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Abstract. A second-order accurate interface tracking method for the solution of incompressible
Stokes flow problems with moving interfaces on a uniform Cartesian grid is presented. The interface
may consist of an elastic boundary immersed in the fluid or an interface between two different
fluids. The interface is represented by a cubic spline along which the singularly supported elastic or
surface tension force can be computed. The Stokes equations are then discretized using the second-
order accurate finite difference methods for elliptic equations with singular sources developed in our
previous paper [SIAM J. Numer. Anal., 31(1994), pp. 1019–1044]. The resulting velocities are
interpolated to the interface to determine the motion of the interface. An implicit quasi-Newton
method is developed that allows reasonable time steps to be used.
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1. Introduction. In this paper we develop an interface tracking method for the
solution of incompressible Stokes flow problems with moving interfaces on a uniform
Cartesian grid. The interface may consist of an elastic boundary immersed in the
fluid, as in the model problem of Tu and Peskin [49], or an interface between two
different fluids, as in the study of bubbles or free surfaces.

The method we use is based on the immersed interface method (IIM) for elliptic
problems developed in our previous paper [22] and the second author’s thesis [25].
This is a second-order accurate Cartesian grid method for solving elliptic equations
whose solutions are not smooth across some interface, due to discontinuous coeffi-
cients or singular source terms in the equation. The main idea is to incorporate the
known jumps in the solution or its derivatives into the finite difference scheme, ob-
taining a modified scheme whose solution is second-order accurate at all points on the
uniform grid, even for quite arbitrary interfaces. This approach has also been applied
to parabolic equations [28], [30] and hyperbolic wave equations with discontinuous
coefficients [23], [24].

Similar ideas have been used in the context of domain embedding, where an
irregular region is embedded into a larger rectangular domain on which a Cartesian
grid is used. Methods of this type include the method of fictitious domains [2], [8],
[16], [29], capacitance matrix methods [9], [43], and Mayo’s method [32], [33].

A variety of Cartesian grid methods have been proposed for fluid dynamics prob-
lems with arbitrary boundaries and/or moving interfaces, e.g., [1], [4], [11], [12], [17],
[21], [31], [37], [44], [45], [51], [50], [52], and other references below. Such methods are
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becoming increasingly popular for problems with very complex geometries or moving
interfaces where more standard “body-fitted” or unstructured grid approaches can
run into difficulties.

Our motivation for the present work was the goal of ultimately developing a
second-order accurate version of Peskin’s immersed boundary method (IBM), a very
robust algorithm for solving the full incompressible Navier–Stokes equations with
moving boundaries. This method was originally developed for studying blood flow in a
beating heart [38], [39], [40], but has also been used in a wide variety of other problems
(e.g., [6], [13], [14], [51]), particularly in biomechanics since these problems often
involve complex geometries and are difficult to model with more standard approaches.
The physical domain is embedded in a rectangular region and the Navier–Stokes
equations are solved on a uniform Cartesian grid. The boundary is modeled by a
singular forcing term which, computationally, is then approximated by a set of discrete
delta functions which spread the force from the boundary to the nearby Cartesian grid
points. This is described further in the context of Stokes flow in [49]. See [39] for
complete details. The spreading of forces via discrete delta functions appears to limit
Peskin’s method to first-order accuracy. Our approach will, we hope, lead to second-
order accurate methods for the Navier–Stokes equations.

In this paper we consider the simpler Stokes equations which are still of physical
interest in many applications. The Stokes equations model the creeping flow of a
highly viscous fluid, in the limit where the Reynolds number goes to zero and both
the inertial acceleration and convection terms are dropped from the Navier–Stokes
equations. We will concentrate on describing the algorithms in two space dimensions.
In section 11 we briefly discuss what is involved in extending them to three space
dimensions.

In two dimensions the Stokes equations take the form

px(x, y, t) = µ(uxx(x, y, t) + uyy(x, y, t)) + F1(x, y, t),(1.1a)
py(x, y, t) = µ(vxx(x, y, t) + vyy(x, y, t)) + F2(x, y, t),(1.1b)

ux(x, y, t) + vy(x, y, t) = 0.(1.1c)

Here ~u ≡ (u, v) is the velocity vector, p is the pressure, µ is the viscosity, and ~F ≡
(F1, F2) is the external force. For the time being we assume µ is constant. Some
results with discontinuous µ are presented in section 10. We also use the notation
~x = (x, y) below. See, for example, [3], [10], [19], [20], [42] for general discussions of
Stokes flow.

The equations (1.1) can be solved as a coupled system (as is done in [49]) or
alternatively reduced to a sequence of three Poisson problems, one for each variable.
Differentiating (1.1a) with respect to x, (1.1b) with respect to y, and adding the
equations together gives

∇2p = ∇ · ~F ,(1.2)

where ∇2 is the Laplacian. Since the right-hand side is known, this is a Poisson
problem for the pressure. Once p is known, the equations (1.1a) and (1.1b) are
independent Poisson problems for u and v, respectively.

Note that the time evolution of the flow is governed entirely by the time depen-
dence of the forces ~F . If ~F is known at a given instant in time, then the system (1.1)
is elliptic and the solution (u, v, p) is determined independently of the past history
of the flow. This is a reflection of the fact that there is no inertia in the system;
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i.e., the convective and time-derivative acceleration terms have been dropped from
the momentum equations. This allows us to use the techniques developed in [22]
directly, once we have determined the appropriate jump conditions on the solutions.
We assume that the reader is familiar with that paper.

The jumps in the solution result from the fact that the force ~F is singular and is
supported only along the interface (resulting from the elastic force or surface tension).
This singular force in (1.1a) and (1.1b) leads to jumps in the first derivatives of u and
v across the interface. Since the Poisson problem (1.2) for p involves derivatives
of ~F , and hence a dipole source, the pressure will be discontinuous, along with its
derivatives.

The singular force can be written as

~F (~x, t) =
∫ L0

0

~f(s, t)δ(~x − ~X(s, t)) ds,(1.3)

where ~X(s, t) gives the location of the interface at time t, parameterized by s for
0 ≤ s ≤ L0, ~f(s, t) is the force strength at this point, and δ is the two-dimensional
delta function. This singular force is best viewed as a distribution whose action on
any smooth test function φ(~x) is

〈F, φ〉 =
∫ L0

0

~f(s, t) φ( ~X(s, t)) ds.(1.4)

In practice we eliminate the singular source term from the right-hand side of (1.2)
and instead solve

∇2p = 0(1.5)

together with specified jump conditions across the interface, using the techniques of
[22]. This is described in more detail in section 4.

We first consider the model problem used by Tu and Peskin [49], an immersed
elastic band in a fluid with the same fluid properties on each side. In section 10 we
extend our approach to study an interface between two different fluids, with surface
tension providing the force at the interface rather than an elastic band.

The elastic band problem is the two-dimensional analogue of an elastic balloon
in a highly viscous fluid (with the same fluid inside and out). In equilibrium, an
ideal balloon would have a spherical shape, with zero velocity everywhere and uniform
pressure both inside and out but with a jump in pressure across the elastic membrane.
The magnitude of this jump depends on how far the membrane is stretched from its
resting configuration. In two space dimensions the analogue is an elastic band, or more
physically the cross section of an impermeable cylindrical elastic tube, which contains
an incompressible fluid and is stretched to a diameter greater than its resting diameter.
The equilibrium configuration is a circle with a jump in pressure that balances the
elastic force exerted by the stretched membrane in a manner made clear in section 3.

