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Abstract. We study a general approach to solving conservation laws of the form qt+f(q, x)x = 0,
where the flux function f(q, x) has explicit spatial variation. Finite-volume methods are used in
which the flux is discretized spatially, giving a function fi(q) over the ith grid cell and leading to
a generalized Riemann problem between neighboring grid cells. A high-resolution wave-propagation
algorithm is defined in which waves are based directly on a decomposition of flux differences fi(Qi)−
fi−1(Qi−1) into eigenvectors of an approximate Jacobian matrix. This method is shown to be
second-order accurate for smooth problems and allows the application of wave limiters to obtain
sharp results on discontinuities. Balance laws qt + f(q, x)x = ψ(q, x) are also considered, in which
case the source term is used to modify the flux difference before performing the wave decomposition,
and an additional term is derived that must also be included to obtain full accuracy. This method
is particularly useful for quasi-steady problems close to steady state.
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1. Introduction. Our goal is to develop high-resolution finite-volume methods
for hyperbolic conservation laws with spatially varying flux functions. In one space
dimension such an equation has the form

qt + f(q, x)x = 0,(1.1)

where q(x, t) ∈ R
m is the vector of conserved quantities and f : R

m ×R → R
m is the

flux function, possibly a nonlinear function of q. We also consider balance laws where
the right-hand side of (1.1) is replaced by a source term ψ(q, x). Subscripts denote
partial derivatives; note that f(q, x)x = ∂x[f(q, x)] = fq(q, x)qx + fx(q, x).

Problems with spatially varying flux functions arise in many applications, for
example, traffic flow on roads with varying conditions, nonlinear elasticity in hetero-
geneous materials, or flow through heterogeneous porous media. Solving conservation
laws on curved manifolds also leads to spatially varying flux functions, an application
that is considered in a separate paper [2] and the recent theses [1] and [29]. Ap-
plication to a problem in gravitational waves is discussed by Bardeen and Buchman
[3].

Spatially varying flux functions lead to difficulties not seen in the autonomous
case, some of which are discussed below. In this paper we concentrate on the case in
which the eigenvalues of the flux Jacobian fq(q, x) do not pass through zero, so that
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there are a fixed number of positive eigenvalues. The reasons for this assumption are
discussed in section 2.

The autonomous case

qt + f(q)x = 0,(1.2)

where f depends only on q, has been studied extensively, and a variety of numerical
methods have been developed. We concentrate on extending the high-resolution wave-
propagation algorithms of [20] to the case of a spatially varying flux function. These
are finite-volume methods in which a cell average

Qn
i ≈ 1

∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx(1.3)

is updated in each time step. This is done using the wave structure determined by
solving Riemann problems at cell edges. They are higher-order Godunov methods in
which wave limiters are used to suppress nonphysical oscillations. For an autonomous
system the Riemann problem at xi−1/2 consists of (1.2) with the piecewise constant
initial data

q(x, 0) =

{
Qi−1 if x < xi−1/2,
Qi if x > xi−1/2.

(1.4)

The Riemann solution for an autonomous system of m equations typically consists
of m waves that we denote by Wp

i−1/2 for p = 1, 2, . . . ,m, propagating with speeds

spi−1/2. We assume that the waves are discontinuities in the solution (i.e., shocks or

contact discontinuities) and that

Qi −Qi−1 =

m∑
p=1

Wp
i−1/2.(1.5)

In the wave-propagation algorithms, both the first-order Godunov method and high-
resolution correction terms are based on these waves and their speeds. A nonlinear
problem may involve rarefaction waves as well, but in this case the Riemann solution
is typically approximated by something of the above form, e.g., by using the Roe
solver (see section 2) or some other local linearization of the problem.

We use Qi−1/2 to denote the value of q along the line x ≡ xi−1/2 in the Riemann
solution. This value is used in implementing Godunov’s method in flux-differencing
form,

Qn+1
i = Qn

i − ∆t

∆x
(Fi+1/2 −Fi−1/2),(1.6)

where Fi−1/2 = f(Qi−1/2) is the flux across the interface at xi−1/2.
In the spatially varying case (1.1), the flux function f(q, x) can be discretized

with respect to x in some manner consistent with a finite-volume interpretation. For
a given grid, two possible discretizations are natural to consider: cell-centered flux
functions or edge-centered flux functions, as we now describe.

Cell-centered flux functions. In this approach we assume that the flux function
f(q, x) is discretized to yield a flux function fi(q) that holds throughout the ith
grid cell. This is very natural for many problems. For an elasticity problem in a
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heterogeneous rod, for example, we might assume that each grid cell is made up of a
single material, and the flux fi(q) for this cell is then determined by the constitutive
relations for this material. For traffic flow problems, each grid cell corresponds to a
short stretch of highway over which the road conditions and speed limit are assumed
to be constant, leading to a specific flux function valid in this cell. This flux function
might be defined simply by fi(q) = f(q, xi) if the variation of f with x is sufficiently
smooth, or a more sophisticated homogenization procedure may be needed if f varies
substantially on the subgrid scale. When cell-centered flux functions are used, the
generalized Riemann problem at cell interface xi−1/2 consists of the equation

qt + Fi−1/2(q, x)x = 0(1.7)

together with the initial data (1.4), where

Fi−1/2(q, x) =

{
fi−1(q) if x < xi−1/2,
fi(q) if x > xi−1/2.

(1.8)

The Riemann solution may be more complicated than in the autonomous case and is
discussed in section 2.

Cell-edge flux functions. An alternative approach is to assume that a distinct flux
function fi−1/2(q) is associated with each cell interface xi−1/2. This is natural if we
interpret the flux function as measuring the flow between cell i − 1 and cell i. It is
the flux at the cell interface that is ultimately required to implement a finite-volume
method based on flux differencing, and so associating flux functions with interfaces
often makes sense. We can relate this to the cell-centered flux approach by viewing
the flux fi−1/2(q) as holding over the interval [xi−1, xi] between the center of cell i−1
and the center of cell i. The Riemann problem at xi−1/2 is now a classical Riemann
problem for the single equation qt + fi−1/2(q)x = 0 with the data (1.4). However,
in order to implement the wave-propagation algorithm, it would also be necessary
to consider a second set of Riemann problems at the cell centers xi, where the flux
function jumps. Nontrivial waves can arise from these points even though the data
Qi is the same on both sides.

