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Abstract

We present a Cartesian mesh algorithm with adap-
tive refinement to compute flows around arbitrary
geometries. Cartesian meshes have been less popuiar
than unstructured or body-fitted meshes because of
several technical difficuities. We present an approach
that resolves many of these problems. Cartesian mesnes
have tne advantage of allowing the use of high resoiution
methods that are difficult to develop on unstructured
grids. They also allow for efficient implementation on
vector computers without using gather-scatter operations
except at boundary cells. Some preliminary computa-
tional results using lower order boundary conditions are
presented.

1. Introduction

The construction or logically rectangular tody-
fitted grids for complicated geometries is notoriousiy
difficult. One alternative is to use an unstructured mesh,
so that the cell volumes are not derived by a smooth

- mapping from a rectangular domain, as in [16] for exam-
ple. Another possibility is 1o simply use a Cartesian grid
over the entire flowfield. This introduces the difficuity
of imposing solid wall boundary conditions on a grid that
is not aligned with the body.

Nonetheless, there are several reasons (o crefer the
Cartesian grid approach, in addition to the ease of ¢rid
generation. First, it allows the use of higher order accu-
rate shock capturing methods that are difficult to achieve
on an unstructured mesh with no coordinate directions.
A Cartesian grid integrator is highly vectorizable.
Gather-scatter type vector operations need o be per-
formed only in a lower dimensional region, and not over
the entire flowfield. The basic solver on a Cartesian
mesh is also simpler than on a body-fitted mesh, since

there are no metric terms. Finally, there is some evi-
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dence {20] that for strong shock calculations an unstruc-
tured mesh has larger phase errors, and thus poorer
shock-capturing abilities, than structured grids.

There are also several difficulties in using Carte-
sian grids. The main difficulty is the small cell problem.
Arbitrarily small cells arise at the edge of the domain
where the grid intersects a body. Stable, accurate and
conservative difference schemes are needed for these
cells. We would like the time step for a time-accuraie
computation to be based on the cell volume of the regu-
lar cells away from the body, and not be restricted by
small cells at the boundary. The time step appropriate for
the regular grid cells can give a Courant number that is
orders of magnitude larger than 1 for the smaller, irregu-
lar cells. This will lead to stability problems with stan-
dard explicit methods. In this work, we use an approach
based on wave propagation that essentially increases the
size of the stencil near these small cells and maintains
stability for arbitrary time steps. This large time step
approach was studied in one space dimension in {13],
and has been applied in the present context of smail
boundary cells in [14,15].

Another problem with Cartesian grids is one of
accuracy. Grid stretching, used in body-fitted grids to
cluster the grid points in regions where they are needed,
cannot be used. Moreover, since the grid is not aligned
with the boundary, a loss of resolution may occur near
the boundary. To improve the accuracy we use an adap-
tive mesh refinement algorithm developed in {8). Rec-
tangular refined grids are superimposed on the coarse
grid, so that the efficiency of the integrator on each grid
is maintained. The time step is refined along with the
mesh width on the fine grids, so that the CFL condition is
maintained while allowing larger time steps on the
coarser grids. This further concentrates the computa-
tional work where it is needed.



Cartesian mesh methods have received increased
attention recently. Cartesian grids were used in [19] to
solve the full potential equations. This was extended to
the Euler equations in two space dimensions in {11], and
to three dimensions in [12]). Cartesian grids have also
been used in conjunction with an implicit, flux-vector
split method for the Euler equations [10]. These calcula-
tions, however, suffer from the lack of resolution of a
Cartesian . mesh; none of the calculations used a locai
mesh refinement algorithm. The use of a global, tensor
product grid to concentrate grid lines near the leading
edge of an airfoil, for example, can be very wasteful. In
those computations, the small, irregular cells near the
body were merged into their neighboring cells to create a
cell that was large enough to satisfy a stability constraint.
This procedure loses resolution.

