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1 Introduction

Appreciation for the danger of tsunamis among
the general public has soared since the Indian
Ocean tsunami of 26 December 2004 killed more
than 200,000 people. Several other large tsunamis
have occurred since then, including the devastat-
ing 11 March 2011 Great Tohoku tsunami gen-
erated off the coast of Japan. The international
community of tsunami scientists has also grown
considerably since 2004 and an increasing num-
ber of applied mathematicians have contributed
to the development of better models and compu-
tational tools for the study of tsunamis. In ad-
dition to its importance in scientific studies and
public safety, tsunami modeling also provides an
excellent case study to illustrate a variety of tech-
niques from applied and computational mathe-
matics. This article combines a brief overview
of tsunami science and hazard mitigation with
descriptions of some of these mathematical tech-
niques, including an indication of some challeng-
ing problems of ongoing research.

The term “tsunami” is generally used to re-
fer to any large scale anomolous motion of water
that propagates as a wave in a sizable body of wa-
ter. Tsunamis differ from familiar surface waves
in several ways. Typically the fluid motion is not
confined to a thin layer of water near the surface
as it is in wind-generated waves. Also the wave-
length of the waves is much longer, sometimes
hundreds of kilometers. This is orders of magni-
tude larger than the depth of the ocean (which is
about 4 km on average) and so tsunamis are also
sometimes referred to as “long waves” in the sci-
entific literature. In the past, tsunamis were often
called “tidal waves” in English because they share
some characteristics with tides, which are the vis-
ible effect of very long waves propagating around
the earth. However, tsunamis have nothing to do
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with the gravitational (tidal) forcing that drives
the tides, and so this term is misleading and is
no longer used. The Japanese word “tsunami”
means “harbor wave”, apparently because sailors
would sometimes return home to find their har-
bor destroyed by mysterious waves they did not
observe while at sea. Strong currents and vor-
tices in harbors often cause extensive damage to
ships and infrastructure even when there is no
onshore inundation. Although the worst effects
of a tsunami are often observed in harbors, the
effects can be devastating in any coastal region.
Because tsunamis have such a long wavelength,
they frequently appear onshore as a flood that
can continue flowing inward for tens of minutes
or even hours before flowing back out. The flow
velocities can also be quite large, with the con-
sequence that even a tsunami wave with an am-
plitude of less than 1 meter can sweep people off
their feet and do considerable damage to struc-
tures. Tsunamis arising from large earthquakes
often result in flow depths greater than 1 meter,
particularly along the coast closest to the earth-
quake, where runup can reach 10s of meters.

Tsunamis are generated whenever a large mass
of water is rapidly displaced, either by the mo-
tion of the seafloor due to an earthquake or sub-
marine landslide, or when a solid mass enters
the water from a landslide, volcanic flow, or as-
teroid impact. The largest tsunamis in recent
history, such as the 2004 or 2011 events men-
tioned above, were all generated by megathrust
subduction zone earthquakes at the boundary of
oceanic and continental plates. Offshore from
many continents there is a subduction zone where
plates are converging. The denser material in the
oceanic plate subducts beneath the lighter conti-
nental crust. Rather than sliding smoothly, stress
builds up at the interface and is periodically re-
leased when one plate suddenly slips several me-
ters past the other, causing an earthquake during
which the seafloor is lifted up in some regions and
depressed in others. All of the water above the
seafloor is lifted or falls along with it, creating
a disturbance on the sea surface that propagates
away in the form of waves. See Figure 1 for an il-
lustration of tsunami generation and Figure 2 for
a numerical simulation of waves generated by the
2011 Tohoku earthquake off the coast of Japan.



This article primarily concerns tsunamis caused
by subduction zone earthquakes since they are a
major concern in risk management and have been
widely studied.

