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1. Systems with constant coefficients

In the study of numerical methods for differential equations, we need a
simple test problem for which we can easily compare the solution which

the numerical method gives with the exact solution of the problem. This
oftenyleads to considering a linear system of difference equations with

constant coefficients. Since a difference equation of higher order can

-always be reduced to a system of first order, we first consider systems

of first order, which we write in matrix-vector form as

(-1 Tper =AY ey ::“(“f‘o”’z"")’

. . . k .
where {gn} is a given sequence of vectors in £, A is a constant kxk
. ko, . e s N . . 3 .
matrix, yp€C 1s a given initial vector and yj,ysyi+..are recursively

defined by the difference equation.

By induction we find that the solution is

n
(1.2) Y, = Anyo + Z A3 8:_q+
5=1 ’

It is of particul interest tc determine the behavior of y, @ no= in
the homogenecus case (i.e. gj =0VYj). If A is diagonalizable, define z by
the coordinate transformation y =Vz, where V is a kxk matrix whose columns
are the eigenvectors of A. The components of z are thus the coefficients
in the represeantation of y as a2 linear combination of the eigenvectors of

B

Denote by xi the eigenvalues of A. Then
(1.3) S VvTlav = D := dieg(3.).
From (1.1) it follows that in the homogenszous, dicgonzlizable ccse

z =V 1AVz = Dz_.
n

n+1

The vector equation therefore reduces to k scaler equations

28 2@ e,

where z(l) is the ith component of the vector z. The solution is simply

L) _ ()

n i“o

and hence

g = WYy,



We find therefore that in the diagonalizable case,

(i) yn—*O as h—== for every initial vector y,
LFf {Ag] <1 for i=1,2,. 0k,
(i1) Y is bounded as n-« for every initial vector yg

iff [}.ifgi for i=1,2,...,k.

_In the general case, wagn A is not diagonalizable, tne result (ii) must be
modified somewkzt. Since yn==AnyO, statements about the behavior of Yo for
arbitrary initial vectors y; are equivalent to statements about the behavior
of A". A matrix is diagonalizable if and only if it has ngmdeféctive eigen—

’ values.

Definition. An eigenvalue is called defective if the number of linearly
independent eigenvectors corresponding to it is less than the eigenvalue's

i' multiplicity.

Since every eigenvalue has at least one eigenvector, only multiple eigen-

values can be defective. Net all multiple eigenvalues are defective: however.

Example. Comnsider

<j. In this case the double eigenvalus 1 is defeéctive. .

When A has defective eigenvalues we can no longer diagonmalize A as in (1.3).
. There is, however, a standard generalization of this decomposition called
the Jordan CanonicZ-FSrm. To this end we first introduce the s%ift matriz

of order g,

010...0
001...0

I , (g>1), 8y =0.
000...1
000...0

so called because (for gq> 1),

T . T
Sq[x1,x2,.f., xq] = [xz,x3, ...,xq,O] .




It is easy to see that SZ==O and that Sq has 0 as a g-fold eigenvalue with

T . .
[1,0, ..., 0] as its only eigenvector.

if Iq denotes the identity matrix of order g, then a2 matrix of the form
A1q<+5q is called a Jordar block of order q. For example, Jordan blocks of

orders 1, 2 and 3 are

A Jordan block has X as a g-fold eigenvalue with the single eigenvector

civen above. The eigenvalue in a Jordan block is thus defective if g > 1.
=3 & q

femma 1.1. Jordan Canonical Form (JCF):

Every kxk matrix A can be transformed to the form T-1AT =J, where

o]

with each Ji = kiI +-Sa a Jordan block of order q; - The same eigenvalue ¢
49 %
occur in several blocks. 4 and J have the same eigenvalues. If z is an eige

vector of J, then y:=Tz is an eigenvector of A.

For the proof, we refer to amy standard book on linear algebra, for example
The columns of T corresponding to defective.,eigenvalues contain, in additic

to the eigenvectors, additional veacrors czlled prineipal veciors.
P B

e . - I no.
We are now ready to return to our discussion of the behavior of A”. This

discussion is also interesting in the study of iterative methods.

Theorem 1.1,
a) A" 0 as now iff all eigenvalues of A lie in the interior of the unit
disk.

b) A" is bounded as n-—w= iff all eigenvélues of A lie in or on the bouﬁdary

of the unit disk with no defective eigenvalues on the boundary.

Proof. The theorem can be proved in a manner analogous to our handling of
the diagonalizable case, but for variety we shall take a slightly different

aﬁproach.



1.4

By induction we see that An=’rJnT_'I vhere J" is block diagonal with blocks
9; 7" .

.4 a0 - (xiz +s >“ = 3 (?)z’i‘”si G=1,2,...p)

where (?) = 0 if j>n. Note that the binomial expansion for matrices as

used here is only valid since the matrices involved commute: Iq Sq =s I .

q. i i i i
. . . i
Here the summation involves at most q; terms since S © =.0. If [Xii <1,
g S - i ]
then Ji—)O as n»0 as n-e. If ]Ai} >1, then J;-»w since the diagonal element
n : - : n n : .
are ki . For Ilil =1, we have in the non-defective case that J&'=lil, which

is bounded, but in the defective case the element in position (1,n£), for

: n\ n—h{ . . . ) . ¢
example, 1is X, , which is unbounded. This proves the theorem. 1
Q»-Lvl

As a by—prédﬁct\of the proof, particularly equation (1.4), we obtain

the following result:

. .n s . )
Theorem 1.2. The matrix A can be written as a sum of terms of the form
P.(n)k?, where ). is an eigenvalue of A with 2 corresponding Jordan block
i i i
of order g, and Pi(n) is a polyromial of degree g -1 with uniquely
i i

determined matrix coefficients.



2. Difference equations of higher order and associated matrices

Consider now a homogeneous, scalar difference equation of k:th order,

k —_— -

(2.1) J .y .. =0, (a, %0),
520 J " nt)

with characteristic polynomial

k .
(2.2) o) = § ol
e j=0
The equation (2.1) can be written in operator form as w(E)yn==O, where
E is the translation operator defined by Eyn =Y e We can also write

(2.1) in matrix-vector form as

(2.3) Y,y = AT
where
;. 0 1 o0 . -\
’3
(2.4) Yg - Y591 |, a= 0 O T -
Y +k-1 o 0 0 ... 1
%0 T8 T k-1
“x %% %k %k

We call A the companton matriz (for the polyromial ¢).

Charagher;chic polynormsd o fhe ) s /”"/”'A’“‘/"z‘> o
Theéycompanion matriz given in (2.4) ©()\), ps—rts—characterist

Theorem 2.7.