Note that we make an important distinction between the equilibrium configura-
tion and the resting configuration. By the equilibrium configuration we always mean
the steady state solution with a given quantity of fluid inside the elastic band, which
will typically be stretched like an inflated balloon since the fluid cannot escape. By
the resting configuration we mean the shape that would ultimately be obtained if a
small leak were introduced, allowing the band to deflate until there is no force ex-
erted by the elastic membrane and no pressure difference across it. The length of the
elastic band in this unstretched state will be called the resting length, L0, and the
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radius of the corresponding circle will be denoted by r0 = L0/2π. An inflated band,
at equilibrium, will have some equilibrium length Le and radius re = Le/2π which
depend solely on how much fluid is trapped inside.

If we perturb an inflated band from its equilibrium position, analogous to squeez-
ing an inflated balloon, it will return to an equilibrium circular shape. Our goal is
to simulate this motion. We specify an initial position of the boundary (some simple
closed curve) and simulate its motion to a circle. The area A enclosed by the band
must be invariant with time and the equilibrium radius must be re =

√
A/π.

We will parameterize the location of the band at any time t by ~X(s, t) = (X(s, t),
Y (s, t)), where s is arclength along the unstretched band, 0 ≤ s ≤ L0, measured from
some arbitrary but fixed origin. The material particle at (X(s, t), Y (s, t)) is the same
particle that would lie a distance s from the origin if the band were cut at the origin
and allowed to relax. The force exerted by the band at ~X(s, t) is given by (1.3) with
strength

~f(s, t) =
∂

∂s
(T (s, t)~τ(s, t)),(1.6)

where T (s, t) is the tension at this point, given by

T (s, t) = T0

(∣∣∣∣∣∂ ~X

∂s

∣∣∣∣∣− 1

)
(1.7)

and ~τ(s, t) is the tangent vector to the band at this point,

~τ(s, t) =
∂ ~X

∂s

/ ∣∣∣∣∣∂ ~X

∂s

∣∣∣∣∣ .(1.8)

Note that in the relaxed state |∂ ~X/∂s| ≡ 1 since s is the arclength. The single scalar
T0 describes the elastic properties of the band, which are assumed to be uniform along
its length, though this is not necessary. The larger T0, the stiffer the elastic band and
the greater the force induced by a stretching of the band. The tension given by (1.7)
is a linear Hooke’s law relation, which could easily be replaced by a more general
nonlinear relation in our algorithm.

The force density can be computed directly from the location of the interface ~X at
time t. We will see in section 3 that it is possible to determine the jump conditions for
u, v, and p directly from ~f(s, t). This in turn allows us to apply the immersed interface
method to solve for u, v, and p at all points on a uniform Cartesian grid at time t.

The interface at each time is represented by a cubic spline passing through a given
set of control points along the interface, as described in the next section, and hence
the location of the interface is completely determined by the location of the control
points. Taking a time step requires also moving the interface, which is accomplished
by moving the control points using the additional constraint that the interface must
move with the fluid. The velocity ~u will be continuous across the interface and we
have the differential equation

∂

∂t
~X(s, t) = ~u( ~X(s, t), t).(1.9)

The velocities computed on the Cartesian grid are interpolated to the control points,
which are then moved with this velocity over a time step of length ∆t. In practice
an implicit method must be used in order to take reasonable time steps, and a quasi-
Newton method has been developed to accomplish this in an efficient manner, as
described in section 7.
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This completes an overview of our method. Each of these steps will be described
in greater detail in the remainder of the paper.

Our approach differs from that of Tu and Peskin in several ways. The fundamental
difference is our use of jump conditions to derive second-order accurate finite difference
schemes rather than using discrete delta functions (which appear to limit the accuracy
to first order). But there are other differences as well.

Using a relatively small number of control points to specify the interface rather
than the denser set typically used with the IBM has great advantages in solving the
implicit system of equations. This approach could be carried over to the IBM too, as
described in section 8.

We also use a sequence of three Poisson problems as described above, whereas Tu
and Peskin discretize the Stokes equations (1.1) directly as a coupled system, which
is necessary in using the IBM since the right-hand side of (1.1) involves delta function
forces, whereas the right-hand side of (1.2) has dipoles, which are even more difficult
to discretize accurately. Our approach, on the other hand, could also be applied
to the coupled system directly, incorporating the jump conditions for u, v, and p
simultaneously. This has also been implemented and details are presented in [25]. We
have found, however, that the approach presented here gives slightly better results.
It also yields the pressure p at all grid points, which may be of interest, whereas
discretizing the coupled system and solving by fast Fourier transforms, as done in
[49], does not yield p due to zero divisors in the transformed equations. Finally, the
approach based on three Poisson problems allows the direct use of software already
developed for the general Poisson problem with jumps across an interface, a problem
that also arises in many other contexts. However, decoupling the problem into three
Poisson problems depends on the fact that periodic boundary conditions are used.
Some comments are made in section 11 on handling other boundary conditions.

Another approach to solving Stokes flow problems is to solve a biharmonic equa-
tion for the stream function instead of the three Poisson problems used here. Mayo
[31] has developed a method based on this approach and techniques from [32] that is
similar in spirit to our method.

Boundary integral methods are also very popular for Stokes flow, since this linear
problem can be reduced to an integral equation along the interface, reducing the
dimensionality of the problem. For a description of this approach and some references,
see, e.g., [42]. This approach does not appear to extend to nonlinear problems such
as the full Navier–Stokes equations, however, whereas the IBM does. We expect that
our method can also be extended, and work is now underway to do so.

2. Representation of the interface and forces. The location of the interface
at time tn is represented by a finite set of control points (Xn

k , Y n
k ) for k = 0, 1, . . . , Nb.

Since the boundary is always a simple closed curve in the model problem, we assume
(Xn

0 , Y n
0 ) = (Xn

Nb
, Y n

Nb
). The kth control point gives an approximation to (X(sk, tn),

Y (sk, tn)), where sk = kL0/Nb. Based on these control points, we determine a con-
tinuous curve (Xn(s), Y n(s)) by computing some interpolants Xn(s) through the
points Xn

k and Y n(s) through the points Y n
k .

The computations presented here were all computed using periodic cubic splines
for Xn(s) and Y n(s). The force exerted by the elastic interface, given by (1.6),
can also be represented by cubic splines. From the splines (Xn(s), Y n(s)) we can
compute ∂ ~X/∂s and hence the tension T (s, tn). Multiplying by the tangent vector
and differentiating again gives an approximation to (1.6). We now evaluate this
function at each of the control points to obtain values ~fn

k and then interpolate these
values by a new cubic spline ~fn(s) to obtain the representation of the force all along
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the interface. The reason for introducing a new cubic spline at this point is that the
jump conditions discussed in the next section depend on further derivatives of the
force along the interface.

Other representations of the interface are possible. We have also experimented
with using a Fourier series representation, which is quite convenient for the smooth
closed curves considered here since X and Y are both periodic in s. With this approach
it is easy to compute the necessary derivatives and also apply filtering to remove high
frequency oscillations of the interface. In some problems this has been found to
improve stability properties.

A level set representation (e.g., [36], [47]) could also be considered. In this ap-
proach the interface is represented by the φ(x, y, t) = 0 contour of some smooth
function φ that advects with the fluid velocity. For the surface tension problems dis-
cussed in section 10, this could be used since the surface tension force depends only
on the curvature of the interface, which can be determined directly from φ. However,
for the elastic band problem the force depends on the manner in which the band is
stretched and not just its location, and hence it seems necessary to explicitly track
control points on the interface.