2 Mathematical models and
equations of motion

Tsunamis are modeled by solving systems of par-
tial differential equations (PDEs) arising from
the theory of fluid dynamics. The motion of
water can be very well modeled by the Navier-
Stokes equations for an incompressible viscous
fluid. However, these are rarely used directly
in tsunami modeling since they would have to
be solved in a time-varying three-dimensional do-
main, bounded by a free surface at the top and by
moving boundaries at the edges of the ocean as
the wave inundates or retreats at the shoreline.
Fortunately, for most tsunamis it is possible to
use “depth-averaged” systems of PDEs, obtained
by integrating in the vertical z direction to obtain
equations in two space dimensions (plus time).
In these formulations, the depth of the fluid at
each point is modeled by a function h(z,y,t) that
varies with location and time. The velocity of
the fluid is described by two functions u(x,y,t)
and v(z,y,t) that represent depth averaged val-
ues of the velocity in the z- and y-directions re-
spectively. In addition to a reduction from three
to two space dimensions, this eliminates the free
surface boundary in z; the location of the sea sur-
face is now determined directly from the depth
h(z,y,t). These equations are solved in a time-
varying two-dimensional (z,y) domain since the
moving boundaries at the shoreline must still be
dealt with.

A variety of depth-averaged equations can be
derived, depending on the assumptions made
about the flow. For large-scale tsunamis, the so-
called “shallow water” equations (also called the
St. Venant or long-wave equations) are frequently
used and have been shown to be very accurate.
The assumption with these equations is that the
fluid depth is sufficiently shallow relative to the
wavelength of the wave being studied. This is
generally true for tsunamis generated by earth-
quakes, where the wavelength is typically 10-100
times greater than the ocean depth.

The two-dimensional shallow water equations
have the form

he + (hu)z + (hv)y =0,
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where subscripts denote partial derivatives, e.g.
hy = Oh/0t. In addition to the variables h, u, v
already introduced, which are each functions
of (x,y,t), these equations involve the gravita-
tional force g and the topography or seafloor
bathymetry (underwater topography) denoted by
B(z,y). Typically B = 0 represents sea level
while B > 0 is onshore topography and B < 0
represents seafloor bathymetry. Water is present
wherever h > 0 and n(z,y,t) = h(z,y,t)+B(z,y)
is the elevation of the water surface. See Fig-
ure 3 for a diagram in one space dimension. Dur-
ing an earthquake B should also be a function
of ¢ in the region where the seafloor is deform-
ing. In practice it is often sufficient to include
this deformation in B(z,y) while the initial con-
ditions for the depth h(z,y,0) are based on the
undeformed topography. The seafloor deforma-
tion then appears instantaneously in the initial
surface n(x,y,0), which initializes the tsunami.
In the remainder of this article, the term topog-
raphy will be used for both B > 0 and B < 0 for
simplicity.

If B(x,y) < 0 is constant (a flat bottom) then
the “source terms” on the right hand side of these
equations drop out and the equations model the
conservation of mass (h) and momentum (hu, hv).
Over a varying bottom, mass is still conserved but
momentum is affected by the terrain, as seen for
example in the reflection of waves at a shoreline
and partial reflection when a wave interacts with
underwater features. The term % gh? appearing in
the momentum equations is the depth averaged
“hydrostatic pressure” in a column of water of
depth h. (This and all other terms in (1) should
in fact also involve the fluid density p, but this
cancels out everywhere if the density is assumed
to be constant.)

The equations (1) are a nonlinear system of
equations of hyperbolic type. Hyperbolic PDEs
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Figure 1: Illustration of the generation of a tsunami by a subduction zone earthquake.

frequently arise when waves are modeled math-
ematically, as described in [article on hyperbolic
PDEs]. The amplitude of a tsunami in the deep
ocean is generally very small relative to the water
depth; typically less than a meter even for a large
megathrust tsunami. Away from the coast these
equations could be approximated by linearized
equations with variable coefficients arising from
the varying topography. Near shore, however,
the amplitude of the wave is large relative to the
depth of the fluid and the full nonlinear equations
must be used to accurately model the interaction
of a tsunami with the nearshore topography and
the onshore inundation that occurs. Solutions to
nonlinear hyperbolic PDEs can become discon-
tinuous if a shock develops. In the case of the
shallow water equations, a shock is also called a
“hydraulic jump” and is a mathematical ideal-
ization of a thin region in which the depth and
velocity of the fluid jumps from one value to an-
other. Such regions frequently appear as a tur-
bulent wave front (sometimes called a “turbulent
bore”) once the tsunami moves into sufficiently
shallow water. The shallow water equations do
not model this turbulent zone directly, but are
frequently adequate to capture important quan-
tities such as the depth and fluid velocities behind
the bore and its propagation speed.

