Cartesian Grid Methods for Fluid Flow in Complex
Geometries !
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Abstract. Biological fluid dynamics typically involves geometrically complicated structures which
are often deforming in time. We give a brief overview of some approaches based on using fixed Cartesian
grids instead of attempting to use a grid which conforms to the boundary. Both finite-difference and
finite-volume methods are discussed, as well as a combined approach which has recently been used
for computing incompressible flow using the streamfunction-vorticity formulation of the incompressible
Navier-Stokes equations.

1 Introduction

Biological fluid dynamics typically involves geometrically complicated structures which are
often deforming in time. Solving fluid dynamics equations in such geometries can be extremely
challenging, and methods based on body-fitted grids which conform to the geometry can be
difficult to implement. We give a brief overview of some approaches based on using fixed
Cartesian grids instead of forcing the grid to conform to the boundary. Peskin’s immersed
boundary method outlined in Section 4 is the best-known example of this class in the field of
biological fluid dynamics and has been successfully used by many researchers. The immersed
interface method discussed in Section 5 is a related approach which can often achieve better
accuracy near the boundary. These are both finite-difference methods.

For advection-diffusion equations, finite-volume methods may be better suited, as described
in Section 6. These allow exact conservation on grid cells to be maintained and flux boundary
conditions to be easily imposed. High-resolution “shock-capturing” methods developed for
conservation laws are also quite useful for problems with discontinuities or steep gradients in
the solution.

In Section 7 we describe a hybrid approach for computing incompressible flow using the
streamfunction-vorticity formulation of the Navier-Stokes equations. Vorticity is advected and
diffused on a finite-volume grid, with flux at solid wall boundaries as required to satisfy the
no-slip boundary conditions. The streamfunction is computed from the vorticity on a finite-
difference grid and then differenced to obtain velocities needed in the finite-volume method.

2 Finite-difference and finite-volume methods

We will discuss both finite-difference and finite-volume approaches, and first review the essen-
tial ideas of each approach.
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A finite-difference discretization of a differential equation is based on replacing derivatives
by differences of values defined on a discrete set of grid points. The approximate solution
generated consists of values Ui’;- (in two dimensions) representing pointwise approximations to
the solution at grid points (z;,y;) at time 2,

A finite-volume method, on the other hand, is based on approximating cell averages of the
solution over grid cells,

n 1 Yj+1/2 Tit1/2
Ujj = m/y /w u(z,y, tn) dz dy. (2)

li—1/2 i—1/2

For differential equations which arise from conservation laws and fluxes (including advection-
diffusion equations and most equations in fluid dynamics), this is a very natural approach.
The differential equation often arises from a more fundamental integral form stating that the
integral of u over any finite volume changes with time only due to the fluxes across the boundary
of the volume. If the volume is a single grid cell, then this leads to an updating formula for the
cell average based on numerical flux formulas. This has some advantages over more familiar
finite-difference formulations. For problems where some quantity should be conserved it is often
easy to guarantee exact conservation numerically, This is particularly important in nonlinear
wave-propagation problems with shock waves, where the conservation form must be respected
in order to obtain correct solutions (see [42], for example). It can also be important in other
problems, such as when we wish to exactly conserve the total mass of some chemical advecting
in a flow. Another advantage of finite-volume methods is that physical boundary conditions
are often given in terms of fluxes at the boundary. These are often more naturally discretized
in the context of finite-volume methods than with finite differences.

In some contexts, however, finite-difference methods are more natural and may be easier
to use. We have used a mixture of the two approaches in developing Cartesian grid methods,
using each where it is most appropriate. (Another standard approach for partial differential
equations is the finite element method, based on variational principles. We don’t discuss this
class of methods here.)

3 Cartesian grids

Figure 1 shows a comparison of body-fitted grids with Cartesian grids, in both the finite-
difference and finite-volume frameworks. The top row shows body-fitted grids near a curved
wall. A finite-difference method might update the values at one grid point based on values at
the 4 nearest neighbors, as indicated by the 5-point stencil shown. A finite-volume method,
on the other hand, would update the cell average of u(z,y,t) over the shaded grid cell based
on fluxes through the four edges indicated. If the fluxes are based on values in this cell and
the four neighboring cells, then again a 5-point stencil is obtained.