3. Jump conditions across the interface. In order to use the IIM, we need
to know the jump conditions for each of the three Poisson problems (for p, u, and v).
We need to know both the jump in the function and the jump in its normal derivative
at each point along the interface. (See [22] for details on how the jump conditions are
used to derive second-order accurate difference formulas.)

The velocity components u and v are both continuous across the interface. Cer-
tainly the normal velocity must be continuous and a discontinuity in the tangential
velocity is also ruled out by the presence of viscosity and a no-slip boundary condition
between the elastic band and the fluid on each side. The normal derivative of all three
variables will, however, be discontinuous in general, as will the pressure itself.

The jump conditions are easiest to write in terms of normal and tangential com-
ponents of the force ~f(s, t). We decompose the force as

~f(s, t) =
[

f1(s, t)
f2(s, t)

]
=
[

f̂1(s, t) cos θ − f̂2(s, t) sin θ

f̂1(s, t) sin θ + f̂2(s, t) cos θ

]
,(3.10)

where θ is the angle between the x-axis and the normal direction pointing outward
from the interface at ~X(s, t), and f̂1, f̂2 are the normal and tangential force strengths,
respectively, defined as

f̂1(s, t) = f1(s, t) cos θ + f2(s, t) sin θ,(3.11)

f̂2(s, t) = −f1(s, t) sin θ + f2(s, t) cos θ.

The jump conditions are then given by

[p](s) = f̂1(s, t),(3.12a)

[pn](s) =
∂

∂s
f̂2(s, t),(3.12b)

[µun](s) = f̂2(s, t) sin θ,(3.12c)

[µvn](s) = −f̂2(s, t) cos θ.(3.12d)

These are derived in the Appendix.
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Note that in the equilibrium case we expect there to be no tangential component
to the force, i.e., f̂2 = 0, since in equilibrium the tension T (s, t) will be constant in
s and so ~f(s, t) will be the derivative of a constant-length tangent vector, and hence
will point in the normal direction. The only nonzero jump will then be that given by
(3.12a), as we expect since u = v = 0 and p is piecewise constant in this case.

The jump conditions can be determined at any point on the interface by applying
(3.12) to the cubic spline function ~fn(s) representing the force. Alternatively, we
could calculate the jump conditions at each control point and then interpolate these
by cubic splines.

4. Solving the Poisson problem for p. Given the location of the interface
at time tn, and the jump conditions for p across it from (3.12a) and (3.12b), we wish
to solve the Poisson problem (1.5) with these specified jump conditions. We solve a
difference equation of the form

1
h2 (pi+1,j + pi−1,j + pi,j+1 + pi,j−1 − 4pij) = Cij(4.13)

on a uniform Cartesian grid, where the right-hand side Cij is determined using the
techniques of [22] based on the jump conditions. The value Cij will be nonzero only
at “irregular” grid points, those for which the five point stencil includes points from
both sides of the interface. These values can be thought of as giving a spreading of
the dipole source in (1.2) from the interface to the nearby grid points, in the spirit of
Peskin’s IBM. However, they are determined from the jump conditions rather than
the dipole in such a way that the computed values pij are second-order accurate at
all points (provided only that the interface is smooth).

For the model problem of Tu and Peskin, we have periodic boundary conditions,
and so we know that a solution exists only if the Cij satisfy∑

i,j

Cij = 0.

Unfortunately, since the method of [22] is based on requiring only that the local
truncation error be O(h) at irregular points, the values of Cij will have O(h) errors
which, when summed over the O(1/h) irregular points, will give an O(1) result for∑

Cij ≡ C̄. However, if we perturb each Cij to

Ĉij = Cij − C̄

N2 ,

we obtain a solvable perturbed system

1
h2 (pi+1,j + pi−1,j + pi,j+1 + pi,j−1 − 4pij) = C̄ij(4.14)

whose solution is the least squares solution to the unperturbed equation (see [48]).
Notice that C̄/N2 is of order h2. This means the order of the local truncation errors,
which are O(h2) away from the interface and O(h) near the interface, have not been
changed. We expect the solution to the perturbed equation (4.14) will approximate
the true solution of the Poisson equation to second-order accuracy. We use the Fourier
method described in [48] to solve the perturbed equation (4.14) and set p00 = 0 to
get a particular solution.
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5. Solving for u and v. Next we need to solve the Poisson problems (1.1a) and
(1.1b) for u and v. These are essentially identical and we will explain the procedure
for the solution of (1.1a) to obtain u. The forcing term F1 is singular along the
interface but is a delta function singularity rather than a dipole, leading to a jump in
the normal derivative of u but not in u itself. Also note that, since p is discontinuous
across the interface, px will contain a delta function singularity. The strength of the
jump in the normal derivative un depends on both of these effects, and is given by
(3.12c). As in our solution of the Poisson problem for p, we do not attempt to model
these singular terms directly but instead drop them from the equation and solve the
Poisson problem

∇2u =
1
µ

px

away from the interface, where px is smooth, coupled with the jump conditions [u] = 0
and (3.12c) across the interface. Using the IIM, this gives the discrete system

1
h2 (ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij) =

1
µ

πij + Dij ,(5.15)

where πij ≈ px(xi, yj) and the correction terms Dij , resulting from the jump condi-
tions, are nonzero only at the irregular grid points. These are again derived following
[22]. Note that if µ is discontinuous across the interface, then the elliptic equations
for u and v have discontinuous coefficients and the techniques of [22] can be used to
derive a six-point stencil that yields second-order accuracy. This is used in section 10.

At regular grid points we can approximate px by the standard central difference,

πij =
1
2h

(pi+1,j − pi−1,j).

At irregular grid points we normally use one-sided differences to obtain first-order
accurate approximations. Alternatively, one could use the known jump conditions for
p and px to correct the centered formula, but this also gives only a first-order accurate
formula unless higher-order jump conditions are derived and used. Fortunately, first-
order local accuracy at these points is sufficient to maintain second-order accuracy
globally [22].

There is one situation where a one-sided approximation cannot be used, if both
the points (i − 1, j) and (i + 1, j) lie on the opposite side of the interface from (i, j).
This could happen, for example, at the top or bottom of a circular interface. In this
case we interpolate pi−1,j , pij and pi+1,j to get (px)ij to first order by using the known
jump conditions [p], [px], and [py] from (3.12a) and the relations

[px] = [pn] cos θ − [ps] sin θ,(5.16)
[py] = [pn] sin θ + [ps] cos θ.(5.17)

We know the jump [pn] already from (3.12b), and

[ps] =
∂p+

∂s
− ∂p−

∂s
=

∂

∂s
[p];(5.18)

i.e., [ps] is the derivative of jump of pressure p along the interface. So we find

[px] =
∂f̂2

∂s
cos θ − ∂f̂1

∂s
sin θ,

[py] =
∂f̂2

∂s
sin θ +

∂f̂1

∂s
cos θ.
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Let (Xk, Yk) be the control point closest to (xi, yj), and xl(l = i + 1, or i − 1)
be the one of xi and xi+1 which is closer to Xk. Then we can use the following
interpolation formula:

π±
ij =

pij − plj ∓ [p] ∓ [px] (xl − Xk ) ∓ [py] (yj − Yk )
(xi − xl)

,(5.19)

where the sign in the expression depends on which side of the interface the point (i, j)
is on, and [p], [px], and [py] are calculated at (Xk, Yk). In [25] it is shown that (5.19)
gives a first-order accurate approximation to px.