3 Uses of tsunami modeling

The PDEs describing a tsunami cannot be solved
exactly, in general, and so numerical methods

must be used to simulate the propagation and
inundation of a tsunami. A brief description of
how this might be done and some of the chal-
lenges that arise is given in Section 4, but first
we motivate the need for numerical models by
describing some common uses of such models.

3.1 Real-time warning systems

One natural use of a numerical model is to assist
in issuing warnings in real time as a tsunami prop-
agates across the ocean, and to determine what
coastal regions should be evacuated. There are
many challenges to doing this quickly and accu-
rately. Accurate assessment is critical not only to
insure that areas at risk are properly warned but
also to avoid triggering evacuation in areas where
it is not necessary, which can itself cause loss of
life, serious financial impact, and decreased atten-
tion to future warnings. For a subduction zone
megathrust earthquake it is often impossible to
issue tsunami warnings quickly enough for areas
along the nearby coastline. The tsunami may ar-
rive in less than an hour, often sooner, and it
is critical that residents understand the need to
move to high ground when a major earthquake
occurs. On the other hand, across the ocean the
earthquake itself is not felt and so provides no
direct indication of an impending tsunami, but
there are several hours available to perform sim-
ulations and issue warnings.
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Figure 2: Propagation of the tsunami arising from the 11 March 2011 Tohoku earthquake off the coast of Japan
at four different times from 20 minutes to 2 hours after the earthquake. Waves propagate away from the source

region with a velocity that varies with the local depth of the ocean. Contour lines show sea surface elevation

above sea level, in increments of 20 cm (top, at early times) and 10 cm (bottom, at later times). There is a

wave trough behind the leading wave peak shown here, but for clarity the contours of elevation below sea level

are not shown.

3.2 Tsunami source inversion

To perform tsunami simulations, it is necessary to
estimate the source, i.e., the deformation of the
sea floor that generates the tsunami, since this
determines the initial conditions that are used
to numerically solve the PDEs modeling tsunami
propagation and inundation. There is generally
no way to measure this directly, and so some
form of inverse problem [pointer to article on in-
verse problems?] must be solved to obtain an

estimate of the deformation based on measure-
ments that can be made, such as the earth mo-
tion due to seismic waves caused by the earth-
quake, or measurements of the tsunami itself. Ini-
tial estimates of the location and magnitude of an
earthquake generally come from analyzing record-
ings of seismic waves, which are compression and
shear waves that travel through the earth with
much higher velocity than tsunamis and that are
routinely recorded at hundreds of seismometers
widely scattered around the world. From the
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Figure 3: Illustration showing the notation used in the shallow water equations (1).

measured wave forms at many locations it is pos-
sible to construct an estimate of how the earth
must have moved to produce this set of data. This
relies ultimately on solving an inverse problem for
the PDEs modeling wave motion in elastic mate-
rials [pointer to article on elasticity? Any article
on seismology?]. Seismic inversions generally es-
timate the slip of the earth along the earthquake
fault, which may be 10s of kilometers below the
sea floor. Converting this slip on the fault plane
to deformation of the sea floor requires solving an-
other elasticity problem, whose solution is often
approximated by the Okada model. This is based
on the Green’s function for the deformation of
the boundary of an elastic half space caused by a
delta function dislocation. Integrating this over
a finite-sized patch of a fault plane gives an esti-
mate of the resulting seafloor displacement.

While the results of seismic inversions are in-
valuable in modeling tsunamis, performing an ac-
curate inversion requires collecting and process-
ing a large amount of data and this may not be
feasible in real time. In order to gather better
information about tsunamis as they propagate, a
number of pressure gauges have recently been de-
ployed on the seafloor that are able to measure
water pressure extremely accurately. From the
hydrostatic pressure it is possible to estimate the
depth of the water at these locations with enough
precision to capture variations due to a tsunami
passing by. Direct measurement of a tsunami at
one or more of these gauges can then be combined
with seismic models identifying the approximate
source location and geophysical knowledge of the
faults that are most likely to produce tsunamis.

This information, together with accurate tsunami
propagation models, can allow the solution of an
inverse problem in order to estimate the seafloor
deformation that caused the tsunami more accu-
rately and quickly than is possible using seismic
information alone.