ﬁuﬁe&g&i&iﬁ The eigenvalue i, pa@ssesses only the single eigenvector .
1,_‘1 T
~ - . . N .
[T,Xi,Ai,...,ki J7. (Multiple eigenvalues are hence alyays defective, and

each eigenvalue appears in only one Jordan block).

T
)
J

Proof. Suppose Av=Av with.v:=(\;T,V,.,,...,v_l . Then
v2 = Av1
= = 32
v3 sz A v,
_ _ k-1
vk = Avk_1 = A vy
1 k-1 k ;
- z a. v, = AV, <= Z a. Av, = 0.
% 520 3 M7 kP75 30 0
Hence the only eigenvector is
T

Vo= (1,02, LAY



Definition. A polynomial ©(z) is said to satis ve root condition 1if

its roots lie in the closed unit disk with only simple zeros on the boundary.

Corpllary to Theorems 1.1 and 2.1

The solution of the difference equation (2.1) is bounded as n-« for every
choice of initial values YgrYqre oYy if and only if the characteristic

polynomial (2.2) satisfies the root condition, "

From theorems 1.2 and 2.7 we obtain the well-known result that the general
sqlution of the scalar dijference equation Lp(E)yn =0 (if ¢©(0) #0) s a sum
of terms of the form wi(n)kz where Ap is a root ¢of 0()) of multiplicity LI
and by 15 an arbi;’raz’y polynomial of degree mi—‘l which is determined by the
initial conditions. We omit the details since a more direct proof can be
found in Dahlquist & Bjdrck [2 ]. (Note that the polynomial Pi with matrix

coefficients which appeared in Theorem 1.2 was uniquely determined.)

‘ .

Example 2.1. Consider the difference equation

-2y + (rufy 4 =05 yo=a, y1=2+¥b.

yn+1' ]
The characteristic equation 1is (A - 132 + 3?2 = 0 with solutions Xy o= 1+iyp,
hp = 1—1dip. Thé difference equation thus has unbounded solutions fer any w,

since the root condition is never satisfied.

1f py+0. The general solution is yn = p(! +iu) o+ g(1-1iy) . The iniciel ¥

conditions give

TN VORNU- N VAR § A P -
(2.5) v = 5\3‘1‘)“ P17 e 5la s )0 - 6

T

if y=0. The general solution is vy, =Pt and the initial coanditions
give yn=a+bn. The soluticn given by (2.5) is not in a suitable form when

[1#] << 1. Another form is obtained in the following way. Set

Yo oxi
1iiu‘-'=——(-1+uz)ée ¢ a =arctanu.
So
. . \ T . . . .
o (4 .p2)0/2[2  _ib) ina 1} ib) -ina
(2.6) Y, (1.11) tza e ‘+za+u e

= (1 + u2>n/2{a cosna +b _____sl;\‘nd ]

Since a/u-ﬂ as p-0, we see that yn—*a+bn as p—=»0. The form (2.6) is

relatively well conditioned for |u| << 1.



Companion matrices arise naturally when studying higher order difference
equations with specified initial values. Another important class of matrices
come from difference eguations with specified boundary values. Such problems
often lead to band matrices of a special form. One particular application
is to the so-called mginiod of lines approach for solving partial differentia
equations. In this method one discretizes the space variable(s) while
maintaining continuity in time. The partial differential equation is thus

approximated by a system of ordinary differential equations.

Example 2.2. The heat equation

2

with boundary conditions u(C,t) = u(l,t) =0 and initial conditions
u(x,0) = £(x). We discretize the interval (0.1) by taking

sx = 1/N, X t=isx for 1=0,1,...,N.

Using central-difference approximations to the space derivatives and
defining the new variables ui(t), intended to be approximations to u(xi,t),

we obtain

(2.7)

T . 5 = R .
Let u = (u1,u2,...,uw_]) . Then the system {2.7) can be written as

(2.8) %% = Au
where
) bc
abec O ——
abec .
(2.9) A= e e ' .
0 abc

We will return to this example after deriving expressions for the eigenvalues
and eigenvectors of the general matrix given in (2.9). To this end we first

consider the special case a=c=1, b=0.

10



Example. Solve the eigenvalue problem

“ v . =
(2.10) Yo IS 0

with boundary conditions
Yo T ¥y T 0.
The characteristic equation can be written as
(2.11) uZ-Ju+1 =0
with roots u; and u2=ufl. Dropping the index on u;, the general solution

of (2.10) can be written -

n -n
= qgu +8u .
Y

The boundary conditions give

1
+R = v -N
¢ ;.ﬂ ?\; { = U(UI\‘UI\) =0
cu +8u =0
and so - —
T ‘.\
W o, u=.=_xp(";“,, 5=0,1,...,28-1
i N/
. _._Tin .
¥, = 2z1 Sln—if—, 3=1,2,...,8-0,

(The remezining values of j give either the null solution or a repetition of

~s

e
those determined by 1<j <X Trom (2.10) a2nd (2.31) it follows that

From the computaticns of this example we obtain the general result.

Theorem 2.2. The tridiagonal (N¥-1)x(N-1) matrix A given in (2U9) has eigen-

values .

o)

).J. = b+ 2cVa/c cos (3=1,2,...,8-1)
The corresponding eigenvectors have as their n:th component

y = a/c)“'sinﬁi.ﬁ (G=1,2,...,8-1).

11



Proof. We attempt to '"symmetrize" the matrix by means of a scalin
rent P > g

transformation D=diag(di), dp=1. The elements of DTIAD are given by
ed./d. if j=i+1
ji
-1 - . o2
(D x,D)ij b if j=1
ad./d, 1if j=i-1
jhd

Thus the resulting matrix is symmetric if

cdj/di = adi/dj (3 =1i+1)

i.e. if di+1/di = Va/c. Set d; = (Va/c) and then the off-diagonal elements
become cVa/c =Vac. Thus N
e . - -
{
(2.12) DTIAD = bI +Vac 4y
where A is given by the matrix in (2.9) with b=0, a=c=1. The eigenvalue

problem Aﬁ- =)y gives

Ty .q =AY

a1 n+1 n

y0=yN=o

i.e. the problem of the previcus example. Thus

X = 2cos

3. " 3, TiD
¥ Yy = sin .

A has the same eigenvalues as D™!AD, which according to (2.12) are simply,

A= b+2\/§:cos—¥.
) X

1f D"lADy = iy then A(Dy) = A(Dy). The eigenvectors thus have components

. n _._%in N . . .
DyP = (Va/c) sin “%=. (We need not worry about the sign of the square root.

- We shall interpret Vac as-cva/c).

Returning now to. example 2.2, we see that the matrix A occuring in the

system (2.8) has eigenvalues = 2N°% +2N2. cos(ni/N) = =-4N2 sin?(=j/28).