Solving the system (5.15) gives velocities uij that are second-order accurate at all
grid points. An analogous procedure on (1.1b) gives the y velocities vij .

6. Moving the interface—an explicit method. The interface should move
at the local fluid velocity, which can be accomplished by moving each control point
(Xn

k , Y n
k ) at velocity (Un

k , V n
k ), determined by interpolating the velocity fields uij and

vij to the kth control point. This interpolation is complicated by the fact that u
and v are not smooth across the interface, and so the known jumps in their normal
derivatives must be used in the interpolation formulas. There are various ways in
which this can be done. Here we give one example based on using three nearby points
to perform linear interpolation, modified to incorporate the jump conditions at the
interface.

Dropping superscripts and subscripts for simplicity, let (X, Y ) be an arbitrary
point on the interface and consider the problem of interpolating from the uij to
obtain the x component U of the velocity at (X, Y ).

First we choose the first three grid points (xi1, yj1), (xi2, yj2), and (xi3, yj3) closest
to (X, Y ). Then we form a linear combination of the grid values at these points plus
a correction term to approximate U :

U = γ1 ui1,j1 + γ2 ui2,j2 + γ3 ui3,j3 − C.(6.20)

We use Taylor expansion about (X, Y ) to get the equations for the coefficients γ’s so
that we have a second-order approximation:

U = γ1u(xi1, yj1) + γ2u(xi2, yj2) + γ3u(xi3, yj3) − C

= a1u
− + a2u

+ + a3u
−
x + a4u

+
x + a5u

−
y + a6u

+
y − C + O(h2)

= (a1 + a2)u− + (a3 + a4)u−
x + (a5 + a6)u−

y + a2[u]

+ a4[ux] + a6[uy] − C + O(h2).

Here the ai are linear combinations of the γ’s as in equation (3.26) of [22], obtained
from the Taylor series expansion of each (xi, yj) about (X, Y ). We then desire

a1 + a2 = 1,

a3 + a4 = 0,

a5 + a6 = 0.

This gives a linear system of equations for the γ’s which can be solved to yield

γ2 =
(yj1 − Y ) (xi3 − xi1) − (xi1 − X) (yj3 − yj1)

(xi2 − xi1) (yj3 − yj1) − (xi3 − xi2) (yj2 − yj1)
,

γ3 =
(yj1 − yj1) (xi1 − X) − (xi2 − xi1) (yj1 − Y )

(xi2 − xi1) (yj3 − yj1) − (xi3 − xi2) (yj2 − yj1)
,

γ1 = − (γ2 + γ3) .

(6.21)
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Once we get the coefficients γ1, γ2, and γ3, we are able to compute the correction
term C as

C = −(a2[u] + a4[ux] + a6[uy]).

We can use the same coefficients γi and a new correction term based on the jumps
in v to find the y component V of the velocity at (X, Y ). These velocities (U, V ) can
then be used to move the interface at the control point (X, Y ).

Applying this procedure at each control point (Xn
k , Y n

k ) gives the velocities
(Un

k , V n
k ). The simplest explicit method is forward Euler, in which we move the

interface by shifting each control point according to

Xn+1
k = Xn

k + ∆tUn
k ,

Y n+1
k = Y n

k + ∆tV n
k .

This completes the description of an explicit IIM for the Stokes equations. In the
next time step the whole process is repeated. To review, the process consists of the
following:

1. Use the location of the interface, as determined by the control points, to
determine the forces and jump conditions.

2. Solve three Poisson problems, using these jump conditions, to determine un
ij

and vn
ij on the uniform grid.

3. Interpolate to determine Un
k and V n

k at the control points.
4. Move the control points at these velocities for time ∆t.

There are two obvious difficulties. One is that Euler’s method is only first-order
accurate in time. A more serious difficulty is that the system is very stiff (for reason-
able values of T0), and very small time steps must be taken to maintain stability, time
steps over which there is barely any discernible motion of the interface. The problem
is that small perturbations in the smoothness of the interface can lead to large forces,
resulting in large transient velocities that amplify the perturbations catastrophically
if used over too large a time step. This difficulty is discussed in detail by Tu and
Peskin [49]. (See also [18], [34].) In order to take reasonable time steps, we must use
an implicit method, as described in the next section.

7. Moving the interface—an implicit method. Steps 1 through 3 of the
procedure described in the previous section can be used to define an operator U
that maps a set of control points ~X = ( ~X1, ~X2, . . . , ~XNb

) to the resulting velocities
~U = (~U1, ~U2, . . . , ~UNb

) at the control points. We write

~U = U( ~X).

Applying U to ~X requires computing forces and jumps along the interface, solving
three Poisson problems, and interpolating the resulting velocities back to the con-
trol points. The forward Euler method of the previous section can now be written
succinctly as

~Xn+1 = ~Xn + ∆t U( ~Xn).

Instead we wish to use an implicit method, such as the trapezoidal method

~Xn+1 = ~Xn +
1
2
∆t (U( ~Xn) + U( ~Xn+1)).
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This means that the distance each control point moves should be determined by the
average of its velocity based on the old interface location and its velocity based on
the new interface location. This is second-order accurate and also eliminates most
stability problems, but of course it is much more difficult to apply. At time tn, ~Xn

is known and so ~Un = U( ~Xn) can be computed as before. But then ~Xn+1 must be
determined from the implicit system g( ~Xn+1) = 0, where

g( ~X) = ~X − 1
2
∆t U( ~X) −

(
~Xn +

1
2
∆t ~Un

)
.

Normally a Newton-like method must be used with the trapezoidal method in order to
obtain convergence of the iteration with reasonable size time steps. Newton’s method
requires the Jacobian matrix

J( ~X) ≡ g′( ~X) = I − 1
2
∆t U ′( ~X).(7.22)

Unfortunately the matrix U ′( ~X) is impossible to calculate exactly, and even obtaining
a finite difference approximation would be prohibitively expensive. To see this, recall
that ~X represents the positions of all the control points (a vector with 2Nb entries
for Nb control points), while U( ~X) represents the 2Nb vector of resulting velocities.
Hence U ′( ~X) is a 2Nb × 2Nb matrix and its approximation by finite differences would
require evaluating U 2Nb times. Since each evaluation of U requires solving three
Poisson problems (plus other work), this is out of the question.

Instead we use a quasi-Newton method, in which we maintain an approximation
to the Jacobian matrix J that is modified in each iteration by a low-rank update. The
update is based on information obtained in each step about the directional derivative
of U in the direction moved in this iteration. A wide variety of quasi-Newton methods
are available, see, e.g., [15]. In practice one wants to avoid factoring the new matrix
J in each iteration, and so either the LU factorization is updated directly or else the
inverse matrix B = J−1 is updated. We have implemented the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method with updates to B and have found this to be quite
effective.

The efficiency of this method is enhanced by the fact that we have a very similar
system to solve in each time step. Since the interface moves only a small amount
from one time step to the next, the approximate Jacobian from one time step is still a
good approximation in the next time step. In each time step we begin with the final
approximate B from the previous time step as our initial B. Of course we also have a
good initial guess for the solution ~Xn+1 to the system g( ~X) = 0. We can use ~Xn as
our initial guess, or even an extrapolated value such as 2 ~Xn − ~Xn−1. We find that we
need only two or three iterations of the quasi-Newton method to converge to ~Xn+1.