In the next section, we describe our overall com-
putational method, including the organization of the cal-
culation and the boundary representation. Section 3
describes the large time step method and the implemen-
tation of the solid wall boundary conditions. Section 4
describes the mesh refinement algorithm. In Section 5
we show applications of our method to the inviscid Euler
equations in two geometries: shocked flow around two
cylinders, and a curved channel calculation.

2. Algorithm and Data Structures

We consider the Euler equations in two space
dimensions,
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The boundary of a solid object is approximated by
piecewise linear segments at shown in Figure 1a. We
assume that the boundary cuts through each cell at most
once, so that the resulting irregular cell is a polygon with
at most five sides. We use a finite volume method, with
U; ; representing the cell average of the vector of con-
served quantities in cell (i, /), i.e.

1
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where A, ; is the area of the cell. For regular cells, away

from the boundary, A; ; = AxAy, but 4; ; may be orders of
magnitude smaller for cells on the boundary.

All grid cells are indexed using the rectangular
Cartesian structure. Additional information about the
irregular cells is kept in a linked list data structure that is
easily traversed in implementing the boundary condi-
tions. Necessary information includes the cell area and
list of vertices for each irregular cell, as well as a pointer
to its location in the Cartesian grid. In the other direc-
tion, a two dimensional integer array indicates whether a
Cartesian cell is regular, and for irregular cells contains a
pointer to the corresponding location in the linked list.
When grid refinement is used there may be several rec-
tangular grids, each with its own solution storage and
irregular points list.
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Figure 1 (a) a Cartesian grid. The shaded region
represents a solid body. (b) Blowup of cell (i)
showing the fluxes.

In each time step; the cell values are updated by
differencing fluxes at the cell sides, as illustrated in Fig-
ure 1b. The updating formula is

A+l _rn At
Uit =0y - ' (Finaj = Fi-iraj (1)
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+Gj jsz = Gij-12 + Hij).

boundary of the ceil. For example, with Godunov’s



method we would obtain Fi,,2; Dy soiving a Riemann
problem u, + f (u), = 0 with left and right states U; ; and
Ui to determine the correct intermediate state u~. We
then set Fjij2, = M f (W*), where hiyn; is the
length of the interface between cells (i,j) and (i+1,j).
For regular cells this length is just Ay. Similarly, G; j+1,2
is the flux per unit time through the top of the cell.
Finally, H; ; is the flux per unit ume through the irreguiar
side of the cell, which represents the solid wall boundary
of the fluid domain. In regular cells, H;;=0. With
higher order Godunov schemes such as MUSCL, the left
and right states are modified using slope information to
achieve second order accuracy.

In irregular cells there are two difficulties with this
approach. First, the neighboring cell values needed to
define appropriate slopes may not be present. This is
" currently handled by setting the slopes to zero, so that
the flux reduces to the Godunov flux at these interraces.
Improvements to this algorithm are currently under
study.

Even with first order fluxes, there is still a swability
problem. Use of these fuxes in updating formuia (1)
will give instabilities in cells where A;; is very small
relative to At. A wave propagation interpretation of this
is given in Section 3, where we present a way to modify
the fluxes to account for the reflection of waves at the
boundary and obtain a much more stable algorithm.
First we present an outline of the overall algorithm.

Step 1. Initial flux compuration. In the first pass,
fluxes at all cell boundaries are computed assuming that
the grid is regular, even at interfaces where both neigh-
boring cells lie outside of the actual fluid domain. This
1s done for ease of vectorization, but the calculations out-
side the domain will have no influence on the finai solu-
tion. Also, the interface lengths are always assumed to
be Ax or Ay in compuing the flux per unit time, regard-
less of the true lengtn of the side. This will be corrected
.in step 2 as required.