Notice the great spread of eigenvalues from approximately -4N? to approximatel:
-2, The larger N is, the more "stiff" the system becomes. Notice also that
the transformation of A to diagonal form is equivalent té a discrete Fourier
transform (sine-transform), and that the j'th eigenvalue tends to -u2j2

when N— =, which is the j'th eigenvalue of the differential operator d?/dx?

with boundary conditions, u(0) =u(1)=0.

12



3. Matrix norms and logarithmic norms

Many important problems concerning difference and differential equations
can be handled in a particularly elegant manner through the use of norms.
In this section we review the most important vector and matrix norms and

simultaneously develop the so-called logarithmic norms.

A vector norm is a real-valued function [llyll (defined for 21l y in some

vector space V), which satisfies the following axioms

1) iIyll > 0 for y*0
2) Tayll = tal = Nyl (0 €C)
3) lyy +yo !l < By + HyHl (triangle inequality)

From 3) we obtain
3%) ”yl—}’ZH?,”yl“—“yz” .
From 2) and 3) it follows that ilyll is a convez function of y, since for

0<t<1 we have
HO=t)yg + eyl € (=) Uyl + c tlyqll

It then follows that the it bzil {y :llyll < 1} is a convex set which is
symmetric about the origin (since Il-yll =liyll). We note, in passing, that
conversely any convex, symmetric set with 2 non-empty interior, can be
tezken as a unit ball to define a norm, the value of which at an arbitrary
point y, is obtaired by axiom 2, choosing ¢ so that ay lies on the boundary

of S.

-3

he triangle inequality easily generalizes to sums with an arbitrary
number of terms and in the lizmit even to infinite series and integrals.

For example,

Ny e viie 7T

v i< le_ 1 Uy Ul
n=g T n=0
1 ! 1
Hfe(e)y(eydell € flae)l- iy(e)llde € max Hy(e)ll- [la(t)idt.
0 0 O<tsl Y N

To a given vector norm |+l there corresponds a subordinate matrir norm

“defined by
NAll = mex 'ifi‘l‘l’ .
xEV
%0

13



It follows easily from the definition that matriz norms also catisfy azion
1) = 3) and their consequences, e.g. convexity. We also have the following

submultiplicative properties:

) Haxit < Al - =]
5)  llasil < Nall-1Bl .

A

Here A and B can be rectangular matrices.
There is a more generzl axiomatic definition of matrix norms, but the
present one suffices for cur needs.

To a given vector norm |l-1l there also corresponds a logarithmic norm

p(A), defined by

(.1 B(A) = lim JIzhalN-1
h+0 n

This limit exists for every norm |l-}] eand every matrix A. This follows from

the convexity of the norm, which guarantees that the difference ratio

I I+hall~1 . N -

———j%————— decreases monotenically when h decreases, and from the triangle

. : . . P L oIl -nllali-1

inequality 3*), which bounds this ratio below by —L~l—ElL—h——»= - llall.
The following properiies follow directly from the definition:

(3.2a) cufed) = ep(a) only if 20

(3.2b) - n(A1+47) su(4y) +r(az) - (subadditivity)
(3.2¢) - Al < p(a) < iail.

It follows that u(A) Zs a cormvez Ffumeiion, for take 0<t < 1. Then
w({1-t)As + £4y) < p{(F-t)Ap) + nlray) = (-oi)ulag) + tnay).

For the special case A=2zI, z€C we obtain

WAl =UzTl = Lzl ITi = [z
w(a) = dip WERELNT gy 1T0R2]o] g .
140 0 '

(Verify as an exercise the last equality)

Observe that u(4) can be negative. Just as IlAll can be viewed as a gener-
alization of the absolute value, so can n(A) be viewed as a generalization
of the real part of a complex number. Additional interesting general .

properties will be found in the exercises.

14



Definition. The set of eigenvalues of 4 is called the specirwn of A.

With A we can associate the following two real numbers:

p(A) := max {31, the spectral radius of A,
J€spectrum(A)
a(A) := nax Re )f, the spectral abscissa of A.

)E€spectrum(A)

The most commonly used ncrms are the %;-, 2~ and £_-norms and transforma-

,4
i
]
‘o
5
3

tions of these. The fo

j#i
p | Vector norm lixlip | Matrix norm HAHp Logarithmic norm up(A) )
o | xll =me'm}xi] Hail | = mex Z Iaijl b, (8) = max [Re a;;* Z'Iaij]]
L 1 J
ey =Tl Hally = m2x ] lag || b = max [Re 2 st Z‘laijl]
J 1 ki 2
< 1 1
2 [, =[2]xi§21 ali, = [o¢a"0)172 | w) = a(A;A)
-i .

. T . . N .
Note that a 2% vector ¥y~ is to be considered as a 1xn matrix, and that

. T, . — R - . . .
in general liv il £ liyll. (The i,-norm is an exception in this respect.)

We give two examples of verifying the results in the table:

1) Assume the expression for HAHw is known. It follows that

piitha. | +hs Iai.l - 15
u_(4) = lim max | = : ,(
e i b n
i’ /!1'""151_'|—1> .
= max|lim = +2"[a l]
i Lhyod b F

\
H
)
»
—

- max] + Tac.l] -
Reeys JZMJI] . .

2) Assume the expression for IlAll, is known. Let By be an eigenvalue of the

oo . +A . . N
Hermitian matrix AZ—A’. Note that u; is real. Let el :=ll-lh to simplify

the notation. Then

1T +halP = p((I+ha’)(I+ha))
p(I+h(AH+A) +h2AHA)

L+ n(a? + 4) + n24%0 since p(B) = lEl, for a
Hermitian matrix B

NI+ h(AH + A)ll + 0(h2)

max (1 + 2hy;) +0(h?)

15



and thus
T +nhall -1

HI+half -1

h

T h(HI+RANF D)

(1+2hyp ) = 1+ 0(h?2)
h(1+0(h))

2u, +0(h)

BEIION

max
i
max
In the limit as h+t0 we obtain

ny (A)

Theorem 3.1. For every matrix or logarithmic norm subordinate to a vector

norm,
and u(a) > a(A).