In this paper we assume that cell-centered flux functions are specified. This is
appropriate for many problems as discussed above. Our approach applies directly only
to this case, since it is the flux difference between cells that is decomposed into waves.
We develop an approach for approximately solving the generalized Riemann problem
(1.7) at xi−1/2 in an efficient manner that can be used in conjunction with a modified
wave-propagation algorithm. This algorithm is based on an approximate Jacobian
matrix Ai−1/2 that must be defined at the cell edge. A similar approach is frequently
used for nonlinear autonomous problems where the fluxes f(Qi−1) and f(Qi) are used
to define an averaged Jacobian matrix Ai−1/2 (e.g., the Roe average). The original
nonlinear Riemann problem is then replaced by the linear Riemann problem for the
equation

qt +Ai−1/2qx = 0.(1.9)

In fact we do not need the matrix Ai−1/2 itself but simply its eigenvalues spi−1/2

and eigenvectors rpi−1/2 (for p = 1, 2, . . . ,m) since these are used directly in solving

the Riemann problem. In the spatially varying case, various approaches to choosing
these eigenvectors based on the neighboring fluxes are possible. One natural way
is to choose the eigenvectors of f ′

i−1(Qi−1) that correspond to negative eigenvalues



958 D. BALE, R. LEVEQUE, S. MITRAN, AND J. ROSSMANITH

(and hence left-going waves) and combine these with the eigenvectors of f ′
i(Qi) that

correspond to right-going waves. This is only possible if this yields a set of m linearly
independent vectors, however, as discussed further in section 2.

The classical Riemann problem for the constant-coefficient system (1.9) with data
(1.4) can be easily solved in terms of the eigenvectors rpi−1/2. The standard approach

is to decompose the jump in Q as a linear combination of the eigenvectors in order to
define waves Wp

i−1/2:

Qi −Qi−1 =

m∑
p=1

αp
i−1/2r

p
i−1/2 ≡

m∑
p=1

Wp
i−1/2.(1.10)

The coefficients αp
i−1/2 are given by

αp
i−1/2 = R−1

i−1/2(Qi −Qi−1),(1.11)

where Ri−1/2 is the matrix of right eigenvectors. However, using these waves Wp
i−1/2

in the wave-propagation algorithm of [20] (see section 3) will not yield a conservative
algorithm in general, unless the condition

Ai−1/2(Qi −Qi−1) = fi(Qi) − fi−1(Qi−1)(1.12)

happens to be satisfied. For an autonomous system (fi(q) ≡ f(q)) this reduces to the
condition imposed in defining the “Roe average” Ai−1/2 (see [27]), and considerable
research has gone into defining averaged Jacobians with this property for specific
nonlinear problems.

The main novel feature of the algorithm we present here is the following. We
do not solve the Riemann problem by performing a classical decomposition of the
form (1.10). Instead we use a flux-based wave decomposition, in which we directly
decompose the flux difference fi(Qi) − fi−1(Qi−1) as a linear combination of the
eigenvectors rpi−1/2,

fi(Qi) − fi−1(Qi−1) =

m∑
p=1

βp
i−1/2r

p
i−1/2 ≡

m∑
p=1

Zp
i−1/2,(1.13)

where

βi−1/2 = R−1
i−1/2(fi(Qi) − fi−1(Qi−1)).(1.14)

For spatially varying fluxes this is a more natural decomposition for reasons discussed
in section 2. This decomposition can also be related to a generalized relaxation scheme
for the conservation law as discussed in [23]. The vectors Zp = βprp will be called
f -waves, as they are analogous to the waves Wp from (1.10) but carry flux increments
rather than increments in q.

A potential advantage of using the decomposition (1.13) instead of (1.10), even in
the autonomous case, is that our resulting method is conservative even if (1.12) is not
satisfied. This yields a more flexible algorithm for problems where a Roe average is not
easily computed. To highlight the relation between this approach and the standard
wave-propagation algorithm, note that if the matrix Ai−1/2 does in fact satisfy (1.12),
then multiplying (1.10) by Ai−1/2 leads to

fi(Qi) − fi−1(Qi−1) =

m∑
p=1

αp
i−1/2s

p
i−1/2r

p
i−1/2,(1.15)
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since rpi−1/2 is an eigenvector of Ai−1/2. Hence if we define waves Wp
i−1/2 by (1.10),

then we can define f -waves by Zp
i−1/2 = spi−1/2Wp

i−1/2 and obtain the same result as

by performing the decomposition (1.13).
Dimensionally the f -waves have the form of a q increment multiplied by the wave

speed. It is these quantities that are really needed in implementing Godunov’s method
and high-resolution versions, and in section 3 we show how the wave-propagation
algorithm can be implemented directly in terms of these f -waves and the speeds
sp without needing the Wp. We obtain a method that is second-order accurate on
smooth solutions (if the flux function has smooth spatial variation) and to which wave
limiters can be applied in order to obtain a high-resolution method that also captures
discontinuities well.

For balance laws that include a source term,

qt + f(q, x)x = ψ(q, x),(1.16)

we can easily extend this algorithm by first discretizing the source term to obtain
values Ψi−1/2 at cell interfaces and then basing the algorithm on f -waves Zp

i−1/2 that

are defined by decomposing

fi(Qi) − fi−1(Qi−1) − ∆xΨi−1/2 =

m∑
p=1

βp
i−1/2r

p
i−1/2 ≡

m∑
p=1

Zp
i−1/2,(1.17)

i.e.,

βi−1/2 = R−1
i−1/2(fi(Qi) − fi−1(Qi−1) − ∆xΨi−1/2).(1.18)

This approach to handling source terms is useful even for autonomous problems, par-
ticularly in cases where the solution is close to a steady state in which the flux gradient
should nearly balance the source term, since it is only the discrepancy between these
that is decomposed into propagating waves. In particular, this seems to be a more
robust approach than the quasi-steady wave-propagation algorithm proposed in [21],
as noted in [23]. Full second-order accuracy can also be achieved with this approach,
though it requires the addition of another correction term to the wave-propagation
algorithm. This is discussed further in section 7.

Homogeneous systems of the form (1.1) with spatially varying flux functions can
also have nontrivial steady state solutions in which f(q, x)x = 0 but q is not identically
constant. The f -wave approach has the advantage of capturing such steady states well
and also accurately solving quasi-steady problems where the goal is to capture the
propagation of small amplitude perturbations.

2. Solving the generalized Riemann problem. In this section we investigate
the solution to the generalized Riemann problem given by (1.7) with data (1.4). We
start by considering the simplest possible case, the advection equation

qt + (u(x)q)x = 0.(2.1)

This is a scalar (m = 1) variable-coefficient linear problem with flux

f(q, x) = u(x)q.(2.2)

We discretize this flux using the cell-centered flux functions fi(q) = uiq, where ui is
the advection velocity in the ith cell. This might model traffic flow on a one-lane
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(a)
qt + ui−1qx = 0 qt + uiqx = 0

Qi−1 Qi

Qr
i−1/2

W1
i−1/2

(b)
qt + fi−1(q)x = 0 qt + fi(q)x = 0

Qi−1 Qi

Ql
i−1/2 Qr

i−1/2

W1
i−1/2 W2

i−1/2 W3
i−1/2

Fig. 1. (a) Riemann solution for the variable-coefficient advection equation in the case ui−1 > 0
and ui > 0. (b) Structure of the Riemann solution for a generalized Riemann problem with m = 3.

road where drivers always drive at the speed limit u(x) regardless of the density q.
Then ui would represent the speed limit over the stretch of road covered by the ith
grid cell. For this application we would normally assume that ui has the same sign
everywhere, say ui > 0. (Below we comment on what happens if this is not satisfied.)
Then the Riemann solution is

q(x, t) =


Qi−1 if x < xi−1/2,
Qr

i−1/2 if xi−1/2 < x < xi−1/2 + uit,

Qi if x > xi−1/2 + uit,

(2.3)

where

Qr
i−1/2 =

ui−1Qi−1

ui
(2.4)

is the value of q just to the right of xi−1/2, as illustrated in Figure 1(a). There is a
single propagating wave W1

i−1/2 with speed s1i−1/2 = ui, but note that there is also a
stationary discontinuity in q at xi−1/2 that arises from the jump in advection velocity
at this point, which leads to a corresponding jump in the density of traffic. The flux,
however, should be continuous at this point since all cars leaving cell i− 1 must enter
cell i. This requires ui−1Qi−1 = uiQ

r
i−1/2 and leads to the expression (2.4).