3.3 Hazard modeling and mitigation

Real-time simulations of tsunamis are used to is-
sue warnings, but tsunami modeling has many on-
going uses beyond this. Protecting communities
requires adequate planning long before a tsunami
takes place, and tsunami models are used to simu-
late the effect of tsunamis arising from hypotheti-
cal earthquake events. The results of such models
can be used to determine what regions of a com-
munity are most at risk and what regions can be
designated as safe zones for evacuation. Model-
ing the arrival time and pattern of the waves can
be used in connection with traffic-flow models of
evacuation. Some communities in tsunami-prone
regions build sea walls or gates that can be closed
for protection against tsunamis, or build “verti-
cal evacuation structures” in regions where there
is no easily accessible high ground for large-scale
evacuation. These structures may take the form
of multi-use buildings built to withstand tsunamis
and tall enough that the upper floors are safe
havens, or may consist of large berms that form
artificial high ground. Designing such structures
requires modeling the flow depth and often also
the fluid velocities of hypothetical tsunamis.

Of course it is impossible to know exactly what
the seafloor deformation will be for future earth-



quakes, but quite a bit is known about the ma-
jor subduction zones and the likely location and
magnitude of large earthquakes based on the ge-
ology and past history. There is always a ques-
tion of how large a tsunami one should design
for. Sometimes an estimate of the “credible worst
case” tsunami for that location is used, but this
may correspond to an event with very low prob-
ability of occurence that would require an enor-
mous expenditure to protect against, money that
might be better spent protecting against more
likely events at additional locations. To bet-
ter understand these tradeoffs, recently there has
been increased interest in probabilistic tsunamsi
hazard assessment (PTHA) in which a set of pos-
sible events are assigned probabilities, or an en-
tire spectrum of possible events is assigned some
probability density function, typically over a very
high-dimensional stochastic space. The goal is
then to obtain from this a probabilistic descrip-
tion of the resulting inundation patterns, flow
depths, velocities, etc. This is a form of uncer-
tainty quantification (UQ), a rapidly growing field
of importance in many fields of computational sci-
ence where simulations are based on many uncer-
tain inputs and the goal is a probabilistic descrip-
tion of the resulting outputs rather than a single
simulation result. Applied mathematicians and
statisticians have a large role to play in the de-
velopment of new techniques to efficiently solve
these problems. [Pointer to article on UQ?]

3.4 The study of past tsunamis and
earthquakes

Another major use of tsunami modeling is the
study of past tsunamis. A wealth of data has
been collected following recent tsunami events by
“tsunami survey teams” that measure inundation
and runup along affected coasts. There is also
data available from seafloor pressure gauges, tide
gauges along the coast, and other data collection
facilities. Models of the seafloor deformation pro-
duced by solving the source inversion problem can
then be used as initial data for tsunami models
and the computed results compared with mea-
surements. Such studies are important in veri-
fying that a tsunami model gives a sufficiently
accurate approximation to a real tsunami that it
can be used with confidence for warning or haz-

ard mitigation purposes. [Pointer to article on
Verification and Validation?] Validated models
are also used in performing tsunami source inver-
sion to estimate the seafloor deformation, and can
give additional insight into the earthquake mech-
anism that is useful to seismologists. Tsunami
models can also help explain unusual features of
past events by providing a laboratory for explor-
ing the fluid dynamics taking place during the
event.

Tsunami models can also help reconstruct
events that happened in the more distant past,
for which there are no pressure gauge or tide
gauge data and perhaps limited historical records
of the regions inundated, or no human records in
the case of prehistoric events or those that oc-
curred on uninhabited coastlines. Luckily, for
many events a geological record of the tsunami
inundation is recorded in the form of tsunami de-
posits. As a tsunami approaches shore it typi-
cally becomes turbulent and picks up sediment
from the seafloor, such as sand and marine micro-
organisms. This material is carried inland during
the flooding stage and typically settles out of the
flow as the flow decelerates and reverses, leaving
behind a layer of deposits, often far inland. In
tsunami-prone areas there are often many layers
of tsunami deposits that have been built up over
thousands of years, separated by layers of soil that
slowly build up between tsunamis. Core samples
or trenches can reveal many past events that can
often be dated using radiocarbon dating of or-
ganic matter or interspersed tephra layers from
known volcanic eruptions. The study of tsunami
deposits is a major source of information about
the magnitude, location, and recurrence times
of past earthquakes. This information is criti-
cal in developing probabilistic models of tsunami
or earthquake hazards, as well as to obtaining a
better scientific understanding of earthquake pro-
cesses. Numerical tsunami models can be used
to help identify the location and magnitude of
seafloor deformation that would lead to the pat-
terns of inundation recorded by tsunami deposits.
Models that include sediment erosion, transport,
and deposition are also being used to better un-
derstand the fluid dynamics of the creation of
tsunami deposits, which ultimately will lead to
more accurate descriptions of the tsunamis that



caused observed deposits.