The above comments are valid once the process is going. In the very first time
step, from ~X0 to ~X1, we do not yet have a previous approximation to the Jacobian.
In the first step we initialize B to the identity matrix, which is reasonable since from
(7.22) we see that J = I + O(∆t). (This seems to work in spite of the fact that, in
the stiff case, we want to take ∆t for which λ∆t may be large for some eigenvalues
λ of U ′.) In the first few time steps, before a good approximate Jacobian has been
built up, more iterations are required than indicated above (five or six, typically).

8. Comparison with the IBM. The original IBM can also be applied to Stokes
flow, as has been done by Tu and Peskin [49]. We have already explained the pri-
mary differences between the two algorithms and, in particular, how we expect to
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achieve second-order accuracy rather than first-order accuracy by using jump condi-
tions rather than discrete delta functions. These expectations are confirmed in the
numerical results presented in the next section.

There is another fundamental difference in the approach that is worth discussing
further since we believe it could also be used effectively in connection with the standard
IBM. In Peskin’s approach the Lagrangian points defining the boundary are also the
points where the discrete delta functions are centered in the process of transferring the
singular sources from the interface to the neighboring grid points. Since the diameter
of the support of these delta functions is O(h), where h is the uniform grid spacing,
this requires a fairly dense set of points along the interface. Typically the distance
between marker points on the interface is roughly h. With an implicit method, this
can give a very large system of equations to solve for the new position of the interface
in each time step.

By contrast, we use a much smaller set of control points to mark the interface,
and interpolate by cubic splines to determine intermediate locations or forces. If
the interface is smooth it is possible for the distance between these control points
to be quite large relative to h with no effect on the accuracy. This leads to a much
smaller system of equations to solve and allows us to use a fully implicit method quite
efficiently.

Presumably, improvements could be made to a code based on Peskin’s approach
by using a hybrid method in which the boundary is represented by a smaller set of
control points for the purpose of identifying its location (and hence in the implicit
system to be solved). One could then use cubic splines to interpolate forces to a
denser set of points along the interface where the discrete delta functions are applied
for the purpose of spreading forces and interpolating velocities. In essence this is what
we do, since we also need to know the forces and jump conditions at a denser set of
points in the process of calculating the Cij in the systems (4.13) and (5.15).

There are other advantages to solving for a smaller set of control points besides
the obvious efficiency gained by having a smaller system of equations. Reducing the
number of degrees of freedom in the interface position also leads to a much better
conditioned system in many cases. Beyer [5], [6] used the IBM to model the motion
of the basilar membrane in the inner ear and implemented an implicit method to
deal with the rigid walls of the cochlea. He found that the system of equations
was extremely ill conditioned and had to resort to a singular value decomposition to
obtain good results, at considerable expense. We suspect that using a much smaller
set of control points would eliminate the bulk of this ill conditioning and lead to a
much more efficient method for handling rigid walls. Similar issues are also discussed
in [18].

9. Numerical results. In this section we present the results from some sample
calculations on the Stokes equations with immersed elastic boundaries. We compare
with results obtained using the IBM where the equations (1.1) are discretized directly
using a discrete delta function for the singular forces. This is the method used by Tu
and Peskin [49] and we have attempted to implement the method exactly as described
in that paper.

The main interest in [49] was in studying the issue of explicit versus implicit meth-
ods for moving the interface in the context of a relatively simple test problem. While
their emphasis was not on obtaining optimal accuracy for this particular problem, we
feel that the comparison is appropriate since we hope to extend our method to the
full incompressible Navier–Stokes equations. It is important to verify that at least in
this special case we are able to obtain better results than the existing IBM.
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FIG. 1. The interface at different states: the initial interface is the solid ellipse with a =
0.75, b = 0.5. The equilibrium position is the dashed circle with re =

√
ab ≈ 0.6123 · · ·. The resting

circle, shown as a dash–dot line, has radius r0 = 0.5.
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FIG. 2. (a) The x component of velocity u in the Stokes flow at t = 0. It is continuous but
not smooth across the interface. (b) The computed pressure distribution of the Stokes flow at t = 0.
The pressure is discontinuous.

Example 9.1. This example is taken from Tu and Peskin [49]. The initial interface
(the solid line in Fig. 1) is an ellipse with major and minor axes a = 0.75, b = 0.5,
respectively. The unstretched interface (the dash–dot line in Fig. 1) is a circle with
radius r0 = 0.5. Due to the restoring force, the ellipse will converge to an equilibrium
circle (the dashed line in Fig. 1) with radius re =

√
ab ≈ 0.61237; this is larger than

the unstretched interface because of the incompressibility of the enclosed fluid. So the
interface is still stretched at the equilibrium state, and the nonzero boundary force is
balanced by a nonzero jump in the pressure (Fig. 2(b)).

We begin by computing the velocities and pressure at time t = 0 based on the
initial elliptical interface, before the interface has moved at all. Figure 2 shows u and
p over the uniform grid. As expected, p is discontinuous across the interface while
u is continuous but not smooth. Figure 3 shows this more clearly, displaying cross
sections of u and p along the line y = −0.4. In Fig. 3(b) we see that the discontinuity
in pressure is captured very sharply by the immersed interface approach.
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FIG. 3. (a) A slice of u, the x component of velocity in the Stokes flow at t = 0 and y = −0.4.
It is continuous, but ux should be discontinuous across the interface. Solid line: IIM results; dot–
dashed line: IBM results. (b) A slice of pressure at t = 0 and y = 0. The points and solid line both
show the computed results with the IIM at the grid points. (Pressure is not available with the IBM.)
Note that the large jump in pressure across the interface is computed with no smearing.

TABLE 1
The errors in the computed p, u, and v at t = 0 using the IIM method via three Poisson

equations. Second-order accuracy can be observed.

N ‖pN − p320‖∞ ratio ‖uN − u320‖∞ ratio ‖vN − v320‖∞ ratio
40 1.9730 × 10−2 2.6739 × 10−3 5.0411 × 10−3

80 1.5416 × 10−3 12.7986 6.3611 × 10−4 4.2035 5.5415 × 10−4 9.0969
160 2.6087 × 10−4 5.9094 1.1161 × 10−4 5.6996 1.0713 × 10−4 5.1729

In Fig. 3(a) we have also plotted the cross section of the velocity u that was
computed using our implementation of the IBM on the same grid. This gives a
similar result except near the interface, where it is quite smeared out with the sharp
peak in velocity being lost. Since it is the velocity right at the interface that is
used to move the interface, this can be expected to have a substantial impact on the
overall performance of the algorithm. (We cannot directly compare the accuracy of
the pressure from the two algorithms, since this is not available from the method of
Tu and Peskin.)

Table 1 shows the results of a grid refinement study on the IIM where the values
on three different N × N grids with N = 40, 80, 160 are compared with a fine grid
solution with N = 320. The errors in p, u, and v are measured in the max-norm over
all N2 grid points and displayed along with the ratios of successive errors. Since we
are comparing with a computed solution on a grid that is not very much finer, we
do not expect the standard error ratios of two for a first-order method or four for a
second-order method. In particular, when going from N = 80 to N = 160 we expect
a qth-order accurate method to produce a ratio

‖p80 − p320‖
‖p160 − p320‖ ≈ C(1/80)q − C(1/320)q

C(1/160)q − C(1/320)q
=

4q − 1
2q − 1

rather than the ratio 2q. For q = 1 this ratio is three while for q = 2 it is five. Table 1
shows the final ratio to be between five and six for all three variables, indicating
second-order accuracy.
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TABLE 2
The errors in the computed u and v at t = 0 using the IBM. First-order accuracy can be observed.