Note. 2) p(A) 2nd =(A) are independent of the norm used here

In the 2 -~ and 2j-case we obtain from this bounds for the spectrun

which can also be cbtairned by the Gerschgorin theorem.

c) According to the table, we have equality in Theorem 3.1 in certair
cases. For example, in the 2,-case-when A& is Hermitian and for
every Zp-—norz: when 4 is diagonal matrix. )

Proof. By the definition of the spectral redius, Ei,; with [Xf =p(A)
such that A% =ix. Thus, )
&gl = e(a) I3l .
and so ‘
Naxil | Hagl _ )
= > e = p{A).
Hall = max J7F 2 e = P {8)
There alsc exists X, ;, independent of h, such that AX = AX and RQT = a(A)
Thus,
HI+nall « HXN 2 H(T+0)XH = [1+6X] - IFN
and so
. -1 . {1+hX] -1 -
u(A)=11mﬂ-I——%%—— zllmL—T‘—)—!————=Re)‘=u(A).
hy h+0

16



Although the %p-case is easy to work with in many ways, the matrix and
logarithmic norms are often difficult to compute. From Theorem 3.1 we

obtain the following useivl inegualities:

(3.3) WAl = o(a®a) < AaIL < WA - WAl = naly Al
- B R
ua (8) = u<A+2“ ) < ﬂm<q—;‘)

Many results for the f£,-norm can be generalized to arbitrary innerproduct

norms.

Definition. An inrerproduct (x,y) in a complex.vector space satisfies the _
following zxioms:
a) (x,y) = (v,%), symmetry (the bar indicates conjugation)
b)  (ax,8y) = a3(x,y)
linearity
c) (x,y+z) = (x,y) +(x,2)

d) (x,x) >0 for x#0, positivity.

It is easy to show that llxil := V(x,x) satisfies the axioms of a vectar

r <

norm. With this norm we also obtain Sciwarz' inequality:
(3.4) P (x,y)l < tixlle yll o

We can easily obtain an expression for the logarithmic norm subordinate

to this vector norm. From the axioms for an inmer product we find that

Hxrnaell = Hxll _ fix+naxIP - [Ixil?
nlixil niix!l (iix+hax]l + ilxil)
x,Ax) + w2 llax]i2

I

o
o
o

(verify the last equality), -an

lI+hall =1 _ _ Re(x,Ax)

- o). . .
h x=0 ”XIP
Thus, as hi0, we obtain by the linearity of the inner product,

(3.5) » p(a) = mex Re (x,Ax).
xil=1

In C° the most general form of an inner product is
: H
(3.6) (x,y) = x Gy

where G is some positive definite Hermitian matrix. The corresponding norm

17



is defined by

i

(3.6%) Hxl = xex .

Note that for G=1 this is simply the 2p-norm. Since G is positive definite,

J

the same holds for G™!. Let the Cholesky factorization of G™! be

61 =TT
We can then look at the inner product (3.6) in a different way. Consider
the coordinate transformation x=Tf, y=Tn. We can think of £ and n as

the coordinate vectors for x and y when the columns of T are used as a

bases. Then, by (3.6), ‘ . : B
H =1
(x,y) = EHT (TTH) n = EHn

-

i.e. the, inmer procduct (3.6) is the usuzl inner product of the vectors £

and n. Furthermore (x,x) = Hglé = HT;ll% which relates the inner product

norm (3.6') to the usual L,-norm.

Hy

This relaticn suggests the following generalization of the inner product
norm (3.6'). Let 1l-il be any vzeior norm and T be any nonsingular matriz.

We then define the T—norm of = by

(3.7) Wl o= 1T 2l .

-
L
It is easy to verify that [l satisfies the norm axioms. The corresponding

matrix norm is

T 171ATE ! -
(3.8) at, = max e I “fa el NT-laTil.
- oxev MR pey HS
Similarly,
(B9 pp@) = (A,

As an zpplication of (3.8) and (3.9), consider again the important special

case of the inner product rorm (3.6'), which we.can now write as

H
Hx!% = lIT73xll, = x7'Cx

where G==T_HT"1. Using the table result for the matrix f,-norm, we have
Hall = lT7laTIf
BB -H -1
= p(T“AHT HT AT).
H, B _~H -1

Let A be an eigenvalue of T AT T 'AT. Then, since T is nonsingular, we

obtain

18



1 H_-H_ -1 {
det(TFAII HT AT - A1)

derafrir s oY

o
L}

n

a5
det(A"GA - 2G),

and hence the matrix norm corresponding to (3.6') is given by the solution

of a generalized eigenvalue prodlem
¢ 2 = nlt e 2 H -0
(3.10) HAI% = max{x : det (A GA-2AG) = 0}.

Similarly, for the logarithmic norm we have,

-1
up (T AT)

(3.11) MT(A)

]

a(%(r"u + Tl 7Ry

i

max{i :det(%(GA-*AHG)-kG) = 0}.

The expressions (3.10) and (3.11) can zlso be derived in a different manner.

From the definition of the matrix norm we have that

H
HAIZ = mex  xtafcax.

+ xex=1

Solving this constrained cptimization problem by Lagrange multipliers, for
exemple, again leads to (3.10). See Bellmzn [3 ] for wore details on this

approach. Similarly, for the logarithmic norm, (3.5) gives

pr(A) = max RexHGAx
xHGx=1

< (Ch + ATE)x

= max

<Hex=1

Nt

which again leads to (3.11).

m,

Returning now to the general T-norm corresponding to an arbiirary norm
l«l}, we see from (3.8) that §1AHT < Ut Y- liall+HT! 2nd that, if T"laT=3B, " _.

{iBll = UrBT 1l s‘dT'liiT -liTllT' HBi(T. Observe also that [ITil, = It=lTTi = Tl
~ . . !

and similarly llT’li% = [{T-1|l: From this we obtain the important norm

equivalence ineguality , whare cond(T) = UT 1N -UTYH is the condition number of T.
HAll oy | Ty

(3.12)  EEE < Nalip s 1A} - cond(T) .

Similar inequalities do mot hold for the logarithmic norms. For the vector i

norm we have

(3.13) -{{%}{- < Nxlips HT=H Uxl
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The following important theorem provides a sort of converse to Theorem 3.1.

Theorem 3.2.

For any ﬁp-norm Il-il the follewing hold:

a) If A has no defective eigenvalues with absolute value p(A) then 3T

such that

Hall = o(4).

b) If A has defective eigenvalues with absolute value p(A), then for every

e >0 there exists a matrix T(e) such that

Al < p(A) +e. -
] IT(E) p(a) +¢e
In this case, lim IT(e)il> HT i(e))i == .
e+0
¢) If A has no defective eigenvalue with real part o«(A) then there exists

a matrix T such that

p(A) = o(a).

T
envalues with real part «(4), then for any e>0

d) 1If A has defective eige
) such that . - e

there is a matrix T(e

thc>(A) < a(A) + .

Note. In general the same metrix T will not satisfy doth 2) and c¢), nor wil:

the same T(e) satisfy both b) and d).

he proof for c¢) and d) is similar. Set
e i1=p(4). Since ilall. = {1T714TH, our goal will be to use a similarity
transformation to tramsform A to a matrix TTYAT for which it is easy to
show that the norm is sufficiently close to the spectral radius. If A is
diagonalizabie,.we can simply taxe T as the diagonalizing transformation.
Then clearly liAHT = Hr-laTl = mgxikif= p. For the proof of the theorem
we reduce A to a matrix which is sufficiently close to.being diagonal.