The middle row of Figure 1 shows a Cartesian grid at the same boundary. With a finite-
difference method one might develop a modified 5-point method based on the unequal distances
from the grid point shown to the points which lie on the wall. With the finite-volume approach
one instead has an irregular-shaped grid cell which requires computing a flux at the edge
corresponding to the physical boundary as well as at the sides adjacent to other cells. Note
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Figure 1: Comparison of different types of grids for boundaries or interfaces.



that the finite-volume method requires a fluz at the wall (Neumann boundary conditions)
whereas the finite-difference method requires a pointwise value at the wall (Dirichlet boundary
condition), although with additional work either boundary condition can be imposed on either
grid.

The bottom row of Figure 1 shows a different situation in which there is an interface
immersed in the domain rather than a wall. This interface might be a membrane immersed in
the fluid or an interface between two different fluids, for example. In this case we typically have
partial differential equations which must hold on each side of the interface, though perhaps
with discontinuous coefficients across the interface, or with an additional source term appearing
only at the interface. This generally leads to nonsmoothness in the solution at the interface.
With a finite-difference method we might attempt to use a 5-point stencil with equally-spaced
points on both sides of the interface as indicated in Figure 1(e). This can be successful as long
as the nonsmoothness is properly accounted for. With a finite-volume method one might view
grid cells as being confined to one side or the other of the interface, as indicated in Figure 1(f),
with special formulas for the flux across the interface, or one could view the uniform Cartesian
cells as spanning the interface, with appropriate source terms incorporated in addition to the
fluxes.

4 Embedded bodies and the Immersed Boundary Method

For problems with boundaries which cut through the grid, rather than using grids of the type
shown in Figure 1(c) or (d) an alternative is to embed the physical domain into a larger
computational domain and view the physical boundary as an interface of the type shown in
Figure 1(e) or (f). Grid points or cells are introduced which lie outside the physical domain.
If the equations can be extended in a suitable way, it may be simpler to solve the extended
equations on a purely Cartesian grid. A variety of methods of this type have been introduced,
such as fictitious domain methods (e.g., [33], [34]) and Mayo’s method for elliptic equations
[50], [51].

The immersed boundary method is a numerical method of this type developed primarily by
Peskin and his co-workers for solving the incompressible Navier-Stokes equations in complicated
time-varying geometries. The original application, which is still being studied with this method,
was to model a beating heart in order to study the motion of both natural and artificial heart
valves [53], [54], [55], [56], [57]. Since then it has been used for many other applications,
including aquatic locomotion [23], blood platelet aggregation [26] [27], [28], and wave motion
in the cochlea [6], [7]. Similar approaches have also been used outside of biophysics, e.g., to
sedimentation [64] and bubble dynamics [68], [69].

For a problem such as heart modeling, the geometry is not only extremely complex but is
also time-varying as the heart goes through its pumping cycle and the valves open and close.
Attempting to use a grid that conforms to the physical boundary would be extremely difficult.
Peskin’s idea was to instead view the entire heart as being immersed in a Cartesian box of fluid
(a square in the original 2D model or a cube in the current 3D model). The incompressible
Navier-Stokes equations are solved on a uniform Cartesian grid in this box and the outer heart
wall (as well as interior walls separating chambers, valve leaflets, etc.) are viewed as being
immersed within the fluid. These structures are modeled by a separate Lagrangian set of grid
points that move with the local fluid velocity in order to impose the requirement that no fluid
can flow through the wall.



In each time step, the Navier-Stokes equations are solved on the uniform grid to determine
the fluid velocities at each of these grid points. These velocities are then interpolated to the
immersed boundary points to determine its motion. Of course the boundary must also have an
effect on the fluid, and this is modeled by adding a forcing term to the Navier-Stokes equations
to represent the force exerted on the fluid by the immersed boundary. This is a singular (delta
function) force with support only along the boundary. The strength of this force depends on
the nature and position of the boundary. For example, an elastic material which is stretched
exerts a restoring force that can be determined from the configuration of the boundary. The
heart wall also exerts force due to muscle contraction that can be determined based on position
and phase of the heart cycle.

The incompressible Navier-Stokes equations then take the form

U+ (- V)i+Vp=vAd+ f

V.-4=0 )

where
F(@1) :/FF(s,t)a(f—X(s,t))ds (@)

Here Z = (z,y) is the spatial variable in 2D, T" is the immersed boundary consisting of points
X (s,t) parameterized by s at time ¢, § is the 2D delta function and F'(s,t) is the force density

—

at X (s,t). These equations are coupled with the equations for the motion of T,

9 R (s,) = w(X(s, ), (5)
ot

and equations for determining f(s,t) from the current boundary configuration X (s,¢). We
solve these equations in a box 2 that contains I', with some convenient boundary conditions
on the boundary of ©, e.g., periodic boundary conditions as used by Peskin[53].