4 Numerical modeling

Systems of nonlinear PDEs such as the nonlinear
shallow water equations (1) typically cannot be
solved exactly except for very simple cases, for ex-
ample a one-dimensional wave on a linear beach.
Realistic tsunami modeling always relies on nu-
merical solution of the PDEs. This requires dis-
cretizing the equations in some manner: replac-
ing the differential equations describing the con-
tinuum solution (defined for all (z,y,t) in some
domain) by a finite set of discrete algebraic equa-
tions whose solution can be computed in finite
time on a computer. There are many ways to do
this, and general discussions of numerical solu-
tion of differential equations are given in [other
articles??].

Finite difference methods are often used, in
which a discrete grid is introduced consisting of
a finite number of grid points (z;,y;) covering
the domain, and the solution is approximated
only at these points at a discrete set of times
to, t1, to, Derivatives in the PDE are re-
placed by finite difference approximations based
on the approximate solution at neighboring grid
points, obtaining a discrete set of algebraic equa-
tions that can be solved on a computer. An-
other popular approach is to use a finite volume
method, in which the domain is subdivided into
a finite number of grid cells and the approximate
solution consists of average values of the solution
over each grid cell. Integrating the PDEs over a
grid cell gives an expression for the time deriva-
tive of the cell average that can be used to up-
date the cell averages from one time ¢, to the
next time ¢,,+1. To obtain better accuracy, meth-
ods are sometimes used in which the solution on
each grid cell is approximated by a polynomial
rather than by only the cell average (which can
be interpreted as a constant function, or polyno-
mial of degree 0, over each cell). In this case,
the higher order coefficients of each polynomial
must be updated from one timestep to the next.
A method of this type that has recently become
popular for tsunami modeling is the Discontinu-
ous Galerkin method, in which the piecewise poly-
nomial function obtained from the polynomials

defined on each cell is not assumed to be con-
tinuous at the interface between one cell and its
neighbor. The term “Galerkin” refers to a finite
element approach to deriving equations for evolv-
ing the polynomial coefficients in time. [Pointers
to other sections.]

4.1 Nonlinearity and shock formation

A prominent feature of mnonlinear hyperbolic
PDEs is that shocks can form in the solutions,
which are discontinuities in the depth and veloc-
ity that can arise even from smooth initial con-
ditions. [Article on shocks or nonlinear conserva-
tion laws?] As mentioned in Section 2, these cor-
respond to hydraulic jumps or bores that are seen
in tsunamis as they approach the shore. Sharp
discontinuities are only an approximation to the
true behavior, but often give a good approxima-
tion to the flow. Incorporating more accurate
fluid dynamics models would lead to systems of
PDEs that are much more computationally ex-
pensive to solve.

The presence of discontinuities in the solution
can lead to difficulties in solving the PDEs nu-
merically, since derivatives are infinite at a point
of discontinuity, and finite difference approxima-
tions to derivatives generally diverge. This has
lead to the increased popularity of both finite vol-
ume and Discontinuous Galerkin methods, which
are better able to robustly capture discontinuities
in the solution. Methods designed to do this well
are often called shock capturing methods.

4.2 Inundation and the moving
shoreline

Another computational challenge in modeling
tsunamis, or any other geophysical flow over
topography, is the need to handle the moving
boundary of the flow at the shoreline. Many
early tsunami models did not capture this mov-
ing boundary at all. Instead the equations were
solved over a fixed domain defined by the original
shoreline, and some boundary conditions imposed
at this fixed boundary, such as an impermeable
wall. While this cannot be used to model inunda-
tion directly, it could still give some indication of
the tsunami runup based on recording the depth
and velocities along this wall boundary. Other



mathematical or physical models were then used
to estimate inundation from these values.