To be exact, we use a variation of the Jordan Form in which the nonzero.

superdiagonal elements have arbitrary small values. To achieve this, we

e
first let J = T14T be the Jordan Canonical Form of A as in Lemma 1.1.

So J = blockdiag(fri) with 31 = 31+8;, a Jordan block of order q,. Here
Si is a shift matrix of order q; - The proof is based on the following

observations (also useful in other contexﬁs):
. qi—1
(i) For §>0 let Di(S) :=diag(1,8,...,8

.=p-1 5
) and let Ji : Di (G)JiDi(é).
Then Ji =4I +6Si. Verify this! : :
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(11) 1If J=blockdiag(Ti) then Jll = max H.Jill for any ip—norm.
i
(iii) IISiH <1 in aay ip—nom for a shift matrix Si' This is because
T
Six = (.\:2,.‘&3,-..,?16 ,0)7 so HSixH < lxll for all vectors x.

i
From this it follows cthat 1, I+6S, 1l < [a1+s.

To simplify the discussion below, let R :={i : |Ai! =p}, the set
of indices of the maximal sigenvalues.
For the proof of 2), we observe that by assumption if i ER then a; =1
and so J. =A., D.(8) =1. Hence
i i 71

UJiI|=p for i€R. N

For i €R, let &, =p -~ [Aii > 1. Now take D":=blockdiag(ni(ai)), T:=Tp,

J:=T"1AT. Then J, = A.I+65.S. 2nd so
1 pR 11

b

Ba. < 2.} +s,
2 1 1

[N
m
.

3

-

< p for

by our choice of 6, and {1ii}. It follows from (ii). that
1Al = a3l = maxli, [l =
] “T il : =»,

which completes the proof of a).

For the proof of b), let £>0 be given. We now choose

1 hS

Take D(e) :=blockdiag(D.(8.)), T(e) :=TD(c), J(e) :=T 1 (e)AT(e). Now for
1 €R we have«HJiI(E)H < jasl

+&, = p+e and for i €R. HJi(E)H < p as before.

Hence

“A”T(e) = mzx HJi(e)H <p+te. . .
This completes the proof of part b). Note that in this case HDi(a)H-HDzl.(s)H

1-q,
=e T for i€R and so, for e sufficiently small. [ID(c)ll«UD~1(e)li

i

: —g*
max 1D, (e}« UIDT ()Ml = e'd where q* = max g.. We thus have
i t ier *

T - IT1 ()l < BTN U200 lipCe) - 11D (e Il = oge 9%y

Furthermore,

DX - 11D~ (e) 1)
NEI- 431y

T NT=2¢e)t > M

so the condition number of T increases rapidly as e -0.
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1n Theorem 3.2 the T-norm depends on the matrix A. It is not, however
uniquely determined. If the elements of A are analytic functionms of a
complex variable g, then T and T(g) can be chosen as continuous function
of q. Unfortunately, the construction used in the proof does not provide

his in general, since the Jordan Form can be a discontinuous function

r

o

f q.

Exercises.

3.1 Verify the results of the table oam p.3.

3.2a) sShow that HA7l< 1/jua) ] if u(a) <0.
b) Show that if a;; > 7 la..| Vi then
11 i 1]

hat ¢ ——————— 7"

3.3) Consider two norms 1xl, Ixll and the corresponding matrix norms.
Assume that for all x
ofxl < Hixll < 8- ix|

1s (3.12) a particular case of this?
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4. The use of norms in difference and differential equations

We are now ready to return to the study of the boundedness of solutions
of difference and differential egquations. Recall our original example

Yosr = Ayn. If T is a2 nonsingular matrix, then (3.12) yields

n AN
HA™H = cond(T)

.

n_a“nI < cona(r)-nAn;.

53
5
i
0
m
=]
h

Thus A"—0 as n~= i ind a T such thet HAI!T< 1 2nd A" at least
remains bounded if Al < 1. In view of this we see that Theorem 1.1

follows directly from theorems 3.7 and 3.2. For if p(A) <1 we can always
find a T such that ”A”T < p(A)+e<1 and if p(8) <1 with no defective 7

eigenvalues of modulus 7 then we can find 2 T such that HAHT =p(4)<1.

This gives an idea of the use of matrix norms in difference equations.

For differential equations the logarithmic norms play a similar role.

Consider the linear system
4.1 yI(t) = A(t)y(t) .

We will see that p(A(t)) <0Vt <s a sufficient condition for y(t) to be
Eownded as t—>=. '
Let y(t) be a solution of (4.1) and assume that lA'(t)ll is bounded

for.t € [a,b]. By Taylor's theoresm,

y(t+h) = y(t) +hy'(c) + 0(h?)
(T+ha(2))y(e) = 0(n?).

So
Hylesnyll < HI+naA() Ny (e) I+ 0(n2)

Hy (e li=lle ()l < HI+ha(e)il~-1

By (o1l S b + o).

The difference ratio on the right, whose limit defines p(A{t), is thus
an upper bound on the relative change per time step of [ly(t)ll. Now let

h-0 to obtain
(4.2) dil{i(;()tX;,/dt < p(ace)

and hence by integrating,

. .
(4.3) . loglly(e) i = loglw(O)IF < IU(A(T))dT
0
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Thus,

£
(4.4) Hy(e) Il < exp([u(ax))an) ly(0) 1

0
If 5 is an upper bound on p(A(t)) for t € [0,=) then we obtain
(4.4 ly (o)l < e"SHiy(0)ll for £20

. N . 0y n . . -
which proves the assertion, namely that p <0 implies y(t) remains bounded
as t—w,

We could have tazken a different approach. Note that

aly el _ |
dt -

Sl < naon- iy

and hence

o dlly(e) /e

Fthr < i

By (3.2¢), this is never better thanm (4.4). In general it is much worse.
In particular, it does nct lead to any conditions for the boundedness of

the solutions as t—e.

Let us specialize now to the case of a ccnstant matrix A in (4.1).
In this case n(A) <0 is & sufficient condition for boundedness. If our
underlying vector norm is an Zrmer—rroduct norm, then by (3.5) the condition

Bn(A) <0 is equivalent to the condition

Re(x,4x) < 0 ¥x,

a so-called monoitonicity condition for the matrix A. If the inner product .
E

s . . H . .
then this means that GA+ A G should be negative

is given by (x,y) = x

semi-definite, which is the usual condition in the Liapunov stability theory.
The irequality (4.4) holds for amy vector norm and its corresponding

logarithmic norm. Clearly the sclution y(t) of y'(t) = Ay(_t) is bounded.

if we can find some T-norm such that pT(A) <0. By Theorem 3.2, such a T

exists provided a(4) <0 and A has no defective eigenvalues A with Re A = 0.

