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Finite Volume Methods for Irregular
' One-Dimensional Grids

M. J. BERGER, R. J. LEVEQUE AND L. G. STERN

ABSTRACT. We consider an approach for hyperbolic conservation laws on
irregular grids in which the flux is determined based on an average value of
the approximate solution over an interval of fixed size h to the left and right
of the interface, where h is some measure of the average or maximum grid
spacing. This interval may overlap several grid cells and hence the stencil is
enlarged so that the method remains stable with a time step chosen relative
to .

1. Introduction

We consider finite volume methods for the hyperbolic system of conservation
laws

(1.1) us + f(u)e =0,

in one space dimension on an irregular grid. For simplicity we discuss scalar
equations although the methods generalize easily to systems. Let U be the
finite volume approximation to the cell average

1 Titr/2
Ul = i u(z,t,) dz,

I 172

where h; = ;1172 ~ £;_1/2. The finite volume method takes the form

k
(1.2) urtt=up - P (Fiii2— Filyya)

where k is the time step and F* | /2 is the numerical flux at the grid interface
between cells ¢ — 1 and ¢ (we will often omit the superscript n when it is clear
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from context). The simplest methods such as upwind or Lax-Wendroff are 3-
point methods in which F;_;/5 = F'(U,-_l, U;) for some fixed function F.

Our goal is to develop robust methods that compute smooth and accurate
solutions with reasonable time steps even if the grid is highly nonuniform. This
cannot be achieved with 3-point methods since the CFL condition requires that
k satisfy

(1.3) kmax|f'(v)| < minh;,
U )

and so it is the smallest cell that limits the time step, which may then be unrea-
sonable relative to the majority of cells.

2. The h-box Method

The basic idea of the class of methods we are now studying is to define the
flux F;_;;; based on a standard numerical flux F but applied to modified data
Uil;l/2 and Uile , rather than to the cell values U;_; and U;. The modified data
is obtained by the following steps:

(i) Reconstruct some function #(z) from the cell-average data {U;} (e.g.,
piecewise constant, piecewise linear, or higher order).
(ii) Compute the average of @(x) over virtual cells of fixed length h to the
left and right of the interface z;_,/5:
. 1 [Ti-1zth
(z) de and Ui}zl/2 = E/ d(z) de.
x

i—1/2

Ti—1/2

UL = 1

i—1/2 A oio1ja—h

Note that this is easily done in practice by using an interpolation of the
primitive function W; = 370 _, U h; ~ J3 2 u(z) de.

Here, h is some measure of the average or maximum cell size on the grid. We

refer to the interval [x;_1/2 — h, Z;_1/2] as the h-boz to the left of the interface

i— 1/2. After computing Uf;lm and Uﬁlm, we then set

Fi—1/2 = F(UiL—l/za Uz'}zl/2)

and use the flux-differencing expression (1.2) to update U;. On regular grids,
with h; = h, this is identical to the regular scheme.

Note that each h-box may overlap several grid cells, so that the method is no
longer a 3-point method in general. Because the flux at z;_;/2 is now computed
based on information a distance k away on either side, the CFL condition now
only requires that

(2.1) km1?x|f’(u)| < h,

and the methods are typically stable with this relaxed time step restriction.
Note, however, that we still divide by h; in (1.2), which could be much smaller
than h. Stability is still maintained since for very small cells the h-boxes used
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to compute F;_;/5 and Fj, 1/, overlap nearly completely, so that these fluxes are
nearly equal and in fact Fj41/2 = Fi_172 4+ O(h;) as h; — 0. (See [1].)

Besides increasing the time step, this approach yields much smoother solutions
than other methods on highly nonuniform grids. The use of fixed-size h-boxes
to compute the fluxes introduces a projection onto a uniform grid.

3. Numerical Examples
The upwind method in the case f'(u) > 0 has the flux
FU*,U%) = f(U").
The standard upwind method on a nonuniform grid takes the form

UPH = Ui - 2 (FU) - £(Ui-a)

and is stable only if (1.3) is satisfied. Moreover, a truncation error analysis
shows that this method is formally not even consistent unless the grid is nearly
uniform in the sense that h;/h;_1 = 14+O(h) as h — 0. In fact it can be shown[4]
(see also [3], [5]) that the method is convergent and even first-order accurate in
spite of this, on arbitrary grids, but the error is typically not smooth. Figure
1 shows an example calculation for Burgers’ equation, f(u) = u?/2, with data
u(z,0) = (1 —sin2rz) at time ¢ = 0.2, which gives a smooth solution. The
grid has random cell sizes h; uniformly distributed between h/10 and h, with
h = 1/25. There are 48 grid cells. In Figure 1a, the standard upwind method is
used with time step & = h/10, as required for stability.

Figures 1b and 1c show the result obtained on the same problem when h-boxes
are used to define the values UiL_ 1/2 and then

k
U[f'H =U; — b (f(Uiﬁl/z) - f(UiL—l/2))'

In this case, £ = h is used on the same random grid as before. Figure 1b shows
results when @(x) is taken to be the piecewise constant function with value U; in
the ith cell. Figure lc shows the results obtained if @(z) is the piecewise linear
function

(e) = Ui+ (& — 2:)(Ui — Ui )/ hiyo on cell [2i_1/9, Tiy1/2]-

Here, h;_1/2 = (hi—1 4+ h;)/2 and &; = (2i—1/2 + *it1/2)/2, the cell midpoint.

Figure 1d shows results when the Lax-Wendroff flux is used together with
piecewise linear reconstruction for #(z). The Lax-Wendroff flux for f/'(u) > 0 is
given by

(fUH) - fUH))?
UR - [yL :

Grid refinement studies show that this method is second-order accurate (for

smooth solutions) in &, while all of the previous methods are first-order accurate.

PP, UM = ) + 10 - 5
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FIGURE 1. Results on a random grid for Burgers’ equation with
a smooth solution. (a) The standatd upwind method with & =
h/10. (b) The h-box upwind method with piecewise constant
@(z). (¢) The h-box upwind method with piecewise linear ().
(d) The h-box Lax-Wendroff method with piecewise linear @(z).
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FIGURE 2. Results on a random grid for Burgers’ equation with
a discontinuous solution. (a) The A-box upwind method with
piecewise linear @(z). (b) The A-box high resolution flux limiter
method with piecewise linear @(z).
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4. Extensions

The ideas presented here can be extended to situations where the basic flux
F depends on more than two points, and in particular to flux-limiter methods
for the high-resolution computation of shock waves. This will be presented in
more detail elsewhere. As an example, Figure 2 shows the same techniques as
Figure lc and 1d at time ¢ = 0.8, after a shock has developed.

There remain some problems, particularly when small cells are located near
a transonic rarefaction. Several interfaces may appear to be transonic points
because their h-boxes overlap the transonic region, causing large inaccuracies
and oscillations. This can be corrected by reducing the size of the h-boxes near
transonic points, where the propagation speed is smaller.

Although we consider only one-dimensional grids here, the original motiva-
tion for this problem comes from problems in more than one dimension, where
nonuniform grids arise more commonly. The idea of creating h-boxes that over-
lap several grid cells as a way to compute stable fluxes was introduced by Berger
and LeVeque[l], {2] as a way to deal with small cells created near the boundary
when a Cartesian grid is used on an irregular region. The same idea could be
used at interfaces between different grids with a composite grid method or per-
haps at all cell interfaces on an unstructured grid. A more complete study of
such methods is underway. Even in one space dimension these ideas could find
application in conjunction with moving-mesh or front-tracking algorithms where
nonuniformities in the grid are created.
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