For a system of m equations, the generalized Riemann solution to (1.7) may have
the structure indicated in Figure 1(b) for m = 3. Along with a set of propagating
waves Wp

i−1/2, there is also a jump in q at xi−1/2, and we use Ql
i−1/2 and Qr

i−1/2 to

denote the value of q just to the left and right of this point. Typically we expect the
flux to be continuous at xi−1/2 in the Riemann solution so that the flux out of cell
i− 1 agrees with the flux into cell i,

fi−1(Q
l
i−1/2) = fi(Q

r
i−1/2).(2.5)

Note that this is a special case of the Rankine–Hugoniot jump condition across the
stationary discontinuity at xi−1/2.

For the scalar advection equation (2.1), m = 1 and we can choose r1i−1/2 = 1

as the eigenvector of Ai−1/2 with eigenvalue s1i−1/2 = ui, so that Ai−1/2 = ui. Note

that attempting to solve the Riemann problem by a decomposition of the form (1.10)
would fail in this case, as it would lead to W1

i−1/2 = α1
i−1/2 = Qi−Qi−1, which is not

correct. The problem is that we have neglected to take into account the jump in q at
xi−1/2.
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If instead we use the decomposition (1.13), then we obtain the correct Riemann
solution (2.3), since then Z1

i−1/2 = fi(Qi) − fi−1(Qi−1) = uiQi − ui−1Qi−1. This is
correct since the entire flux difference is carried by the one propagating wave, with
no flux difference remaining at xi−1/2. Note that we can recover the correct wave
W1

i−1/2 of Figure 1(a) from this by dividing Z1
i−1/2 by the wave speed (as suggested

by comparing (1.15) and (1.10)),

W1
i−1/2 =

Z1
i−1/2

s1i−1/2

=
(uiQi − ui−1Qi−1)

ui
= Qi −Qr

i−1/2,

(2.6)

but in section 3 we will see that the f -wave Z1
i−1/2 can also be used directly in a

wave-propagation algorithm.
This illustrates a primary advantage of the f -wave approach. Attempting to solve

the generalized Riemann problem in terms of waves Wp as illustrated in Figure 1(b)
requires also determining the proper jump Qr

i−1/2 −Ql
i−1/2, since q is not continuous

across xi−1/2. We would need to determine waves Wp
i−1/2 that are proportional to

eigenvectors rpi−1/2 and that also lead to states Qr
i−1/2 and Ql

i−1/2 satisfying (2.5). In

the nonlinear case this leads to a nonlinear system of equations to solve. By working
instead in terms of the flux difference, the fact that the flux is continuous across xi−1/2

works to our advantage since the entire flux difference can then be decomposed into
propagating f -waves using the linear decomposition (1.13).

We must note, however, that this is true only for conservation laws that have
bounded solutions for which the flux is continuous everywhere. Some conservation
laws with spatially varying flux functions develop singularities in the form of delta
functions at points where the flux f(q, x) is not continuous, and hence f(q, x)x contains
a delta function. This can be observed with the advection equation (2.1) if u(x)
changes sign from positive to negative at some point, so that there is inflow towards
this point from both directions and hence the density must blow up at this single
point. In terms of the Riemann problem, this corresponds to the case ui−1 > 0
and ui < 0. All characteristics are approaching xi−1/2, and the Riemann solution
contains no propagating wave, only a delta function at xi−1/2 together with a jump

from Ql
i−1/2 = Qi−1 to Qr

i−1/2 = Qi that in general does not satisfy (2.5). Note that
in this case the standard Rankine–Hugoniot condition does not hold because of the
accumulation of mass in the singularity.

For the traffic flow problem, the case ui−1 > 0 and ui < 0 corresponds to two
opposing one-way streets meeting at a point. While we can make physical sense of a
singular solution in this case, it is not a reasonable model of reality. To more properly
model this situation we should use a nonlinear traffic model in which the velocity
depends on the density, for example, the classical flux (see [19], [31])

fi(q) = ui(1 − q)q,(2.7)

where ui is now the maximum speed (at q = 0) but the speed drops linearly to 0 as
the density increases to q = 1 (bumper-to-bumper traffic). In this case even taking
ui−1 > 0 and ui < 0 gives a sensible Riemann solution in which Ql

i−1/2 = Qr
i−1/2 = 1

and two traffic-jam shock waves move upstream in each direction. In this case there
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are two propagating waves in the Riemann solution even though m = 1. This is
another way in which the Riemann solution can become more complicated in the case
in which eigenvalues change sign.

Now consider a variable-coefficient linear system of m equations of the form

qt + (A(x)q)x = 0.(2.8)

A cell-centered discretization leads to a matrix Ai associated with cell i. Suppose
that this matrix is nonsingular, with Pi positive eigenvalues and m − Pi negative
eigenvalues. The generalized Riemann solution must now satisfy the equations{

qt +Ai−1qx = 0 if x < xi−1/2,
qt +Aiqx = 0 if x > xi−1/2,

(2.9)

with data (1.4). This has a bounded solution, provided that Pi−1 = Pi ≡ P and
that the set of m vectors obtained by taking the eigenvectors of Ai−1 that correspond
to negative eigenvalues along with the eigenvectors of Ai that correspond to positive
eigenvalues forms a linearly independent set. These are the vectors we use as the rpi−1/2

for p = 1, 2, . . . ,m, along with the corresponding eigenvalues as the spi−1/2. Then the

Riemann problem has a unique solution of the form illustrated in Figure 1(b), with
m propagating waves proportional to these vectors. The left-going m − P waves
satisfy the Rankine–Hugoniot conditions for the equation qt + Ai−1qx = 0 valid for
x < xi−1/2, while the right-going P waves satisfy the Rankine–Hugoniot conditions
for the equation qt +Aiqx = 0 valid for x > xi−1/2.