N ‖uN − u320‖∞ ratio ‖vN − v320‖∞ ratio
40 1.0170 × 10−2 5.0540 × 10−3

80 4.4694 × 10−3 2.2755 2.0512 × 10−3 2.4639
160 1.5012 × 10−3 2.9773 7.4032 × 10−4 2.7707
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FIG. 4. Plot of rmax (upper curve) and rmin (lower curve) showing the distance from the
origin to the interface as a function of time t on a 160 × 160 grid with Nb = 160 on the boundary.
Solid line: IIM results. Dotted line: IBM results. (a) To plotting accuracy the behavior is identical
over the time period 0 ≤ t ≤ 150, during which convergence to a near-circle is apparent. (b) Over
a longer time scale, it is seen that the IBM suffers leaking and the circle shrinks. Here the vertical
scale is also expanded, showing that the numerical equilibrium is not exactly circular in either case.

Table 2 shows results for the IBM, for the velocity components only. Now the
final ratios are roughly three, indicating the expected first-order accuracy.

We now consider the error at later times, after the interface has moved. Com-
paring the solution at all the uniform grid points is difficult, since the interface may
lie to one side of a given point in one calculation but slightly to the other side in a
different calculation. Instead we will focus on the interface location as a measure of
the accuracy, which is appropriate since this is often what we are most interested in.

One simple and effective measure is to study the values rmin and rmax, defined
as

rn
min = min

1≤k≤Nb

√
(Xn

k )2 + (Y n
k )2, rn

max = max
1≤k≤Nb

√
(Xn

k )2 + (Y n
k )2.

These measure the smallest and greatest distances from the origin to the interface.
Note that since we expect the interface to converge to a circle centered at the origin
(by symmetry and the positioning of the original ellipse), we expect that rn

min → re

and rn
max → re as n → ∞.

Figure 4(a) shows how rmin and rmax behave computationally over a short time
scale. The solid line is from our IIM with N = Nb = 160 and the dotted line is using
the IBM on the same grid. To plot resolution these are indistinguishable on this
scale. Figure 4(b) shows what happens over a longer time scale, blown up near the
true equilibrium position re ≈ 0.61237. With our method, a numerical equilibrium
is reached that agrees well with the true equilibrium, and this equilibrium is then
maintained. At t = 2000 we have rmin ≈ 0.61232 and rmax ≈ 0.61248 and this is
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FIG. 5. Grid refinement studies of the error in rmax on a log–log scale. The solid line and the
stars (∗): IIM results. The dash–dot line and “o”: IBM results. (a) At t = 0.01. (b) At t = 1.

maintained at later times. With the IBM, some leaking is apparent which causes the
circle to shrink. This continues over longer times as well. At t = 20000 the circle has
shrunk to a radius r ≈ 0.57 (not shown) and it still appears to be shrinking linearly
with time. This problem is also mentioned by Tu and Peskin [49]. Peskin and Printz
[41] have suggested a modification to fix the leaking problem, but we have not tried
to implement this modification.

We can compare the accuracy over shorter times by again comparing the com-
puted solutions with a fine grid solution. The results for rmax are shown in Fig. 5 at
two different times, t = 0.1 and t = 1.0. At the earlier time we see a clear improve-
ment with our method. At the later time our method still gives smoothly decreasing
errors with a good rate. The IBM gives more chaotic results which look better on
coarser grids but poorer on fine grids. (The results seen are quite sensitive to the
particular time chosen.)

Above we have considered the errors in rmax. We could also look at some norm
of the error along the entire interface, for example, the 2-norm. Let us take N∗ = N∗

b

as the finest grid. For the coarser grid with N × N , we take Nb = N∗/l, where
l = int(N∗/N). In this way we are guaranteed that each control point (x(N)

i , y
(N)
i ),

i = 1, 2, . . . , Nb on the interface is also a control point for the finest grid N∗ × N∗

and N∗
b . Then it is possible to compute the error

eN =
1

Nb

√√√√ Nb∑
i=1

(
x

(N)
i − x

(N∗)
i∗l

)2
+
(
y
(N)
i − y

(N∗)
i∗l

)2
.(9.23)

Our test results show that the error defined above is indeed a monotone decreasing
function as N increases. In Fig. 6, we plot the global error at t = 1 with the finest grid
being N∗ = 320, and N and Nb being the pairs of (40, 40), (50, 40), (60, 40), (70, 40),
(80, 80), (90, 80), . . . , (150, 80), (160, 160). Note that the number of control points
Nb does not decrease smoothly with N . We do this so that Nb always divides 320,
allowing direct comparison at control points with the fine grid solution, as required
in (9.23).
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FIG. 6. The error in the interface location at t = 1 as measured in the norm (9.23). Solid line
and the star (∗): IIM results. Dash–dot line and the “o’s”: IBM results.

Figure 6 shows that our method converges with a smaller error and a faster
convergence rate than the IBM. (Again the slope is greater than we would expect if
we had the exact solution to compare with rather than a fine grid solution.)

Another interesting phenomenon we can observe from Fig. 6 is that the number of
control points Nb on the interface plays an important role in the IBM. When we refine
the uniform grid but keep the number of control points Nb on the interface fixed, the
errors obtained with their approach gradually cease to decline even as we refine the
grid because the error in expressing the interface will dominate. Then a refinement of
the interface grid will lead to a relatively large fall in the error as we can see in Fig. 6.
There is a sharp drop in the error with the IBM when Nb changes from 40 to 80 and
from 80 to 160. As expected, we must refine the grid for the domain and the interface
simultaneously with this approach. In our approach, as we mentioned in section 2, we
can take fewer control points on the interface with little effect on the accuracy with
our method, as we can see from Fig. 6, where we have the same sequence of grids.
The jumps in the error when Nb is increased are much less pronounced.

Example 9.2. We now change the example slightly and perturb a circular interface
that is initially the resting circle, with re = r0. There is still a restoring force that
should bring the interface back to a circular shape, but this force now vanishes as the
equilibrium (= resting) state is reached. Asymptotically there is no force exerted by
the interface and no jump in pressure. With both methods, the interface will stop
moving before an exact circle is reached, once the error in the discretization dominates
the force. The deviation from circularity of the final numerical equilibrium gives an
indication of the accuracy of the method. In Fig. 7 we have again plotted rmin and
rmax, the minimum and maximum distances from the origin to the interface, for both
methods on a sequence of grids. It is clear that our method is more accurate and
it has been confirmed that rmax − rmin = O(h2) for large t, whereas with the IBM,
rmax − rmin = O(h) asymptotically.
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FIG. 7. Plots of rmax (upper curves) and rmin (lower curves) for the case when the equilibrium
state is the same as the resting circle, r0 = re. Solid line, dash–dot line, and dotted line are the
results obtained with 160 × 160, 80 × 80, and 40 × 40 grids, respectively. (a) IIM results. (b) IBM
results.
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interface with r = 0.3. (IIM results only.)