Moreover, y(t) -0 as t=-= if there exists a T-norm such that pT(A) <0,

i.e. 1f a(A) <O.

For the differential equation with constant coefficients, y'=Ay, we
thus have two types of conditions. One, a sufficient condition, involves
the logarithmic norm and the other, a necessary and sufficient condition,
involves the spectral abscissa. Similarly, for the difference equation

Yor1 = Ayn, we obtained conditions involving either the matrix norm or
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or the spectral radius. The advantage of the norm conditions lies in their
applicability ta variable coefficient (and even nonlinear) problems. We
will see that the spectral cenditions do not general1ze in the same way.
The price we pay for using the norm conditions is that, since they are
merely sufficient conditions, the sharpness of our results will depend
heavily on the choice of norm. Although Theorem 3.2 gives a hint of how
to choose 2 norm, it must bte remembered that thé T-norm defined in that
theorem depends on the matrix 4, while inequalities like (4.2) and (4.4)
assume a fixed norm. We therefore need a2 more general discussion of the
use of norms for difference and differential equations with variable

coefficients, .

Consider the difference eguation

(4.5) Youy = Anyn

with variable coefficients. If {lA ([Tf‘i Vn for some fixed T-norm, then
by the submultiplicativity of the matrix norm we have that Yo is bounded

as n— e

v ll

My o = NA__ & oyeesagyglly
S Al ey ol Hlaglipliyglly
< Hizglly.

In fact, for boundedness it is sufficient that there exist-a T~norm such

that {l& H,_ <1 Y, ¥a with Lv < =, For then
n T n
0
n—1 n—-1
;] TT T 1«
“}n”? < '|~f (1+y. )HVOhT < ?(% YJ-)..]OHT.
3=0 3=0

Our previous results regarding the spectral radius no longer hold since

p(A) is not submultiplicative. The following example illustrates the probleﬁ. S

Example 4.1. Let

oo o2 C_foo]l L.,
Ay5 = [2 o}’ Agser = [o 0]’ Apjartay = {o 4}’ 3i=0,7,... .

We have p(A JHAZJ) 4 even though p(AZj) p(A J+1 = 0. The difference
v

equation = A has unbounded solutions in spite of the fact that
. Ya+1 n’n

p(A“) = 0 Vn. Note that according to Theorem 3.2, for any e >0 there are
matrices Tg(e) and T;(z) such that “Azj To (e y<€s and “Azjﬂ“'l‘ (&) <eg.
However, in this example we cannot find a 51ngle T(e) such that HA |T(e)

and lja <g¢ simultaneously unless €22, since

2J'+" T(E)
- 2
&= 0y Ay € Maysaihgslingey € MAgsaqlipee) Mg lipgey <2

25




This example also shows that in general it is not enough to have
HAnH < 1V¥n if the norm used to measure An also varies with n. It turns
out that we can allcw the definiticn of the norm to vary, but in order
to guarantee boundedness the norm must vary sufficiently slowly. The
following theorem gives & typical result.

Theorem 4.1. Suppose that for the difference equation (4.5) we can find

a sequence of nonsingular matrices {Tn} such that

(4.62) ”An”’I <1 Y, for n=0,1,...with2'yv<°°,
n 0
(4.6b) HTnH < C where C is a constant independent of n,

Fh

o

(4.6¢c) UT;lTn_1H <1+8 for n=1,2,... with g svm,' (8 :=0)

Then vy is bounded as n—=.

Pr00f. We have that

)
]
.:.x_..
(%3
_a.._.

A

A
~
—
A
~
::_
=]
.

IA

: Kt e
(1-—Yn) Mn Tn._1H Hy i

in

v 3(1+2 YU I
(e ) (2 )y I

n a-1

n°n
e Uy I,
o T
n-1

So, by induction

n
hy Wi sexp ] (v +8)- lyolly <X —
n v=0
Hence, for all n, N
Uy s BT lelly llp < CoK,

which proves the theorem.

We will mention some variations of this theorem. The condition (4.6b) can

be replaced by

' ~-1 3 ©
(4.6b") ‘lTn—iTn” <1+ @ with éav <
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T N.lut-1.7 .
< T HeliT lnHS_HTn_,lHekp(un)
and hence, by induction, we have for all n,
o

T b s HToll - exp (g a)

. .y H
Suppose now that we use working with the f,-norm, llyll2= y y. If we let
Pt 2 Y y ¥

- - B
Gn :=TnHT ! so that Hy!l,I = y“Gny, then the conditions (4.6b') and (4.6c)
are equivalent to the single condition R
© © - -
-1 " ~- . o
(4.7) (+e )716_ < G 4 < (148 )6 with | o < =, g B, < =

where A<B is interpreted to mean XHAX < xHBx Vx. We leave the ﬁroof of

this as an exercise.

We now turn to systems of differential equations with variable coefficients

(4.8) y' () = A{)y(e).

The situation here is analogous to the difference equation case. By the

(] .
inequality (4.3), fu(A(T))dT < = is sufficient for boundedness, and
0
a fortiori p{4a(t)) < 0 Vt is a2 simple sufficient condition. It also
=
follows that y=0 as t-wo if [ p(a(t))dr = —=.

0
The spectral comndition a{a(r)) <0 V20 is not sufficient. We are forced
with the same problem here as in example 4.1, namely that the transformation
T wnich relates a(A{t)) to p(A(r)) according to Theorem 3.2 is now depen—.
dent om t. FTor simplicity, assume for the moment that A(t) is diagonalizable
for all t, T™1(t)A(t)T(t) = D(t) and that T(t) is differentiable. Set
z(t) :=T 1(t)y(t). Then

4.10) 2t = TTlyt 2 (T 'y
(T71AT + (T1)'1)2
@-T1711")z.

L}

The contribution from the term T™IT' can be so large that lNz(t)ll »= as
t—+o even if the elements of D(t) have negative real parts.

As in the case of difference equations, we can obtain results using a
norm which varies with time, but again it must vary sufficiently slowly.