At xi−1/2, the values Ql
i−1/2 and Qr

i−1/2 must be related via Ai−1Q
l
i−1/2 =

AiQ
r
i−1/2 so that the flux is continuous. In the linear case, this condition can be

used to determine the waves Wp
i−1/2 as follows. We want to find wave strengths

αp
i−1/2 so that

Ql
i−1/2 = Qi−1 +

m−P∑
p=1

αp
i−1/2r

p
i−1/2(2.10)

and

Qr
i−1/2 = Qi −

m∑
p=m−P+1

αp
i−1/2r

p
i−1/2,(2.11)

and we also need Ai−1Q
l
i−1/2 = AiQ

r
i−1/2 to be satisfied, which requires

Ai−1

[
Qi−1 +

m−P∑
p=1

αp
i−1/2r

p
i−1/2

]
= Ai

Qi −
m∑

p=m−P+1

αp
i−1/2r

p
i−1/2

 .(2.12)

Rearranging this leads to

AiQi −Ai−1Qi−1 =

m∑
p=1

αp
i−1/2s

p
i−1/2r

p
i−1/2.(2.13)

Again we see that it is the flux difference fi(Qi)− fi−1(Qi−1) that should be decom-
posed into eigenvectors, rather than the Q difference.
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In this paper we concentrate on problems in which the number of positive eigen-
values of A(x), or more generally of the flux Jacobian fq(q, x), does not vary with
x. Of course many interesting problems involve “sonic points” where the eigenvalues
pass through zero. In some cases this leads to singular solutions, as discussed above
for the advection equation. Even in cases where there is a bounded weak solution,
it is necessary to impose appropriate admissibility conditions to select the physically
correct solution, and this can be more subtle than in the autonomous case. For some
discussions of such problems, see, for example, [5, 6, 9, 10, 12, 15, 17, 25, 26]. We are
continuing to study extensions of our algorithm to particular problems of this form.

3. The wave-propagation algorithms. We first briefly summarize the wave-
propagation algorithm described in [20], which should be consulted for more details
and explanation. This method can be applied to any hyperbolic system for which
waves Wp

i−1/2 and speeds spi−1/2 can be defined, and can also be applied to spatially

varying flux functions, provided that the Riemann solution can be obtained. One way
to obtain these waves is to first compute Zp

i−1/2 and then divide by spi−1/2, although we

show later in this section that this division is not necessary. The first-order version
corresponds to Godunov’s method but is written in terms of the waves and their
influence on the cell averages (1.3) rather than using interface fluxes as in (1.6). The
standard wave-propagation algorithm has the form

Qn+1
i = Qn

i − ∆t

∆x
[A+∆Qi−1/2 + A−∆Qi+1/2],(3.1)

where

A+∆Qi−1/2 =

m∑
p=1

(spi−1/2)
+Wp

i−1/2(3.2)

and

A−∆Qi+1/2 =

m∑
p=1

(spi+1/2)
−Wp

i+1/2.(3.3)

Here s+ = max(s, 0) and s− = min(s, 0). The “fluctuations” A+∆Qi−1/2 and
A−∆Qi+1/2 model the contribution to the cell average Qi due to right-going waves
from xi−1/2 and left-going waves from xi+1/2, respectively. This algorithm is extended
to a high-resolution version by adding in correction fluxes:

Qn+1
i = Qn

i − ∆t

∆x
[A+∆Qi−1/2 + A−∆Qi+1/2] − ∆t

∆x
[F̃i+1/2 − F̃i−1/2],(3.4)

where

F̃i−1/2 =
1

2

m∑
p=1

|spi−1/2|
(

1 − ∆t

∆x
|spi−1/2|

)
W̃p

i−1/2.(3.5)

Here W̃p
i−1/2 is a limited version of the wave Wp

i−1/2 obtained by comparing Wp
i−1/2 to

Wp
I−1/2, the corresponding wave from the adjacent Riemann problem on the upwind

side, where

I =

{
i− 1 if spi−1/2 > 0,

i+ 1 if spi−1/2 < 0.
(3.6)
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If no limiter is applied (W̃p
i−1/2 = Wp

i−1/2), then for a linear problem this algorithm

reduces to the Lax–Wendroff method. It can be shown to be second-order accurate
more generally for smooth solutions to nonlinear problems, as we verify below even in
the case of a spatially varying flux function. The use of a limiter (as described further
in [20]) reduces nonphysical oscillations and yields a robust algorithm for computing
shocks and other discontinuous solutions.

The above formulas are easily modified to use the f -waves Zp
i−1/2 directly in place

of the Wp
i−1/2. Since each Zp

i−1/2 corresponds to spi−1/2Wp
i−1/2, we simply replace

(3.2), (3.3) by

A−∆Qi−1/2 =
∑

p:sp
i−1/2

<0

Zp
i−1/2,

A+∆Qi−1/2 =
∑

p:sp
i−1/2

>0

Zp
i−1/2,

(3.7)

where we sum only over the p for which spi−1/2 is negative or positive. We replace the

correction flux (3.5) by

F̃i−1/2 =
1

2

Mw∑
p=1

sgn(spi−1/2)

(
1 − ∆t

∆x
|spi−1/2|

)
Z̃p

i−1/2.(3.8)

Now Z̃p is a limited version of the f -wave Zp obtained in the same manner as W̃p

would be obtained from Wp.
The standard wave-propagation algorithm is implemented in the Clawpack

software [18], and this can be applied to the problems considered here by defining
Wp = Zp/sp, since we assume sp 
= 0. However, the modification just described
appears more robust since we do not need to worry about the case in which sp

is close to zero. Note that when limiters are used, the two approaches are not
identical if the wave speeds spi−1/2 are spatially varying, since these values come

into the Zp
i−1/2. If some spi−1/2 is close to zero, then the resulting Wp

i−1/2 may be

very large, resulting in a nonphysical limiting of the neighboring waves that can be
avoided by working directly in terms of the Zp

i−1/2. The f -wave approach has also

been implemented in Clawpack with a minor change in the code, as described at
http://www.amath.washington.edu/˜claw/fwave.html.

When no limiter is applied, the method is second-order accurate for conservation
laws with spatially varying fluxes, provided that the variation of the flux f(q, x) is
smooth in x along with the desired solution q(x, t). To obtain this second-order
accuracy we must assume that the Riemann solver being used is consistent with the
flux function in a suitable manner. For the proof we compute the local truncation error
and so take a pointwise approach where Qn

i ≈ q(xi, tn). For the Riemann problem
between Qi−1 and Qi we assume that the flux difference f(Qi, xi) − f(Qi−1, xi−1) is
decomposed into waves Zp

i−1/2,

f(Qi, xi) − f(Qi−1, xi−1) =

m∑
p=1

Zp
i−1/2.(3.9)

We assume that these are proportional to eigenvectors rpi−1/2 of some matrix Ai−1/2 =

A(Qi−1, xi−1, Qi, xi), where the matrix-valued function A approximates the Jacobian
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matrix fq(q, x) to sufficient accuracy. Specifically we suppose that

A(q(x− ∆x), x− ∆x, q(x), x) = fq

(
q

(
x− ∆x

2

)
, x− ∆x

2

)
+ E(x,∆x),(3.10)

where the error E(x,∆x) satisfies

E(x,∆x) = O(∆x) as ∆x → 0(3.11)

and

E(x,∆x) − E(x− ∆x,∆x)

∆x
= O(∆x) as ∆x → 0.(3.12)

These conditions require that A approximate the Jacobian matrix to only O(∆x),
but also that the error be smoothly varying with x. Any reasonable choice of A will
work, as long as we are consistent from one point to the next. Thus we could take
Ai−1/2 = f ′

i−1(Qi−1) or Ai−1/2 = f ′
i(Qi), as long as we consistently choose one or the

other for all i. The choice advocated in section 2, selecting some eigencomponents
from each Jacobian, also yields a consistent approximation.

