On this path we first hold σ̂ constant at σi−1 for the first half and then
move along the local equilibrium solution Q[i](σ) through (Qi, σi). A similar computation of the
integral from (22) along this path shows that it reduces to

f(Q̂i−1)− f(Qi−1) (30)
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regardless of the parameterization. In general neither path corresponds to the exact solution of the
Riemann problem for (20) (See Notes 5 and 6 below), but a simple general approach to obtaining a
well-balanced method is to average expressions (28) and (30) and take

A∆Qi−1/2 =
1
2

[f(Qi)− f(Q̂i) + f(Q̂i−1)− f(Qi−1)]. (31)

This is the vector that is split into f-waves Zpi−1/2 and into left- and right-going fluctuations
A±∆Qi−1/2.

Note the following:

1. This method is well-balanced. If the data (Qi−1, σi−1) and (Qi, σi) are sampled from an
equilibrium solution then our constructions above give Q̂i−1 = Qi−1 and Q̂i = Qi and so (31)
gives A∆Qi−1/2 = 0 as desired.

2. We can rewrite A∆Qi−1/2 from (31) as

A∆Qi−1/2 = f(Qi)− f(Qi−1) +
1
2

[−f(Qi)− f(Q̂i) + f(Q̂i−1) + f(Qi−1)] (32)

and interpret the final term as the approximation to the source term to be used in place of
Ψi−1/2(σi − σi−1) in (8). This seems odd since the source term does not explicitly appear in
this term, but of course it implicitly comes into the calculation of Q̂i and Q̂i−1.

3. For Example I (ocean-at-rest), it is easy to verify that the expression (32) reduces to (8) with
(12).

4. For Example II (flowing shallow water), it is not easy to write down a closed expression for
A+∆Qi−1/2 from (31) for this example since two cubic equations must be solved to evaluate
it. Numerically it has been verified that use of this formula for a standard test problem of
subcritical flow over a bump maintains a steady state to machine precision. One advantage of
this formulation is that the local equilibrium solution is determined for each state separately
and there is no a priori assumption of a particular equilibrium that the method should be
well balanced with respect to. The equilibrium state can evolve from one to another via time-
dependent boundary conditions, for example, and the method will be well-balanced on both.
This case is the subject of on-going investigation and will be reported on elsewhere.

5. Instead of using the paths defined above, one could in principle correctly solve the Riemann
problem for the extended system wt + B(w)wx = 0 and use the resulting waves in the wave
propagation algorithm. This would correspond to using the path

(Qi−1, σi−1) −→ (Q̃i−1, σi−1) −→ (Q̃i, σi) −→ (Qi, σi) (33)

where Qi−1 is connected to Q̃i−1 by left-going waves corresponding to negative eigenvalues of
A, the transition from Q̃i−1 to Q̃i corresponds to moving along the equilibrium solution as σ
varies and gives the linearly degenerate wave moving at speed 0 in the Riemann solution, and
then Q̃i is connected to Qi by right-going waves corresponding to positive eigenvalues of A.
Similar analysis as above would then suggest that we take

A−∆Q = f(Q̃i−1)− f(Qi−1), A+∆Q = f(Qi)− f(Q̃i). (34)

The problem with this approach is that it may be quite difficult to determine Q̃i−1 and Q̃i
analytically and it is not clear how to use this approach in the context of an approximate
Riemann solver. Gosse [17] discusses the use of an approximate Riemann solver of the type
developed by Toumi [31] for non-conservative systems and develops a method of this form that
is well balanced to high order but not exactly.
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6. Note that the path (26) in fact agrees with (33) in the special case where all eigenvalues of A
are positive and the path (29) agrees with (33) if all eigenvalues of A are negative. In one of
these cases it would make most sense to use only the appropriate path rather than averaging
results from the two, although averaging still gives a well-balanced method. This is discussed
further in Section 7 where numerical results are compared for a scalar advection example where
A has only a single eigenvalue. In the scalar case the equilibrium paths q[∗] discussed above
correspond to the paths in Theorem 3.1 of Gosse [17].