Most tsunami models developed recently at-
tempt to model inundation directly. For simple
problems it may be possible to use a grid that
moves with time so that one edge of the grid is
always along the shoreline. For realistic prob-
lems this is generally infeasible since the shoreline
can be very complex and can break into pieces
as islands or isolated pools of water form. Most
tsunami models instead use a fixed grid and im-
plement some form of wetting and drying algo-
rithm to keep track of which grid points or cells
are dry (h = 0) and which are wet (h > 0). Stan-
dard approaches to approximating the PDEs typ-
ically break down near the shoreline and a major
challenge in developing tsunami models is to deal
with this case robustly and accurately, particu-
larly since this is often the region of primary in-
terest in terms of the model results.

4.3 Mesh refinement

Another challenge arises from the vast differences
in spatial scale between the ocean over which
a tsunmai propagates and a section of coastline
such as a harbor where the solution is of inter-
est. In the shoreline region it may be necessary
to have a fine grid with perhaps 10 m or less be-
tween grid points in order to resolve the flow at
a scale that is useful. It is clearly impractical
and luckily also unnecessary to resolve the entire
ocean to this resolution. The wave length of a
tsunami is typically more than 100 km, so the
grid point spacing in the ocean can be more like
1-10 km. Moreover we need even less resolution
over most of the ocean, particularly before the
tsunami arrives.

To deal with the variation in spatial scales,
virtually all tsunami codes use unequally spaced
grids, often by starting with a coarse grid over
the ocean and then refining portions of the grid
to higher resolution where needed. Some models
only use static refinement, in which the grid does
not change with time but has finer grids in re-
gions of interest along the coast. Other computer
codes use adaptive mesh refinement, in which the
regions of refinement change with time, for exam-
ple to follow the propagating tsunami with a finer
grid near the wave peak than is used over the rest

of the ocean, and to refine near the coastal region
of interest only when the tsunami is approaching.

A related issue is the choice of time steps for
advancing the solution. Stability conditions gen-
erally require that the time step multiplied by the
maximum wave speed should be no greater than
the width of a grid cell. This is because the ex-
plicit methods that are typically used for solving
hyperbolic PDEs such as the shallow water equa-
tions update the solution in each grid cell based
only on data from the neighboring cells in each
time step. If a wave can propagate more than
one grid cell in a timestep then the method be-
comes unstable. This necessary condition for sta-
bility is called the CFL condition after fundamen-
tal work on the convergence of numerical methods
by Courant, Friedrichs, and Lewy in the 1920s.
[Pointer to other entry?] For the shallow water
equations the wave speed is /gh, which varies
dramatically from the shoreline where h ~ 0 to
the deepest parts of the ocean, where h can reach
10,000 m. Additional difficulties arise in imple-
menting an adaptive mesh refinement algorithm:
if the grid is refined in part of the domain by a
factor of 10, say, in each spatial dimension, then
typically the time step must also be decreased by
the same factor. Hence for every time step on the
coarse grid it is necessary to take 10 time steps on
the finer grid, and information must be exchanged
between the grids to maintain an accurate and
stable solution near the grid interfaces.

4.4 Dispersive terms

In some situations, tsunamis are generated with
short wavelengths that are not sufficiently long
relative to the fluid depth for the shallow wa-
ter equations to be valid. This most frequently
happens with smaller localized sources such as a
submarine landslide rather than large-scale earth-
quakes. In this case it is often still possible
to use depth-averaged two-dimensional equations,
but the equations obtained typically include ad-
ditional terms involving higher order derivatives.
These are generally dispersive terms that can bet-
ter model the observed effect that waves with dif-
ferent wavelength propagate at different speeds.
The introduction of higher order derivatives
typically requires the use of implicit methods to
efficiently solve the equations, since the stability



constraint for an explicit method would generally
require a time step much smaller than desirable.
Implicit methods result in coupled algebraic sys-
tems of equations, often nonlinear, for the solu-
tion at all of the grid points in each time step.

See [1] for a recent survey of tsunami sed-
imentology, and [2] for a general introduction
to probabilistic modeling of tsunamis. Some
detailed descriptions of numerical methods for
tsunami simulation can be found, for example, in
[3, 4, 5, 6, 7, 8. The use of dispersive equations
for modeling submarine landslides is discussed,
for example, in [9].
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