To verify the second-order accuracy of a method satisfying this consistency con-
dition, we write out the updating formula (3.4) for Qn+1

i using the fluctuations (3.7)
and the corrections (3.8). This gives

Qn+1
i = Qn

i − ∆t

∆x

 ∑
p:sp

i−1/2
>0

Zp
i−1/2 +

∑
p:sp

i−1/2
<0

Zp
i+1/2


− ∆t

2∆x

[
m∑

p=1

sgn(spi+1/2)

(
1 − ∆t

∆x
|spi+1/2|

)
Zp

i+1/2

−
m∑

p=1

sgn(spi−1/2)

(
1 − ∆t

∆x
|spi−1/2|

)
Zp

i−1/2

]

= Qn
i − ∆t

2∆x

[
m∑

p=1

Zp
i−1/2 +

m∑
p=1

Zp
i+1/2

]

+
∆t2

2∆x2

[
m∑

p=1

spi+1/2Zp
i+1/2 −

m∑
p=1

spi−1/2Zp
i−1/2

]

= Qn
i − ∆t

2∆x

[
m∑

p=1

Zp
i−1/2 +

m∑
p=1

Zp
i+1/2

]

+
∆t2

2∆x2

[
Ai+1/2

m∑
p=1

Zp
i+1/2 −Ai−1/2

m∑
p=1

Zp
i−1/2

]
.

(3.13)

To obtain the last line, we have used the fact that each Zp is an eigenvector of the
corresponding A with eigenvalue sp. We can now use the assumption (3.9) to rewrite
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this as

Qn+1
i = Qn

i − ∆t

2∆x
(f(Qi+1, xi+1) − f(Qi−1, xi−1))

+
∆t2

2∆x2

[
Ai+1/2(f(Qi+1, xi+1) − f(Qi, xi))

− Ai−1/2(f(Qi, xi) − f(Qi−1, xi−1))
]
.

(3.14)

This agrees with the Taylor series expansion of the true solution, to sufficient accuracy
that a standard computation of the truncation error now shows that the method is
second-order accurate, provided that A is a consistent approximation to fq(q, x) as
described above. To develop the Taylor series we note that

qt = −f(q, x)x,

qtt = −(
fq(q, x)qt

)
x

=
[
fq(q, x)f(q, x)x

]
x
,

(3.15)

and so

q(xi, tn+1) = q(xi, tn) − ∆tf(q)x +
1

2
∆t2

[
fq(q, x)f(q, x)x

]
x

+ O(∆t3),(3.16)

where all terms on the right are evaluated at (xi, tn). The O(∆t) terms in (3.16) and
(3.14) agree to O(∆t∆x2). The conditions (3.11) and (3.12) guarantee that

A(q(x− ∆x), q(x))

(
f(q(x), x) − f(q(x− ∆x), x− ∆x)

∆x

)
= fq

(
q

(
x− ∆x

2

)
, x− ∆x

2

)
f

(
q

(
x− ∆x

2

)
, x− ∆x

2

)
x

+ E2(x,∆x),

(3.17)

with E2(x,∆x) satisfying the same conditions as E(x,∆x). This in turn is sufficient to
show that the final term in (3.14) agrees with the O(∆t2) term in (3.16) to O(∆t2∆x),
as required for second-order accuracy. See [3] for another discussion of the accuracy
of this algorithm in the context of a wave propagation problem in general relativity.

4. Elastic waves in heterogeneous media. As an example, we consider the
propagation of compressional waves in a one-dimensional elastic rod with density
ρ(x) > 0 and a stress-strain relation σ(ε, x) that may also vary with x and that
satisfies σε(ε, x) > 0 everywhere. The equations of motion in a Lagrangian frame
(relative to a reference configuration) are then given by the conservation laws (1.1),
with

q(x, t) =

[
ε
ρu

]
≡

[
ε
M

]
, f(q, x) =

[ −M/ρ(x)
−σ(ε, x)

]
,(4.1)

where ε(x, t) is the strain and M(x, t) = ρ(x)u(x, t) is the momentum. The first
equation in this system expresses the kinematic relation εt = ux, while the second
equation is Newton’s second law.

The Jacobian matrix for this system is

fq(q, x) =

[
0 −1/ρ(x)

−σε(ε, x) 0

]
,(4.2)
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with eigenvalues ±c(ε, x), where the compressional wave speed is given by

c(q, x) =

√
σε(ε, x)

ρ(x)
.(4.3)

The corresponding eigenvectors are

r1(q, x) =

[
1

Z(q, x)

]
for s1(q, x) = −c(q, x)(4.4)

and

r2(q, x) =

[
1

−Z(q, x)

]
for s2(q, x) = c(q, x),(4.5)

where Z(q, x) = ρ(x)c(q, x) is the impedance. For this system of two equations there
is always one negative eigenvalue and one positive eigenvalue at every point, corre-
sponding to waves propagating to the left and right, respectively, and the eigenvalues
never change sign in this Lagrangian frame. We thus expect the flux to be continuous
at any material discontinuity. This also follows naturally from physical considerations,
since the components of flux are −u and −σ. Clearly the velocity and stress must be
continuous at an interface for the continuum model to hold.

This Riemann problem is discussed further in [22], where a description of an
approach to computing the exact solution is described. However, an approximate
Riemann solver is found to work very well, based on defining the matrix Ai−1/2 in
terms of its eigenvectors and eigenvalues as

r1i−1/2 = r1i−1 =

[
1

Zi−1

]
, s1i−1/2 = −

√
σ′
i−1(εi−1)

ρi−1
,(4.6)

and

r2i−1/2 = r2i =

[
1

−Zi

]
, s2i−1/2 =

√
σ′
i(εi)

ρi
.(4.7)

The algorithm described in section 3 can now be applied by decomposing the flux
difference fi(Qi) − fi−1(Qi−1) as a linear combination of these eigenvectors. This
algorithm has been used in [22] to solve an elastic wave propagation problem in
a heterogeneous rod with rapidly varying piecewise constant properties (a layered
medium or laminate). An interesting nonlinear effect was found in this case: a smooth
pulse breaks up into solitary waves that appear to behave as solitons; see also [24].
Here we use this and a related example with smoothly varying material properties as
a test of the accuracy of the numerical method. We take