Step 2: Flux Modification Near the Boundarv. In
the second step, we —arch around the solid boundary of
the fluid domain, - difying the fluxes of the irregular
cells. First we adju:: the fluxes F and G at each interface
10 incorporate the correct length rather than the standard
length Ax or Ay. Next. we modify the fluxes to improve
the stability of the small cells and incorporate the solid
wall boundary conditions. This will be described in
more detail in the next section. Finally, we calculate the
fluxes H;; at the irregular side of each boundary cell.
This is also described in section 3.

Step 3: Updating U; ;. The grid values U, are
now updated using the fux differencing formula (1).

Step 4: Smoothing at the Boundary. Although the
flux modification of Step 2 is intended to give stability

for arbitrarily small cells, in practice very small cells still
cause difficulties 1n some computations. The exact
causes of this are currently under study. In the present
code, stability is restored by means of an averaging pro-
cess. In very small cells (those with area less than 3% of
the regular cell size, typically), the value of U?S' is
replaced by a weighted average of the original value and
the value in one or more neighboring cells. The choice of
cells depends on the local geometry. The value in the
neighboring cell(s) is also modified in such a way that
conservation is maintained. The weights used are pro-
portional to the cell areas and hence the value in the
smali cell is replaced by a value that is essentially equal
to that of the cell’s primary neighbor (or a weighted
averaged of two or three neighboring cells). This pro-
cedure has been found to eliminate any remaining insta-
bilities. This algorithm is similar to the flux redistribution
algorithm in [9)].

3. Boundary Conditions and Flux Modification

For irregular cells at the boundary, the fluxes that
are calcuiated in the first stage of the algorithm are sim-
ply the Godunov fluxes obtained by solving the Ricmann
problem between this cell and each neighbor. In order to
understand how these fluxes should be modified for
small cells, we first consider Godunov’s method on a
regular grid cell. The method can be interpreted in the
following way: Solve the Riemann problem at each
interface to obtain waves propagating away from the
interface. For each wave that propagates into the cell, let
AU represent the jump in the conserved quantities across

" the wave. Suppose that in time A¢ this wave sweeps

through a certain fraction o of the cell. Then the cell
average U, ; is updated by the quantity aAU. Note that
the CFL condition requires a < 1, and that « is the ratio
of the area swept out by the wave to the total cell area
(see Figure 2). The wave shown in Figure 2 propagates
with speed s >0 from the left side of the cell, and so

_ SAtAy  sAL
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Now consider the same wave but suppose that the
cell in question is an irregular cell as shown in Figure 3a.
We now have o=sAt/A;; > 1, and updating U;; by
o AU would lead to instability. However, an alternative
approach that is physically more reasonable is to update
U;; by only 1.0-AU, since the wave overlaps the entire
cell, and then to update cells further to the right by the
remainder of the wave (a—1)AU. This is the basis of the
large time step method originally described in {13]. In
the present context however, there are no cells to the
righit. Instcad, there is a solid wall boundary, off which
the wave should reflect. This is illustrated in Figure 3b.

The portion of the wave that lies outside the domain is
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Figure 2 The wave containing the jump in con-
served quantities travels to the right a distance sA!
away from the interface.

reflected normal to the boundary segment of this cell.
Linearization of the solid wall boundary conditions sug-
gests that the reflected wave should carry a jump AU,
which has the same jump as AU in density, pressure and
tangential velocity, but which has the jump in normal
velocity negated. (Normal and tangential refer to the
orientation of the solid wall boundary).

This reflected wave overlaps some fraction B<1 of
the cell, and so U, ; is further updated by BAU. In addi-
tion, the reflected wave may overlap neighboring cells,
and each of these is also updated by the fraction of the
cell overlapped multiptied by AU. In Figure 3b, three
neighboring cells are affected by the reflected wave. This
is the maximum number possible, so the amount or com-
putational work required is bounded.