6 Atmosphere at rest

As another example, we apply this idea to Example III from Section 3, an atmosphere at rest. In
this case we will not attempt to make the method well-balanced for a moving atmosphere and so we
will assume that ui−1 = ui = 0 (though the resulting method works well also for small amplitude
perturbations where the velocity is nonzero). The result can be interpreted as defining a source term
averaging Ψi−1/2 that can the be used also in a moving atmosphere near this equilibrium, just as
the simple averaging of (12) can be used for problems near the ocean-at-rest equilibrium even when
the velocities are not identically zero.

For the equations (14), the equilibrium solution passing through a specified value ρ∗ at x = x∗
is given by

ρ[∗](x) =
(
ργ−1
∗ − g(γ − 1)(x− x∗)

γK

)1/(γ−1)

(35)

So given states (ρi−1, xi−1) and (ρi, xi) (and assuming ui−1 = ui = 0) we find that

ρ̂i = ρ[i−1](xi) =
(
ργ−1
i−1 −

g(γ − 1)∆x
γK

)1/(γ−1)

ρ̂i−1 = ρ[i](xi−1) =
(
ργ−1
i +

g(γ − 1)∆x
γK

)1/(γ−1)
(36)

Using these expressions in (32) we find that the second component of A∆Qi−1/2 takes the form (still
assuming ui−1 = ui = 0)

K(ργi − ρ
γ
i−1) +

K

2
[−ργi − ρ̂

γ
i + ρ̂γi−1 + ργi−1] (37)

The first term is just the momentum flux difference and the second term can be interpreted as the
desired average of the source term for use in (8):

Ψi−1/2∆x = −K
2

[
−ργi −

(
ργ−1
i−1 −

g(γ − 1)∆x
γK

)γ/(γ−1)

+
(
ργ−1
i +

g(γ − 1)∆x
γK

)γ/(γ−1)

+ ργi−1

]
.

(38)

Taylor series expansion for small ∆x shows that this is in fact a consistent average of the source
term from the two sides:

Ψi−1/2∆x = −g
2

(ρi−1 + ρi)∆x+O(∆x2) (39)

and tests confirm that (38) maintains an atmosphere at rest to machine precision, which is not true
if the O(∆x2) terms are dropped in (39) (except of course if γ = 2, the shallow water equations, in
which case the O(∆x2) terms are identically zero).

The full Euler equations in which (14) is augmented by an energy equation and the equation of
state relates p to ρ and E has steady states with a similar form. However, there are multiple steady
states with the same pressure variations (but different entropy stratifications) and this complicates
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the problem, as discussed in [6]. In this case the Jacobian matrix has an eigenvalue equal to zero
for the entropy waves (jumps in density but not pressure), again a resonant case. In this case
there is a two-dimensional manifold of equilibrium paths through a given state q∗. It is possible to
choose an equilibrium path by reconstructing the entropy variation from nearby points and this may
be sufficient for studying small amplitude perturbations [6]. Experiments are underway to further
explore this idea, which is being used in joint work with Carsten Gundlach on the study of shock
waves near vacuum at the outer limit of a neutron star [19].

7 A scalar model problem

To further illustrate how the new path integral method uses local steady states to incorporate source
terms, we consider the simple model problem given by

qt(x, t) + uqx(x, t) = −q(x, t)σx(x). (40)

This is an advection equation (with a constant advection velocity u > 0) with a source term that
leads to exponential decay (when σx > 0) or growth (when σx < 0) along characteristics.

First consider the case σ(x) = x, for which the solution decays as it propagates and for any
initial data q(x, 0) = q0(x) the solution to the Cauchy problem is simply

q(x, t) = e−t/uq0(x− ut). (41)

The boundary value problem on 0 ≤ x ≤ L with inflow boundary conditions q(0, t) = µ has the
equilibrium solution

qe(x) = µe−x/u. (42)

Note that if we apply a fractional step method then in each step the decaying exponential shifts to
the right in the advection step and then decays downward in the source term step (see Figure 17.4 of
[23]). Ideally these two steps would cancel exactly, but they will not numerically since very different
numerical methods are used for the two steps.