ρ(x) = φ(x),

σ(ε, x) = (ε φ(x)) + 0.3 (ε φ(x))
2(4.8)

for some function φ(x), with initial data

u(x, 0) = ε(x, 0) = 0(4.9)

and boundary conditions
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Fig. 2. A nonlinear elasticity example in a rapidly varying continuous medium. Plots indicate
(a) the stress and strain on a grid with 3000 points and (b) the estimated order of accuracy for grid
resolutions of 1500 × 2n−1 for n = 1, . . . , 5.
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Fig. 3. A nonlinear elasticity example in a rapidly varying discontinuous medium. Plots
indicate (a) the stress and strain on a grid with 3000 points and (b) the estimated order of accuracy
for grid resolutions of 1500 × 2n−1 for n = 1, . . . , 5.

u(0, t) =

{
− 2

10 (1 + cos( π
30 (t− 30))) if t ≤ 60,

0 if t > 60.
(4.10)

These boundary conditions generate a smooth incoming pulse from the left boundary.
Figures 2(a) and 3(a) show this pulse at a later time in two cases where the material
parameters are rapidly varying relative to the width of the pulse, leading to the
development of dispersive oscillations (see [22]). In the test of Figure 2, the material
parameters vary smoothly,

φ(x) = 2 − sin (πx) ,(4.11)

and a mesh refinement study shows that second-order accuracy is achieved (see Figure
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2(b)). Figure 3 shows a case in which the material parameters are discontinuous,

φ(x) =

{
1 if 2j < x < 2j + 1,

3 if 2j + 1 < x < 2j + 2.
(4.12)

In this case we do not expect to achieve second-order accuracy, but we still observe a
convergence rate of about 1.5 in both the stress (which is continuous) and the strain
(which is discontinuous at each discontinuity in φ(x)).

5. Linear acoustics. The equations for linear acoustics can be obtained from
the elasticity problem above if the stress-strain relation is linear,

σ(ε, x) = K(x)ε,(5.1)

where K(x) is the bulk modulus of compressibility. The elasticity system then has
the form (2.8) with q as in (4.1) and

A(x) =

[
0 −1/ρ(x)

K(x) 0

]
.(5.2)

The eigenvalues are ±c(x), where the sound speed is c(x) =
√
K(x)/ρ(x). The

eigenvectors are still given by (4.4) and (4.5), although in this case the impedance
Z(x) = ρ(x)c(x) and the eigenvectors depend only on x. The procedure described
in the previous section produces the exact Riemann solution in this case. The wave-
propagation algorithm based on f -waves can be used to solve this variable-coefficient
linear system, which remains in conservation form.

Alternatively, the acoustics equations can be written in a more familiar form if
we introduce the pressure p = −σ = −Kε so that the above system becomes

∂

∂t

[
p/K(x)
ρ(x)u

]
+

∂

∂x

[
u
p

]
= 0.(5.3)

This can be rewritten as a nonconservative variable-coefficient hyperbolic system as

∂

∂t

[
p
u

]
+

[
0 K(x)

1/ρ(x) 0

]
∂

∂x

[
p
u

]
= 0.(5.4)

The wave-propagation algorithms have been extended to apply to nonconservative
hyperbolic systems in [20], where the acoustics system (5.4) is used as an example.
These algorithms are further studied in [7], where it is observed that good results
are obtained even when the coefficients K(x) and ρ(x) are rapidly varying and/or
discontinuous. However, the conservative form based on (4.1) has advantages, at least
for smooth solutions, since the method proposed here will give a fully second-order
accurate method, while the previous approach based on (5.4) is formally only first-
order accurate (although the results are still “high resolution” in the sense discussed
in section 2.4 of [20], and much better than classical first-order methods would give).

To illustrate this improvement, both the nonconservative and the new conservative
algorithm are tested on three different acoustics problems of increasing complexity.
In each case the initial conditions are given by

p(x, 0) =

{
7
4 − 3

4 cos
(
10π x− 4π

)
if 0.4 < x < 0.6,

1 otherwise,

u(x, 0) = 0,

(5.5)
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Fig. 4. Linear acoustics example with variation in only the eigenvalues. Shown are (a) the
impedance and the sound speed; (b) the solution at time t = 0 (dashed line) and t = 0.3 (circles) on
a grid with 200 points, along with the “exact” solution at t = 0.3 (solid line); and (c) the order of
accuracy in the 1-norm for both the standard Clawpack (nonconservative) approach and the new
method.
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Fig. 5. Linear acoustics example with variation in both the eigenvalues and the eigenvectors.
Shown are (a) the impedance and the sound speed; (b) the solution at time t = 0 (dashed line) and
t = 0.35 (circles) on a grid with 200 points, along with the “exact” solution at t = 0.35 (solid line);
and (c) the order of accuracy in the 1-norm for both the standard Clawpack (nonconservative)
approach and the new method.

and an “exact” reference solution is computed with the conservative scheme on a grid
with 20,000 points.

In Figure 4 we apply both wave-propagation methods to a problem where the
eigenvalues are spatially varying but the eigenvectors are identically constant, with

c(x) = 1 + 0.5 sin(10πx), Z(x) = 1.(5.6)

The linear system can then be diagonalized and reduced to two variable-coefficient
advection equations. Hence left-going and right-going waves are decoupled, and the
initial pulse splits into two distinct waves as seen in the figure.

In Figure 5 we consider a case in which the impedance and hence the eigenvectors
are also spatially varying:

c(x) = 1 + 0.5 sin(10πx), Z(x) = 1 + 0.25 cos(10πx).(5.7)

Now the left-going and right-going waves are fully coupled.
In both of these cases the algorithm proposed here produces second-order accurate

results. The observed order is roughly 2.08 in each case, as shown in Figures 4(c) and
5(c). These plots also show that the nonconservative method is formally only first-
order accurate.
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Fig. 6. Linear acoustics example with a jump discontinuity in both the eigenvalues and the
eigenvectors. Shown are (a) the impedance and the sound speed; (b) the solution at time t = 0
(dashed line) and t = 0.5 (circles) on a grid with 200 points, along with the “exact” solution at
t = 0.5 (solid line); and (c) the order of accuracy in the 1-norm for both the standard Clawpack
(nonconservative) approach and the new method.

In Figure 6 we consider a problem where the medium is discontinuous:

c(x) =

{
0.6 if 0.35 < x < 0.65,

2 otherwise,
Z(x) =

{
6 if 0.35 < x < 0.65,

2 otherwise.
(5.8)

The initial pulse splits into waves moving to the left and right that repeatedly reflect
off the interfaces, leading to a train of waves moving in each direction. In this case
we do not expect second-order accuracy but achieve a rate of 1.89 with the f -wave
approach, whereas the nonconservative algorithm shows a lower rate that appears to
deteriorate further as the grid is refined.