As just described. the waves are used to update
cell values directly. In the actual implementation, the
waves are used to update the fluxes at the cell interfaces
by calculating the flux through each interface due to the

wave. This makes these boundary conditions easier to
. use in conjunction with an arbitrary flux differencing

method away from the boundaries. The flux at each
interface is modified by any wave that crosses the inter-
face. For example, the reflected wave in Figure 3b
crosses four interfaces and would modify the fiux at each
of these interfaces. '

Finally, we must calculate the flux #; ; at the solid
wall boundary itself. The basic flux is computed by solv-
ing a Riemann problem at the wall with data given by
Uy jand U;;. The vector U; ; agrees with U, ; in density,
pressure and tangential velocity but again has the normal
velocity negated. This flux is then modified by any wave
that reflects off the wall, once by the outgoing flux of the
wave AU and then again by the incoming flux of the
reflected wave.

(2)
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Figure 3 (a) The wave completely sweeps through
the small boundary cell. (b) The wave reflects off
the boundary back into the domain.

4. Mesh Refinement

The adaptive mesh refinement algorithm (hen-
ceforth AMR) is based on the use of uniform, local grid
refinements superimposed on an underlying coarse grid.
These embedded grid refinements can be recursively
nested to maintain a fixed level of accuracy in the calcu-
lation. "Unlike other embedded grid refinement methods,
(e.g. [18]), in this method the grid cells requiring
refinement in each level are grouped together into rec-
tangular blocks which are uniformly refined. This means
that some coarse grid cells may be unmecessarily refined,
but has the advantage that all grids are uniform and rec-
tangular. This allows us to maintain vectorization
without using gather/sca‘ter operations. It also allows
for a simple user interface, since a finite difference
scheme can be written for a uniform rectangular grid
without concern for the connectivity of each cell. The
use of fine grids instead of unstructured grid points also

~ reduces the storage overhead, which is on a per grid _

basis for our method, rather than the overhead per cell
found in unstructured mesh calculations. The additional
complications introduced by this approach occur at the
interfaces of the fine and coarse grids (see below).



In addition to refining the spatial gnd for time-
accurate computations we use a smaller time step on the
fine grids as well. This keeps the mesh ratio of time step
to space step the same on all grids, and so the same
explicit finite difference scheme is stable on all ‘grids.

. The computational work is thus further concentrated on
the fine grids, where it should be. In contrast, some
adaptive methods for transient flows use the same time
step for the whole mesh [16,17]. This can be less
efficient, since the resulting Courant number may be far
smaller than necessary over the unrefined portion of the
grid.

, AMR uses an automatic error estimation pro-
cedure, based on Richardson extrapolation, to determine

the regions in the domain where the resolutton in the
solution is insufficient. These coarse grid cells are

"flagged” as necding refinement. In addition, the irregu-
lar grid cells at solid bodies should be flagged as needing

refinement if the geomewry of the boundary is under-
resolved. An automatic grid generation algorithm
groups these flagged cells into rectangular grid paiches.

We have developed heuristic procedures that are quite
successful at this type of grid generation (4]. We try to
balance the conflicting goals of minimizing the number

of fine grids and minimizing the area that is unneces-
sarily refined.

The time accurate integration algorithm proceeds
by taking one step on the coarsest grid, and as many
steps as necessary on the finer level grids until they
catch up 1o the coarse grid time. If there are several lev-
els of fine grids, this is applied recursively. At this point
the grids are advanced independently of each other,
except that fine grids require boundary values from adja-
cent fine grids or interpolated from the coarser grids.
For a five point stencil, a fine grid will need 2 points all
around the outside of the grid in order to advance the
solution one step. If there is an adjacent fine grid, it can
supply the missing points. Otherwise, these so-called
dummy points are obtained using bilinear interpolation
in space and linear interpolation in time from the coarse
grid. 4
Since we will be computing discontinuous solu-
tions of hyperbolic conservation laws, the adaptive mesh
refinement algorithm needs to be conservative. This is
complicated by the use of different time steps on the dif-
ferent grids. Conservation is ensured in three different
parts of the mesh refinement algorithm. When 1wo adja-
cent levels of grids are at same time, the fine grid
updates the coarse grid, performing the conservative
averaging procedure