The following theorem 1is completely analogous to Theorem 4.1.
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Theorem 4.2. Suppose that for the differential equation (4.8) we can

find a time-dependent diiferentiable transformation T(t) such that

(4.11a) Fripy (A8 = v() wicn é y(t)de < o,
(4.11b) IHT(e)!l ¢ C where C is 2 constant independent of t,
(4.11¢) p(-T7H(0)T"(£)) < 8(r) with [ B(t)dt < =,

0

Then y(t) is bounded as t-=w=,

Proof. Let z(t) :=T 1(t)y(t) and D(z) :=T 1 (t)A(t)T(t). Then Hy(t)ll.r(t>
= Hlz(t) il and z(t) satisfies the differential equation (4.10). Furthermore,

uT(t)(A(t)). According to (4.4), llz(t)]l can be bounded by
t
Mz(e)ll < Hz() 1} exp{f p(D(1) ‘T_I(T)T'(T))d‘[‘].
0
By the subadditivity of yu,
B(D(D) = TTHOT () £u(D(0)) + 1 (-T"1(D)T" (1)) <v(t) + B (L)
and so, by the conditions imposed on y and B, ) T
Hz{e)lf < Hz0) i e:r:p[f('}'(‘f) +6(T})d‘r] < KVt>0
0
where K is some constent independent of t. Fipally, then,

Hy(es < HT(e)H Hz(ed)l g CK VE>O0

which completes the proof.

Once again we can rewrite the conditions cf the theorem in several ways.
First, by (3.2c) comditicn (4.11c) can be replaced by 2 simpler and more

stringent condition
<

HT7IT' < 8(t) with [8(t)dt<w
0

The condition (4.11b) can be replac.ed by

(4.11b") B(TTHE)T (£)) calt) with [a(t)dt<w
0

since this implies the boundedness of [IT(t)Il, as we now show. Note the
relation of this proof to the proof of the sufficiency of condition (4.6b')

in Theorem 4.1. We have
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[T (o) 1= T T T el

NT(ey - NT I (e) [T(e) +RT"(2) +0(n?) 1

A

< HT(ey ittt FRT-N()T () 1L+ 0(h?).
Je thus obtain (for h> 0y,

Uz T ¢ pr (ol {'.mm—;(m'(c) = 1] Loy,

and in the limit, as ht0,
Ed;nm)n < NI e u(T (DT (8)-

So, by {(4.4),

£

Nl < HT(O) Hexp(fali)dD)-
0

1f our underlving norm is the Zp-norm, Hyli2= yHy, and we let

G(t) :=T_H(t)T_1{t), then (4.112) is equivalent to
©

(4.11a") C(ea(e) + AR (036(e) sy (DT Ve with [y(e)dr<e.
0

Fu:thermbre, (4.11b') =2nd (&.%11c) can be replaced by the single equivalent

condition
-

(4.12) —a(r)6(t) <G'(r) £8(r)6(x) with fa(tyde <=,
0

fa(eydr <.
0

We will show that (4.%1c) 1is ecuivalent to G' < 8G. The other half is proved

W)

similarly. Dropping the dependence on t from the notation, we see that
TR R SR N = L O FOPC
o= (rH T T ) = T 1y B e T
and so G' <BG is equivalent to ' N

1 1

- t - -— -— - -—
ey TR e e cer

or
- (T"T')H -1l g1,
which is the same as

p(-1T Ty <8,
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4.4)

Exercises.

Show that every square matrix A has a Schkur decomposition of the form
Hyo,
A = URU

where R is upper triazngular znd U is a unitary matrix,

UHU= I

by starting with the Jordan caneonical form A = TJT™! and orthogonalizing
the columns of T by the Gram-Schmidt process.

. . R .. H H . -
The matrix A is called normal if A A=AA". Note in particular that all

Hermitian matrices are normal.-Prove the following:
a) if A is normal then A is diagonalizable and hence has no defective
eigenvalues.
Hint: use tha Schur decomposition cf problem 1,
b) A is normal iff it has a complete set of mutually orthogonal eigenvec
c) if A is mormal then o(A) = llAll, and a(4) =1, (4),

d) conclude that if A is a normal matrix, p(4) <1 is a necessary and

sufficient condition for the boundedness of the solution of Yps1 =AY,

Similarly, a(A) <0 is a necessary and sufficient condition for the

boundedness of the solution of y' =Ay.
Spectral conditioas can be used for vdriable coefficient problems if all
P ] 2
matrices involvad are normal. Show that:
a) if An is a normai matrix for n=0,1,2,... and .p(An) <1 +y'1 with
b

27 <, then all solutions of y_..=A_y_ are bounded,
o + 1 n

0 n+i L
b) if A(t) is a normal matrix for all £>0 and fa(A(r))d-r<=> then all
0 ——— .

soluticns of y'(t) =A(t)y(t) are bounded for t>0.
Show that the conditions (4.6b') and (4.6c) are equivalent to the single
condition (4.7) when inner product norms are used.

Hint: WBl,< B «= B'B<3I.
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5. Limit operations for matrices and matrix-valued functions

A sequence of pxq matrices AW’AZ""’ where An = {ai?)}, is said to
converge to A¥, lim A = a* = [z%* ] if agv)-»af. for 1<i<p, 1<j=q.
e D ij 1] 1]

4n infinite sum of matrices is defined in the following way:
B
B_=1lizm ] B_.

0" N=na=0"

He~18

n

o

By the triangle inequality it follows that if X HBn” is convergent,
= n=0

then so is ZBﬁ (zlthough the converse is not necessarily true). In the

G®

same manner we can defipe lim A(z), A'(z), etc. for matriz-valued fimetions
Z>o )
of a real or complex variable.

o
. n . .
A power series ZBPz ; z€C, has a cirele of convergence in the z-plane
. O i
which is equal to the smzllest of the p-q circles of convergence corre-

sponding to the series for the matrix elements. In the interior of the
convergence circle, formal operations such as termwise differentiation
and integration (with respect to z) are valid for the element seri®s "and

therefore also for the matrix series.

can be defined by the series expansion

(5.1 e”T = I+At+
ia £ -t - ”At”z
This converges for all A and t©, by the convergence of [[Ill + Ilatll] tgT—

The series can thus be terowice diffesrentiated everywhere:
b

5 At

-
w
ot

By applying the uniqueness theorem for the solution of the initial value

problem, we obtain the following theorem.

Theorem 5.1. The solution of the initial-value problem
4y ;
—&' = AY, Y(O) =1,

where A is a constant matrix, is Y(t) =eAt, where eAt is defined by (5.1).

Corollary. The solution of the initial-value problem
8Y L o4y, v(0) =
35 = 4y, y(@) =¢c,

. . . At
where A is a constant matrix, is y(t) =e c.
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- A . : . .
The representation of e raises the question of how to define analytic
fimctions of motrices in general. (This is not the same as a matrix-valued
function of a complex variable.) We first define an analytic fumction of

c Jorden block, J. = ».1+S, of order g, by the Taylor series

~
wm
N
~
Fh
~
o
~

1]
I} e~-1 |

Definition. Suppose that £(z) is regular for z€DcC, where D is a simply
connected region which contains the spectrum of A in its interior. Let
A =T blockdi'ag,(Ji) . T-! be the Jordan Canonical form of A. Then (5.2)

makes sense for each block Ji and we define

£(4) :=T-blockdiag(fuin-rl.