6. Extension to higher dimensions. The wave-propagation algorithm devel-
oped in section 3 is easily extended to multidimensional conservation laws following
the same procedure used in [20] for the standard algorithm. (See [16] for the three-
dimensional extension.) In two space dimensions a conservation law with spatially
varying fluxes takes the form

qt + f(q, x, y)x + g(q, x, y)y = 0,(6.1)

where q = q(x, y, t). The two-dimensional wave-propagation algorithm is based on
solving one-dimensional Riemann problems normal to each cell edge, and the f -wave
approach developed here can again be used in place of the usual wave decomposi-
tion. At the interface between cells (i − 1, j) and (i, j), for example, the flux differ-
ence fij(Qij) − fi−1,j(Qi−1,j) is split into a left-going portion A−∆Qi−1/2,j and a
right-going portion A+∆Qi−1/2,j . In addition to the second-order correction terms
described in section 3, it is also necessary to compute transverse correction terms
obtained by splitting these fluctuations into eigenvectors of approximations to the
transverse Jacobian gq at interfaces above and below the neighboring cells. These
eigenvectors will be available from the Riemann solution procedure in the y-direction
and can be applied directly.

As an example, we consider the two-dimensional acoustics equations as a gener-
alization of the tests in the previous section. This linear system has the form (6.1)
with

q =

 q1

q2

q3

 =

 ε
ρu
ρv

 ,
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and

f(q, x, y) =

 −q2/ρ(x, y)
K(x, y)q1

0

 , g(q, x, y) =

 −q3/ρ(x, y)
0

K(x, y)q1

 .
Alternatively this can be written as a nonconservative system in terms of the pressure
p = −K(x, y)q1 and velocities u and v, as discussed in [20] in the context of stan-
dard wave-propagation algorithms. Here we compare the two approaches on one test
problem to show that the conservative approach gives full second-order accuracy. We
consider a radially symmetric problem so that a reference solution can be computed
by solving a one-dimensional acoustic problem with geometric source term. As data
we take

p(r, 0) =

{
−2

(
r−0.5
0.18

)6
+ 6

(
r−0.5
0.18

)4 − 6
(
r−0.5
0.18

)2
+ 2 if

∣∣r − 0.5
∣∣ < 0.18,

0 otherwise,

u(r, 0) = v(r, 0) = 0,

c(r) = Z(r) =



0.175 if r ≤ 0.15,

p1(r) if 0.15 ≤ r ≤ 0.41,

0.35 if 0.41 ≤ r ≤ 0.59,

p2(r) if 0.59 ≤ r ≤ 0.85,

0.275 if 0.85 ≤ r,

(6.2)

where r =
√
x2 + y2 is the radius and p1(r) and p2(r) are polynomials that smoothly

connect the surrounding piecewise constant regions.
The results shown in Figure 7 illustrate the improved accuracy achieved with the

conservative algorithm.

7. Source terms and balance laws. The balance law

qt + f(q, x)x = ψ(q, x)(7.1)

consists of a conservation law with a source term on the right-hand side. Many
approaches have been studied for equations of this form, primarily in the case of an
autonomous flux function f(q) (e.g., [4, 8, 11, 13, 14, 28, 30]). One simple approach
that is often used is the fractional step method, in which one alternates between
solving the homogeneous equation (1.1) and the ordinary differential equation

qt = ψ(q, x).(7.2)

However, this may not work well when the solution is close to a steady state and
f(q, x)x ≈ ψ(q, x) while each term separately is large. Solving each of the equations
(1.1) and (7.2) will then cause large changes in the solution, which numerically may
not cancel out properly. Instead we would like to develop a wave-propagation method
in which the waves model only the information that should propagate relative to the
background steady state solution. One approach was proposed in [21], but we now
believe that a better approach is suggested by the f -wave algorithm presented above,
even in the autonomous case, and has the additional advantage of applying also with
spatially varying flux functions.

We assume that the source term at time tn can be discretized to yield values
Ψn

i−1/2 at cell edges, and as usual we suppress the superscript n. This has the effect
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Fig. 7. An example of linear acoustics in two dimensions. Shown are (a) the initial pressure
distribution, (b) the sound speed and impedance profiles, (c) the solution at the final time, and (d)
an estimate for the order of accuracy.

of replacing the source term ψ(q, x) by a function Ψ(q, x) that is a sum of delta-
function sources at these discrete points,

Ψ(q, x) = ∆x
∑
i

Ψi−1/2 δ(x− xi−1/2).(7.3)

Then the Riemann problem at xi−1/2 is for the problem

qt + Fi−1/2(q)x = ∆xΨi−1/2δ(x− xi−1/2),(7.4)

with Fi−1/2(q) given by (1.8). The Riemann solution will still have the basic structure
shown in Figure 1(b), but the delta-function source at the point xi−1/2 leads us to
expect that the flux will no longer be continuous at this point, but rather will satisfy

fi(Q
r
i−1/2) − fi−1(Q

l
i−1/2) = ∆xΨi−1/2.(7.5)

This suggests that the f -waves Zp
i−1/2 should be based on an eigendecomposition of

the form (1.17),

fi(Qi) − fi−1(Qi−1) − ∆xΨi−1/2 =

m∑
p=1

βp
i−1/2r

p
i−1/2 ≡

m∑
p=1

Zp
i−1/2.(7.6)
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The wave-propagation method of section 3 can then be applied directly.
The wave decomposition (7.6) has the effect of splitting the source term Ψi−1/2

into eigenvectors of an approximate Jacobian along with the flux difference. In the
Godunov updates, the eigencomponents of the source term are thus distributed to the
neighboring cells based on the sign of the corresponding eigenvalues. This approach
to handling source terms has long been advocated (see, e.g., [28]), but we believe
something new is gained by splitting the combination (7.6) as a single entity and
using the resulting waves in a wave-propagation algorithm, where these waves can
also be used directly in high-resolution correction terms. The method is particularly
attractive in cases where the solution is close to a steady state in which f(q, x)x ≈
ψ(q, x). Note that if

fi(Qi) − fi−1(Qi−1)

∆x
= Ψi−1/2,(7.7)

then the left-hand side of (7.6) will be zero, and hence all the f -waves will have zero
strength. This indicates that a numerical steady state satisfying (7.7) will be exactly
maintained. If the solution is near a steady state, then it is only the deviation from
steady state that is split into waves, and the correction terms (3.5) used to obtain a
high-resolution method are based directly on these waves, or on limited versions of
these waves.

The wave-propagation method of section 3 using the waves defined by (7.6) has
been found to give good results for several test problems. It is not, however, formally
second-order accurate. Even better results can be obtained if an additional term is
added. A Taylor series expansion of the true solution for (7.1) requires

qt = −f(q, x)x + ψ(q, x)(7.8)

and

qtt = [−f(q, x)x + ψ(q, x)]t

= −[fq(q, x)qt]x + ψq(q, x)qt

= [fq(q, x)(f(q, x)x − ψ(q, x))]x − ψq(q, x)(f(q, x)x − ψ(q, x)).