r-1 r-1

Uf.‘;n= Tz Uﬂ"\lﬂv

m=0 a=
where r is the mesh refinement ratio, for each coarse cell

{i,j) containing a fine grid cell (k) in the lower left
comer. If a fine grid is then removed, the wotal mass in
the domain is conserved. Sccondly, after every integra-
tion step the solution is post-processed at all coarse gnd
points adjacent 10 a fine grid. The initial coarsc flux
(computed ignoring the fine grids) is subtracted, and the
sum of the fine grid fluxes over space and time is added
in its place. Thirdly, we use conservative interpolation
procedures to initialize the solution when a fine grid is
created. A more complete description of the algorithm
for time-dependent pdes is in {6].

5. Numerical Results

We illustrate the method on two time-dependent
problems involving shock waves. In the first example
we compute flow around two cylinders. An incident
shock travels at Mach number 2.81. One cylinder is

- slightly ahead of the other. This leads to an interesting

pattern of wave reflections between the two cylinders. In
addition there is a reflected bow shock, and complicated
wave structures behind the cylinders after the shocks
pass by. All of these regions use the adaptive refinement
as the solution develops. Figure 4 shows the incident
shock with the location of the refined grids indicated.
The initial coarse grid is 64 by 64. Two levels of grids
are used, with a refinement factor of 4. Figure § shows
density contours of the solution at later stages of the
simulation. \

OENSITY, TIME = 9.80@. COMPOSITE

Figure 4 Density contours and grid locations at in-
itial time for shock impinging on two cylinders.

The second example we consider is a Mach 2.2
shock travelling in a channel with a 90 degree bend,
This has previously been studied in [1,21). We use a
very coarse initial grid, since much of the initial rec-
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Figure 5 Density contours at later times.

wangular grid is outside the computational domain. We
use two additional levels of refinement by a factor of 4 in
“each case in order to obtain good resolution of the shock
and induced wave pattern. Figure 6 shows density con-
tours when the shock has passed most of the way
through the channel. In this figure, the location of the
three levels of refined grids is indicated on the contour
plots.

6. Conclusions

This work demonstrates the feasibility of an adap-
tive Cartesian grid approach for fluid problems in com-
plicated geometries. Several aspects of this approach are
still under development. We would like to improve the
boundary scheme to make it second order along with the
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Figure 6 Density contours for shock in a channel
with 90 degree bend.

interior scheme. We also hope to eliminate the smooth-
ing step now used to insure stability in the very small
cells. '

We also plan to include an acceleration procedure
for-steady state calculations. For nested Cartesian grids
multigrid is particularly attractive, since the data struc-
tures and grid transfer operations in the adaptive grid
refinement algorithm make up almost all of those nceded
in multigrid [5). Local grid refinement and multigrid
have already been combined using a logically rectangu-
lar body-fitted grd in {7].

‘An important consideration is whether these tech-

niques will extend to Navier-Stokes calculations. For

problems with boundary layers, it is usually desirable to
use body-fitted grids and refine heavily in the direction
normal to the boundary. Refining Cartesian grid cells
near such a boundary may be highly inefficient. In such
cases a component grid approach may be useful, in
which there are several grids with distinct coordinate
systems. For example, there may be a thin body-fitted
boundary layer region in addition to an underlying Carte-
sian grid. These multiple components will overlap in an
arbitrary way, creating small irregular cells as in the
Cartesian mesh method above, Again, stable and conser-
vative difference equations are needed to compute the
flow at these mesh junctions. The techniques used here
should be directly applicable to this situation. Such an
approach has previously been considered by others, e.g.
[2,3]. However, these previous efforts did not treat the
interface conditions between the different grids in an
accurate or conservative way.
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