With this definition, the theory of analytic functions of one matrix

variable closely follows the theory of analytic functions of one complex

variable.
If lim fq(z) = £{z) for z£€D, then lim f'}(Ji) = f(Ji) and hence
e e
lim fn(A) = £(A), if spectrum{4) < int(D). This allows us to deal with
<

operations invalving limit processes. The following important theorem can

then be obtained.

Theorem 5.2. All identities which hold for functions of one complex variabl
for zE£DcC, also hold for functions of one matrix variable A, if the
spectrum of & is ccntainéd in int{D). The identities also hold if A has
eigenvaiues on &D, provided that these are not defective. Here D is again

a simply-connected region.

Thus, for example,
cos2A +sin?A = I, VA
- A
log{i-A) =- ] = if p(a) <1
n=1

fe_SteAtdt = (sI-A)"! if a(A) <Res.
o

It follows from the theorem that the series definition for eAt in example
5.1 is in keeping with the general definition of matrix functions.

Furthermore, for example,

At "1 -At

eA(t+s) = eAt As ) = e ; t,s€C.

(5.3) ce, (e
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Observe also that, for two arbitrary analytic functions £ and g which

satisfy the conditlions cof the definition,

(5.4) £(8) » g(a) = g(a) » £(a)

Warning: When several non-commutative matrices are involved, one can no

longer use the usual formulas for analytic functionms.

Example. (A+B)2 - (A? + 24B +B2) = BA - AB

(&+B)t _ At Bt
e = e e

Theorem 5.3. for all t, if and only if BA = AB.

Proof. We have . -

. «© . n_n
e(A-B)t _ Z (Avi)‘ t
n=0 .
At Bt o #P¢P T 3% T PP gp PD—p
ehet s LS LSt Ler Lsemr A
p=0 F° g=0 n=0 " p=0°" :

The difference between the coefficients of t2/2! in the two expressions
is (A+3)2 - (A2 +2AB+B2) = BA-AB% 0 if BA=* AB. Conversely, if BAF 4B,
then it follows by incduction that the binomial theorem holds for (A+B)n,
i.e. i,

n
(a+3)" = _!_:_‘_Aan-p
p=0 pi(np):

and hence e(A+B)t = eAt-eBt.

Theorem 5.4.
At cee s . e . s
a) e =0 as t—= iff 211 eigenvalues of 4 have negative real part.

At . . . o :
b) e is bounded as-t -+« iff no eigenvalue of A has positive real part
. and there are no defective eigenvalues on the imaginary axis.

The proof is analogous with the proof of Theorem 1.1. Note that
Jit kit st '
e = e ~ e’ . Alternatively, the theorem follows from the corollary to

Theorem 5.1 and the results of Section 4. ) -
For linear systems with variable coefficients,

dy _ . v(0) =
37 = AlB)y, y(0 =c,

the solution can no longer be written in terms of matrix exponentials,
except in the cormutative case in which A(£)A'(t) =A'(t)A(r) for all t.

It is a rather lengthy exercise to show that
t+h 3
y(t+h) - expl fA(T)dT]y(t)~?—2[A‘(t)A(t) SAA' (D) ]y(e) (as h-0)
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6. Stable families of matrices

Let us now return ference equations with constant coefficients
s

(6.1) Yo .a

In applications where (6.1) zrises as a discretization of some differential
equation, the iteratiocn matrix A will depend on a stepsize h. In this case
it is natural to consider the following question: when does the family of
problems {yn+1 =A(h)yn} have solutions which are bounded for all n
independently of h? The most important applications of this concept are

to partial differential equations. See Chapter 4 of Richtmyer and Morton

[ 4] for more on this. This secticn is based on their treatment of the

material.

Definition. A family F of matrices is said to be stable if there exists a

constant C such that for all AEF and 2ll v= 1,2‘,3,... .
(6.2) A

Note that this is sironger ti

=}

. .. v, .
an simply requiring that A~ be bounded for
all A in F, since the bound C must be independent of A. It is a necessary
condition, however, that each matrix A€F be bounded in the sense of
Section 1. '

The following theorem of Kreiss gives some equivalent conditions for

the stability of the family F.

The Kreiss Matrix

The stability of the family 7 is eguivalent to each of the following:

v

a) There exists a constant Cy such that for 2ll A€ F and all z€¢€ with

Iz} >1, (A-2zI)"! exists and

(6.3) Ha-2D7 < 3y - -

b) There exist constants bcz and C3 and, to each A€ F a nonsingular matrix
S such that
iy Hsh, s i<y
s -1, . - . . . 'y
ii) B :=S87:AS is upper triangular with Ibij' < Cymin(1 - [bii[,‘l - Iojjl
for i#j.
c) There exists a comnstant C, and, for each A€F a positive definite matrix
G such that
Cpl1<G2CyI
AHca < c.
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The condition c¢) of this theorem can be rewritten in a more familiar
form as
¢') There exists 2 constant Cg and, for each A€ F a nomsingular matrix

T such that

where ll-ll is the fy-norm and the T-norm H-IlT is as in Section 4.
It is left as an exercise to show that c¢) and c¢') are equivalent.
. -H_~1
(Hint: take G=T HT ).
For the complete proof of the Kreiss Matrix Theorem, the reader is
referred to [ 41].

The theorem is proved by showing that stability = a) = b) = c) = stab-
ility. WNote that if the alternative formulation c') is used then the
step c') = stability is completely analogous to the proofs of Section 4.
Furthermore, the proof that b) = c¢') is quite similar to the proof of
Theorem 3.2, except that the triangular decomposition of b) is used as
the starting point in place of the Jordan Form. It can be shown that c')
follows frem b) by taking = 3D, where D is a suitably chosen diagonal
scaling metrix which is fixed independent of A. )
The condition a) is czlled the resolveni condition, since it gives 2

bound on how quickly the resolvent (A-zI)”! can grow as z approaches
| ¥ Pr

the unit circie. Note that in particular it implies that 211 the eigen-

m 0

ralues of A must ‘lie in the closed unit disk and that any eigenvalue on
the unit circle must bz siople. The proof that stability = a) is quite
simple, so we will present it here. If the family F is stable, then
each A€ F must have eigenvalues lying in the closed unit discs, by
Theorem 1.1. Hence for lz!>1, (A-zI) is invertible and

Ha-zD M =0 T 2% se] 1217V = %
v=0 v=0 zl-

Thus (6.3) holds with C; :=C.
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