(7.9)

An analysis of the wave-propagation algorithm based on the splitting (7.6), following
the analysis of (3.13), shows that all terms in the Taylor series up to O(∆t2) are
modeled to sufficient accuracy except the final term in (7.9),

−ψq(q, x)(f(q, x)x − ψ(q, x)),(7.10)

involving the Jacobian matrix of the source term, ψq. In order to make the method
fully second-order accurate, we can update Qn+1

i by an additional correction of the
form

− ∆t2

2∆x
ψq(Qi, xi)

m∑
p=1

1

2
(Zp

i−1/2 + Zp
i+1/2).(7.11)

This is motivated by noting that, by (7.6),

1

∆x

m∑
p=1

Zp
i−1/2 ≈ f(q, x)x − ψ(q, x) at xi−1/2,
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and we average this quantity over the two adjacent cell interfaces in order to obtain an
approximation at the cell center. This is multiplied by the source Jacobian ψq(Qi, xi)
in the cell and by 1

2∆t2 since this is the proper weighting of qtt in the Taylor series.
Note that (7.11) vanishes if (7.7) is satisfied, so the same numerical steady state is
preserved with this correction term added.

As an example, we consider the shallow water equations over bottom topography
defined by some function B(x). The equations are

ht + (hu)x = 0,

(hu)t +

(
hu2 +

1

2
gh2

)
x

= −ghB′(x),
(7.12)

where h(x, t) is the fluid depth (see Figure 8(a)) and u(x, t) is the horizontal velocity
(assumed to be constant throughout the depth). The quantity hu is the momentum
or discharge. A steady state solution with depth h0(x) and velocity u0(x) must
have constant discharge (mass flux) D0 from the first equation of (7.12). One possible
steady state, corresponding to stationary fluid, is u0(x) ≡ 0, h0(x) = η0−B(x), where
η0 is the constant surface level. If we introduce a small perturbation to the surface,
we would like to be able to accurately compute the propagation of this perturbation.
An example of this nature was used in [21] to illustrate the numerical artifacts that
can arise with a classical fractional step method and the improvement obtained with
the quasi-steady wave-propagation algorithm proposed there. Very similar results are
obtained with the method developed above on this test problem, and these are not
displayed here. The new approach has several advantages. It is easier to implement
since it does not require the nonlinear iteration described in [21] to obtain values Q−

i

and Q+
i , and it is more robust for problems that are farther away from steady state. It

is also fully second-order accurate with the modification proposed above, and applies
to problems with spatially varying fluxes.

To verify the accuracy of this method for a problem with both a spatially varying
flux and a source term, we consider a linearized version of the shallow water equations
presented above. The propagation of a small perturbation against a particular steady
state can be modeled by the linear system

q̃t(x, t) + (A(x)q̃(x, t))x = ψq(q0(x), x)q̃(x, t),(7.13)

where q̃(x, t) is the perturbation to the steady state q0(x) and

A(x) = f ′(q0(x)) =

[
0 1

2h0(x) − u2(x) 2u0(x)

]
(7.14)

and

ψq(q0(x), x) =

[
0 0

−gB′(x) 0

]
(7.15)

are the Jacobian matrices of the flux function and source term, respectively. Similar
problems arise in aeroacoustics or other applications where small amplitude acoustics
equations are to be solved after linearizing the Euler equations about a spatially
varying steady state.

As the steady state we take steady flow over a hump, as illustrated in Figure 8(a),
with g = 1, discharge D0 ≡ 0.15 everywhere, and h = 1, u = 0.15 away from the
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Fig. 8. (a) Steady state depth profile for smooth subcritical flow over a hump. (b) Depth
perturbation to the steady state solution at time t = 0.
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Fig. 9. (a) Perturbation to steady state solution at time t = 3, as computed using the linearized
shallow water equations. Solid line: 8000 grid cells. Circles: 125 grid cells. (b) 1-norm errors for
the wave-propagation algorithm applied to the linearized shallow water equations for a perturbation
passing through this steady state solution, as shown in Figure 8.

hump. The steady state over the hump can be computed by solving a cubic equation
at each point, using the fact that g(h(x) +B(x)) +D2/h2(x) must be constant in x.
The hump geometry is specified by

B(x) =

{
0.25(cos(π(x− 0.5)/0.1 + 1)) if |x− 0.5| < 0.1,
0 otherwise.

(7.16)

The matrix Ai in each grid cell is computed by evaluating the Jacobian matrix
(7.14) at this steady state value. The matrix Ai−1/2 used to solve the Riemann
problem at interface i− 1/2 is then obtained by applying the standard Roe averaging
procedure to the elements of Ai−1 and Ai.

Figure 8(b) shows a smooth perturbation

h̃(x, 0) =

{
(1 − cos(2π(x− 0.2)/0.15))2 if 0.2 < x < 0.35,
0 otherwise,

(7.17)

which is used as initial data for the linearized equations. Note that this “perturbation”
is O(1), but for the linearized equations this can be scaled by any factor ε without
effect on the resulting relative errors. Figure 9(a) shows the resulting solution h̃(x, 0.3)
after this perturbation has passed over the hump and been partially reflected. The
solid line is the result computed on a fine grid with 8000 cells, while the symbols show
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the result computed with 250 cells. Figure 9(b) shows a log-log plot of the error as
computed in the 1-norm, using the 8000 cell solution as a reference solution. Errors
are plotted for the method described above, both with and without the correction
term (7.11). This term does in fact lead to fully second-order accurate results.

8. Conclusions. We have presented a general approach to developing wave-
propagation algorithms for solving conservation laws with spatially varying flux func-
tions. The key idea is to split the flux difference into eigenvectors of some approximate
Jacobian matrix in order to define f -waves. This leads to formally second-order ac-
curate methods that can be modified by limiter functions to yield high-resolution
results.

This approach has several desirable features. The method is conservative and
formally second-order accurate regardless of what approximate Jacobian matrix is
used, provided that certain smoothness conditions are satisfied. This may be useful
even for autonomous problems where a Roe average cannot easily be computed, and
a simpler expression such as the arithmetic average could instead be used. (If a Roe
average satisfying (1.12) is available, it is best to use it, since it has other advantages.
In particular, data for which the true solution consists of a single propagating wave
will yield the same structure in the approximate Riemann solution, whereas using a
different approximate Jacobian may lead to more smearing.)

Another advantage of our approach is that it is not necessary to determine the
jumps in the conserved variables q that typically arise across the interface in solving
the Riemann problem with a spatially varying f(q, x). Since the flux is assumed to
be continuous across the interface, decomposition of the flux difference into eigen-
components immediately yields the propagating waves that are needed for the high-
resolution wave-propagation algorithm.

Similar methods can be applied to balance laws containing source terms, as dis-
cussed in section 7. In this case a combination of the flux difference and source term
is split into f -waves. An additional modification can be introduced to ensure full
second-order accuracy. This method may be particularly useful in problems close
to a steady state, in which case the resulting waves model only the deviation from
steady state. Since these waves are used for both the first-order Godunov updates
and the high-resolution correction terms, the method can exactly maintain numer-
ical approximations to steady state and accurately compute the dynamics of small
perturbations.

A number of interesting research questions remain in the case when eigenvalues of
the Jacobian matrix change sign. Preliminary results indicate that our approach can
also be applied to many problems of this form and yield high-resolution results, but
that proper handling of such sonic points is critical. This is currently being studied
in the context of some specific examples.
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