The f-wave approach of [3] would use

A∆Qi−1/2 = uQi − uQi−1 + ∆xQ̄i−1/2, (43)

where Q̄i−1/2 is some average value based on Qi−1 and Qi. We would then set

A+∆Qi−1/2 = A∆Qi−1/2, A−∆Qi−1/2 = 0, Z1
i−1/2 = A∆Qi−1/2 (44)

since we have assumed u > 0 so there is a single right-going wave.
It is not obvious how to choose the average Q̄i−1/2. For example, using the arithmetic average

does not give a well-balanced method and results shown for a related problem below illustrate that
this may not be sufficient (see the last column of Figure 2).

The method proposed in this paper yields better expressions for this average. For this example,
given a state w∗ = (Q∗, x∗) (recall that σ(x) = x here), there is a unique equilibrium solution passing
through this point:

Q[∗](x) = Q∗e
−(x−x∗)/u (45)

and so from the Riemann problem states Qi−1 and Qi we find that

Q̂i−1 = Q[i](xi−1) = Qie
−(xi−1−xi)/u = Qie

∆x/u (46)

and
Q̂i = Q[i−1](xi) = Qi−1e

−(xi−xi−1)/u = Qi−1e
−∆x/u (47)
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The formula (31) then gives (using f(q) = uq):

A∆Qi−1/2 =
u

2
[Qi − Q̂i + Q̂i−1 −Qi−1]

=
u

2

[
Qi(1 + e∆x/u)−Qi−1(1 + e−∆x/u)

]
= u(Qi −Qi−1) +

u

2

[
Qi(−1 + e∆x/u)−Qi−1(−1 + e−∆x/u)

]
= u(Qi −Qi−1) +

∆x
2

(Qi +Qi−1) +
∆x2

4u
(Qi −Qi−1) +O(∆x3).

(48)

In practice the second or third line is used in the Riemann solver. The last line shows that this choice
differs only in the O(∆x2) terms from the simple arithmetic average, though for smooth solutions
we expect Qi − Qi−1 = O(∆x) and so this term is in fact O(∆x3). Since u > 0 there is a single
f-wave Z1

i−1/2 = A+∆Qi−1/2 = A∆Qi−1/2 while A−∆Qi−1/2 = 0.
For this scalar problem with u > 0, Note 6 at the end of Section 5 suggests that we might do

better to use only the path (26) rather than averaging results with path (29). This would give

A∆Qi−1/2 = u[Qi − Q̂i]

= u
[
Qi −Qi−1e

−∆x/u
]

= u(Qi −Qi−1) + u
[
Qi−1(1− e−∆x/u)

]
= u(Qi −Qi−1) + ∆xQi−1 −∆x2Qi−1/u+O(∆x3).

(49)

Again there is a single f-wave Z1
i−1/2 = A+∆Qi−1/2 = A∆Qi−1/2 while A−∆Qi−1/2 = 0.

Numerical experiments show that both (48) and (49) give well balanced methods but the latter
is slightly more accurate.

The methods just described are easily generalized to problems of the form (40) where σ(x) 6= x.
One need only replace ∆x by σ(xi)−σ(xi−1) in the formulas above. An example of this is considered
in the numerical experiments below.

7.1 Numerical experiments

As an example we consider a more difficult problem where u = 1 and

σ(x) = Ae−(x−5)2 +B(tanh(x− 5) + 1), (50)

where A = 8 and B = − 1
2 log(1.4). We solve the equation (40) on the interval 0 ≤ x ≤ 10 with

inflow boundary data at x = 0 and the steady state solution as initial data:

q(x, 0) = qe(x) = e−σ(x)/u. (51)

We specify the boundary data at x = 0 as q(0, t) = qtrue(0, t), where

qtrue(x, t) = q0(x− ut) exp((σ(x− ut)− σ(x))/u) (52)

with

q0(x) =
{
qe(x) + 0.2 if − 11 < x < −10.5
qe(x) otherwise (53)

The true solution is then given by (52). Initially it is just the equilibrium solution on the domain
0 < x < 10 but there is a square pulse that enters the domain about time t = 10.5 and propagates
against the background steady state solution, leaving the right boundary by time t = 21.

The function σ(x) is chosen to be near zero at the boundaries of our domain. As q propagates
through the domain, σx is first positive, leading to decay of the solution (including the propagating
pulse) to nearly zero, and then negative causing the equilibrium solution to grow again to a different
value 1.4 near the right boundary.
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This gives a fairly severe test of a method since any errors made in the solution in the region
where it has decayed to nearly zero are magnified exponentially as the solution grows again.