Example 9.3. This example shows that we can handle more complicated regions.
The initial interface in polar coordinates is ρ = 0.6 + 0.3 sin 8θ. The unstretched
interface is the circle with the radius r0 = 0.3. We present results only for N = 160
and Nb = 160. The problem is very stiff and we need to take a fairly small time step
even with the implicit method. We started with ∆t = O(h2) but could increase the
time step at later times. A comparison with the IBM reveals a similar behavior as in
Example 9.1. We will not give detailed numerical results but instead present only the
location of the interface at several times in Fig. 8.
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10. Multifluid flows and surface tension. The method developed in the
previous section can be easily adapted for the interface between two different fluids,
with surface tension providing the singular force rather than an elastic membrane.
Here we also allow the viscosity µ to be discontinuous.

The force strength ~f(s, t) is now given by

~f(s, t) = γ
∂2

∂s2
~X(s, t),(10.24)

where the constant γ depends on physical properties of the two fluids, and s is arc-
length along the interface. The vector ∂2 ~X/∂s2 is normal to the interface with mag-
nitude equal to the curvature.

The main new feature that we need to include is the effect of gravity, which is
important in most applications since the two fluids may have different densities. If
gravity is directed in the negative y direction, we need only modify (1.1b) to read

py = µ(vxx + vyy) + F2 − gρ,(10.25)

where g is the gravitational constant and ρ is the density, which we assume has the
constant value ρ1 in one fluid and ρ2 in the other. The Poisson problem for p then
becomes (

1
µ

px

)
x

+
(

1
µ

py

)
y

= ∇ ·
(

1
µ

~F

)
− ρgy.

Since ρ is piecewise constant, the term gρy gives only an additional delta function
source along the interface, which contributes to the jump in the normal derivative pn

across the interface. In fact this is the only contribution to this jump, since the force
(10.24) is normal to the interface and so f̂2(s, t) = 0 in (3.12). So we have[

1
µ

pn

]
=

1
2

(
1

µ+ +
1

µ−

)
g[ρ] sin θ,

where the sin θ term arises from the fact that the delta function source is directed
vertically, and hence at angle θ to the interface. The jump conditions for p, un,
and vn are still given by (3.12) with f̂1 = f and f̂2 = 0. Note that the velocity
is now continuously differentiable across the interface, simplifying the procedure for
interpolation to the interface that was presented in section 6.

Even if ρ1 = ρ2, the addition of gravity will induce a hydrostatic pressure gradient
that is linear in y. This means that periodic boundary conditions are no longer
reasonable. However, if we are computing on the rectangle Ω = [a, b]×[c, d] and we set

ρ0 =
1

(b − a)(d − c)

∫ ∫
Ω

ρ(x, y) dx dy,

then we can write p as

p(x, y, t) = gρ0(d − y) + p̃(x, y, t),

where p̃ is the deviation from the linear profile obtained from the average density ρ0.
If the boundaries are well away from the interface, then we expect p̃ to be roughly
constant along the entire boundary of ∂Ω, so the periodic boundary conditions are
physically reasonable.
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FIG. 9. Bubble computations with different values of the surface tension parameter γ. In these
computations ρ = 2 outside and ρ = 1 inside the bubble and µ = 1 everywhere. The computations
are on a 160 × 160 grid with Nb = 80 points on the boundary. The computation with no surface
tension (γ = 0) breaks down before t = 2 when the bubble splits into pieces.

In terms of the pressure deviation p̃, (10.25) becomes

p̃y = µ(vxx + vyy) + F2 − g(ρ − ρ0).

Example 10.1. We consider a rising bubble of fluid with density ρ1 = 1 inside
the bubble and density ρ2 = 2 outside. We take the same viscosity in both fluids,
µ1 = µ2 = 1, though this is not necessary (see Example 10.2 below). Figure 9
shows experiments with four different values of the surface tension coefficient γ =
10, 1, 0.5, and 0. In each case the bubble was initialized to an elliptical shape,
X = 0.5 cos(θ), Y = 0.3 sin(θ) − 2.2.

When γ is large, the surface tension is sufficiently strong to bring the bubble
back to a nearly circular shape even as it rises. For smaller values of γ, the bubble is
distorted. For sufficiently small values, the bubble would eventually split into pieces.
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FIG. 10. Bubble computations with discontinuous viscosity. On the left µ = 2 outside and µ = 1
inside. On the right, µ = 1 everywhere. The surface tension parameter γ = 1 in both cases.

Our current code cannot handle this change in topology. (See, e.g., [47] for such a
calculation.)

This behavior agrees qualitatively with the known behavior of axisymmetric three-
dimensional bubbles, the case most frequently treated in the literature. (See, e.g.,
[3, 10, 46].) Our computations, however, are purely two-dimensional, which corre-
sponds to the cross section of a cylindrical bubble in three dimensions. The additional
curvature effects in the more realistic axisymmetric case are known to have an effect
on the shape of bubbles (e.g., [35]) and so a direct comparison is not possible.

We also note that if we start with a circular bubble rather than an ellipse, the
bubble remains circular (to reasonable accuracy) for all values of γ. This also agrees
with expected behavior [10].

Example 10.2. The next example shows that discontinuities in viscosity µ can
also be incorporated. In this case the Poisson problems to be solved for the velocities
u and v have discontinuous coefficients and are solved using the techniques of [22].
The velocities are continuous but now have jumps in their normal derivatives arising
from the jump conditions

[µun] = [µvn] = 0.

Figure 10 shows the results with µ = 2 outside and µ = 1 inside, and, for com-
parison, also the computation with µ = 1 everywhere. As expected, the bubble moves
more slowly in the more viscous fluid. In this example we have also changed the
boundary condition relative to the previous example, and impose u = v = 0 at the
top and bottom, due to limitations in our current code for the discontinuous coeffi-
cient Poisson problem. This explains why the bubble with µ = 1 everywhere rises
more slowly than the corresponding bubble in Fig. 9.

These examples demonstrate that our technique is capable of dealing with discon-
tinuities in density and viscosity as well as singular forces at the interface. The ability
to handle discontinuous coefficients as well as singular forces is another advantage
of our approach over the standard IBM, with which the discontinuities are typically
smeared over some region of width O(h), e.g., [47], [51].
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11. Extensions. Although we have presented our method in the context of two-
dimensional flows, the ideas extend quite simply to three space dimensions. The im-
mersed interface Poisson solver for three-dimensional problems is described by Li [27],
[25] and can be used directly. The main difficulty is in representing the interface, which
is now a surface, by a finite set of control points. Various techniques are currently
under consideration and we hope to develop a three-dimensional code in the future.

The special case of axisymmetric flow can be solved as a two-dimensional problem,
if the Laplacian operator is suitably modified. In (r, y) coordinates, the Laplacian is
∇2 = ∂rr + 1

r ∂r + ∂yy and this must be used in each of the three Poisson problems
solved with our approach. The jump conditions must also be modified to incorporate
the three-dimensional curvature effects.

As noted in the introduction, decoupling the problem into three Poisson problems
depends on the fact that periodic boundary conditions are used. With other boundary
conditions, e.g., no-slip conditions at solid walls, we would know u and v but not p
along the boundary, and hence would not have a boundary condition for the Poisson
problem for pressure. If arbitrary boundary conditions are specified for p and the
three Poisson problems solved as described above, then the divergence will satisfy
Laplace’s equation

∇2(ux + vy) = 0,

but this guarantees that ux + vy ≡ 0 only if we also impose the boundary condition
ux + vy = 0 along the boundary. This is the correct additional boundary condition
which must be used to uniquely define the pressure. This creates a troublesome
coupling between the Poisson problems.