Figure 1 shows the results on the method proposed in this paper on a grid with 100 cells. The
left column shows results when the two paths are averaged as in (48). The right column shows the
better results obtained with the correct path, as in (49). In each figure the solid red curve is the
exact solution and the blue curve with cell values as circles shows the computed results.

Results are shown at four times. At time t = 10 the equilibrium solution is observed. This is
before the pulse has entered the domain but after more than 100 time steps, so the fact that the
error is at the level of machine precision shows that both methods are well balanced. At time t = 12
the pulse is seen at x = 1, shortly after entering at the left boundary. At time t = 15 the pulse is
located around x = 4 and has decayed to the point where it is invisible in the plot. At time t = 20
it has grown to be visible again at x = 9. This is the best time to observe the relative difference in
accuracy of the two methods. For time t > 21 the pulse has left the domain and the solution should
return to the equilibrium. These frames are not shown, but for both methods look identical to the
t = 12 frames in the top row of Figure 1, with the error again at the level of machine precision.

For contrast, Figure 2 shows the same computation with two other methods. The left column
shows results obtained with a fractional step method, where solving the homogenous hyperbolic
equation is alternated with the exact solution of qt = −qσx(x) in each grid cell. Clearly this method
produces very poor results. The initial data q(x, 0) = qe(x) is not preserved well, particularly in the
rightmost portion of the domain after the exponential growth of errors. The right column shows
results obtained with the f-wave method using arithmetic averaging for the source term. This gives
much better results, but examining the error at t = 10 shows it is not well balanced. The pulse is
also not as well resolved at t = 20.

These results were obtained using Clawpack Version 4.4. The second-order wave-propagation
method with the superbee limiter and Courant number 0.9 were used. The computer code used
to generate these figures can be examined or downloaded at www.clawpack.org/links/wbfwave10.
Additional frames and animations of the computations and errors are also available there.

8 Summary and further comments

An approach has been presented for choosing an appropriate discretization of the source term to
use as Ψi−1/2, the average of ψ between cells i − 1 and i, for use in the f-wave formulation of the
wave-propagation algorithms implemented in Clawpack. This approach is based on studying the
Riemann problem for an augmented hyperbolic system where the source terms are eliminated and
instead a nonconservative product appears. A path conservative approach is then used where the
paths in state space are chosen to simplify evaluation of the source term approximation.

For some simple problems, such as the model advection equation studied in Section 7, the path
in state space corresponding to the exact Riemann solution of the augmented system is easily con-
structed, leading to a slightly more accurate method. In this case the path can also dictate the
choice of the resulting fluctuation splitting and f-waves.

More generally, the choice of path for computing Ψi−1/2 is decoupled from the decompositon of
the resulting A∆Q into fluctuations and f-waves. The method will be well-balanced regardless of
the latter choice, which can be based on the eigenstructure of the original hyperbolic problem or
standard approximate Riemann solvers for the original problem.

In this paper we assumed the non-resonant case, where the original hyperbolic system has no zero
eigenvalues (or eigenvalues that change sign between grid cells), as would happen for transcritical
flow in the shallow water equations.

We have also only considered the one-dimensional problem. Maintaining exact equilibrium so-
lutions in two space dimensions is in general more challenging, since there is typically a balance
between the x- and y-derivatives in the divergence of the flux as well as between these and the source
terms. The two-dimensional shallow water equations for the ocean at rest over varying bathymetry
is again a special case, since the source term in the each momentum equation exactly balances the
hydrostatic pressure jump in the same equation, and arithmetic averages of the bathymetry in each
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one-dimensional f-wave splitting yields a well balanced method (e.g., [4, 13, 15]. For an atmosphere
at rest on a Cartesian grid the approach of this paper should apply directly since the source term
appears only in the vertical momentum equation and again should balance the pressure gradient in
this equation. On a non-Cartesian grid maintaining balance can be more difficult, see for example
[6].
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Figure 1: Computed results for the scalar test problem as described in the text. The left column
shows results obtained using (48) and the right column using (49).
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Figure 2: The same experiments as in Figure 1, but using methods that are not well balanced. The
left column shows results obtained with a fractional step method and the right column using the
f-wave method with arithmetic average of Q in the source term.
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