One possibility is to introduce the values of p along the boundary as another set of
unknowns, with a discrete form of the divergence boundary condition as another set of
equations to be solved via the quasi-Newton procedure along with the new locations
of the control points. This would give a much larger nonlinear system. Another
possibility is to revert to solving the coupled system of equations (1.1) directly as
done by Tu and Peskin. Results reported in [25] indicate that other aspects of the
immersed interface method presented here can be carried over directly to solving the
coupled system.

In this paper we have considered only Stokes flow in the zero Reynolds number
limit of creeping flow, where the inertial time derivatives of the velocity can be ne-
glected. We are currently working on a version that includes these inertial terms in the
momentum equations (1.1a) and (1.1b). The techniques presented here can be used
to compute the time derivative of the velocities at both time tn and tn+1, and then
a Crank–Nicolson time differencing can be used to achieve a second-order accurate
method in time. Again the quasi-Newton method can be used to solve for the new
interface location as part of this updating process. The primary new difficulty arises
from the fact that the time derivative will not be smooth in time at any Cartesian
grid point crossed by the interface during the time step. This can be accounted for
by including additional terms in the Crank–Nicolson algorithm to correct for these
jumps. Such techniques have been successfully used for one-dimensional problems
in [7], [26] and should carry over to multidimensional problems. This work will be
reported on elsewhere.

12. Appendix. Derivation of jump conditions. Here we present a brief
derivation of the jump conditions (3.12). We let δ(~x) be the two-dimensional delta
function as defined in (1.3) and (1.4), and let φ(x, y) be an arbitrary twice continuously
differentiable test function defined on an appropriate region Ω.
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FIG. 11. Diagram used for the derivation of jump relations.

For a vector function ~G = [G1(x, y), G2(x, y) ]T , by using Green’s integral theo-
rem, we know that∫ ∫

Ω
(∇ · ~G) φ dx dy =

∫
∂Ω

( ~G · ~n) φ ds −
∫ ∫

Ω

~G · ∇φ dx dy.

We can use this to generalize the one-dimensional result∫
δ′(x − α)φ(x) dx = −φ′(α)

to two dimensions, where ∇ · ~F now behaves like the derivative of a delta function in
the direction normal to the interface. Multiplying by φ and integrating gives∫ ∫

Ω
(∇ · ~F ) φ(x, y) dx dy =

∫ ∫
Ω

{∫
Γ

∇ · ~f(s, t) δ
(
~x − ~X(s, t)

)
ds

}
φ(x, y) dxdy

= −
∫

Γ

(
f1(s, t)

∂φ

∂x
(X(s), Y (s)) + f2(s, t)

∂φ

∂y
(X(s), Y (s))

)
ds.(12.26)

Referring to Fig. 11, we take a belt domain Ωε which encloses the interface Γ.
Let Γ+

ε and Γ−
ε be the outer and inner boundary of Ωε, respectively. Here ε is some

measure of the distance from Γ to Γ+ and Γ−.
From the Poisson equation (1.2) for pressure we have∫ ∫

Ωε

(∇2p) φ dx dy =
∫ ∫

Ωε

φ ∇ · ~F dx dy

= −
∫

Γ

(
f1

∂φ

∂x
+ f2

∂φ

∂y

)
ds.(12.27)

Referring to Fig. 11, let us handle the left-hand side of (12.27) first by using Green’s
theorem repeatedly:∫ ∫

Ωε

(∇2p) φ dx dy =
∫

Γ+
ε

(∇p+ · ~n)φ ds +
∫

Γ−
ε

(∇p− · (−~n))φ ds −
∫ ∫

Ωε

∇p · ∇φ dx dy

=
∫

Γ+
ε

p+
n φ ds −

∫
Γ−

ε

p−
n φ ds −

∫
Γ+

ε

(∇φ · ~n) p+ ds

−
∫

Γ−
ε

(∇φ · (−~n)) p− ds +
∫ ∫

Ωε

p (∇2φ) dx dy,
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where the superscripts + and − indicate the values taken from outside and inside of
the interface Γ, respectively. Notice that φ is twice continuously differentiable and p
is bounded and discontinuous only along the interface. So as ε approaches zero, we
have ∫ ∫

Ωε

p (∇2φ) dx dy −→ 0 as ε → 0,∫ ∫
Ωε

(∇2p) φ dx dy −→
∫

Γ
[pn] φ ds −

∫
Γ
[p] φn ds as ε → 0.(12.28)

To deal with the right-hand side of (12.27), we express ∂φ/∂x and ∂φ/∂y in terms of
normal and tangential derivatives along the interface

φn = ∇φ · ~n =
∂φ

∂x
cos θ +

∂φ

∂y
sin θ,(12.29)

φs = ∇φ · ~τ = −∂φ

∂x
sin θ +

∂φ

∂y
cos θ.(12.30)

After solving the linear equations above for ∂φ/∂x and ∂φ/∂y, we get

∂φ

∂x
= φn cos θ − φs sin θ,(12.31)

∂φ

∂y
= φn sin θ + φs cos θ.(12.32)

Using these two equations in (12.27) and collecting terms, we have∫
Γ

(
f1

∂φ

∂x
+ f2

∂φ

∂y

)
ds =

∫
Γ

(
(f1 cos θ + f2 sin θ)

∂φ

∂n
+ (f2 cos θ − f1 sin θ)

∂φ

∂s

)
ds

=
∫

Γ

(
f̂1φn + f̂2φs

)
ds.

Integrating by parts in the second term and noting that Γ is closed, we may rewrite
the equation above as∫

Γ

(
f1

∂φ

∂x
+ f2

∂φ

∂y

)
ds =

∫
Γ

(
f̂1φn − ∂f̂2

∂s
φ

)
ds.

Comparing this with (12.28) and using the fact that φ is arbitrary, we must have

[p] = f̂1,

[pn] =
∂f̂2

∂s
.

To get the jump for un, we multiply by φ(x, y) on both sides of (1.1a) and integrate∫ ∫
Ωε

µ(∇2u) φ dx dy −
∫ ∫

Ωε

px φ dx dy = −
∫

Γ
f1(s)φ ds.(12.33)

The first term of the left-hand side of (12.33) is∫ ∫
Ωε

µ(∇2u) φ dx dy =
∫

Γ+
ε

µ+u+
n φ ds −

∫
Γ−

ε

µ−u−
n φ ds −

∫ ∫
Ωε

µ (∇u · ∇φ) dx dy

−→
∫

Γ
[µun] φ ds, as ε → 0.(12.34)
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The second term of the left-hand side of (12.33) is∫ ∫
Ωε

px φ dx dy =
∫ ∫

Ωε

φ ∇ ·
[

p
0

]
dx dy

=
∫

Γ+
ε

φ
(
[p+, 0]T · ~n) ds −

∫
Γ−

ε

φ
(
[p−, 0]T · ~n) ds

−
∫ ∫

Ωε

[
∂φ

∂x
,

∂φ

∂y

]T

·
[

p
0

]
dx dy

−→
∫

Γ
φ [p] cos θ ds, as ε → 0,(12.35)

where ~n = [ cos θ, sin θ ]T . Since φ is arbitrary, from (3.11) and (12.35), we must have

[µun] = [p] cos θ − f1

= cos θ (f1 cos θ + f2 sin θ) − f1

= sin θ (−f1 sin θ + f2 cos θ)

= f̂2 sin θ.

Similarly, for v we can get

[µvn] = [p] sin θ − f2

= cos θ (f1 sin θ − f2 cos θ)

= −f̂2 cos θ.

This completes the derivation of (3.12).
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