The box is then discretized by a uniform grid with grid points Z;; = (z;,y;) with z; = ih
and y; = jh. The immersed boundary I' is represented by a set of points X = (Xg,Yx), k=
1, 2, ..., M with spacing which is O(h). The Navier-Stokes equations (3) are discretized
using any standard technique on the uniform grid. The only difficulty is that the equation for
updating u;;, the velocity at &;;, will typically involve f;;, the forcing function evaluated at
this point. But since the singular force (4) has support only on I', this will typically be zero at
each Z;;. We need some method to spread the singular force (4) out to neighboring grid points
on the regular grid. This can be done by replacing the delta function by some approximation,
a sharply peaked function with unit integral and support that extends only distance O(h) from
the origin. In one space dimension a simple choice is the hat function

dh(m):{ Lh—lz)) if |z[<h ©)

0 otherwise

though other choices are generally used in practice. In two space dimensions, the product
dp(z)dp(y) can be used. The force f;; used in the discrete equations at Z;; is then given by

M
fij =Y Fr(t)dn(wi — Xx)dn(y; — Ya) (7)
k=1



where X, = (Xk,Yy) and Fy(t) is the force at this point.
Moving the boundary requires interpolating the velocities from the grid to I'. One way to
do this is to use the same discrete delta function defined above and set

Ur = Y wijdn(wi — Xi)dn(yj — Yi)- (8)
2

Even when a highly accurate Navier-Stokes solver is used on the uniform grid, there remains
the interesting and difficult issue of the accuracy of the immersed boundary procedure, i.e.,
the replacement of the boundary conditions by a singular force that is spread to the uniform
grid by discrete delta functions. This has been analyzed in some simple cases by Beyer and
LeVeque[8], who considered a 1D model problem of the form

Up = Ugg + ¢(t)0(z — t)) 0<z<1 (9)

with the boundary conditions u(0,%) = u(1,%¢) = 0. Here the point «(t) plays the role of the
immersed boundary I" and c(t) is the strength of the singular source at . In the simplest case
a(t) = a is fixed and ¢(t) is a smooth function that is given a priori. A discretization in the
spirit of the immersed boundary method would be the Crank-Nicolson method

]‘ n ]‘ n
Z#%H—Uﬂ=5wﬂ7+DﬂUﬁ+d%HM%®rﬂﬁ (10)

where D2 is the second difference operator

%ﬂ%+r—ﬂG+Urﬂ

and dy, is a discrete delta function such as (6). If ¢(¢) = 0 then the Crank-Nicolson method is
well known to be second order accurate in both space and time. Beyer and LeVeque [8] show
that the method (10) remains second order accurate for smooth functions c¢(¢) provided that
the discrete delta function dj, satisfies certain moment conditions.

When «(t) is moving, it was found that a correction term must be added to the natural
extension of the Crank-Nicolson method in order to maintain second order accuracy [8]. This
is because the time derivative of the solution at a fixed grid point is not continuous in time
as the point «(t) passes this grid point. However, again the jump can be determined directly
from the equations and used to correct the formulas. This is an indication that there may be
difficulties in achieving second order accuracy with the immersed boundary method in fluid
dynamics problems, even with an improved delta function.

In two dimensions it appears to be very difficult to obtain second-order accuracy near the
boundary by using a simple discrete delta function. Zhilin Li [46] found this to be so even for
the simplest case of a steady state Poisson problem

DU, =

where f is again given by a singular source on some curve I,

f(y) = / F(s)8(z — X(s))d(y — Y(s)) ds. (12)



The immersed boundary method would correspond to using the discrete equations
(D + D))uij = fij

where D2 + D; is the standard 5-point Laplacian and f;; is given by (7). There does not seem
to be a simple way to define dj;, so that this yields second order accuracy for arbitrary curves
r.

It is, however, possible to obtain second order accuracy at all uniform grid points by a
different construction of the f;;, as discussed in the next section.

5 The immersed interface method

In an attempt to obtain better accuracy for problems with delta-function source terms on
an interface cutting between grid points, a different approach was developed by Li [46] and
LeVeque and Li [44], first in the context of elliptic equations such as the Poisson problem
mentioned above. This approach was called the immersed interface method since it is similar
in spirit to the immersed boundary method but turns out to be applicable to a variety of
interface problems beyond immersed boundaries in incompressible low. The basic idea is most
easily explained by considering the 1D model problem (9) with «(¢) = a. Suppose we want to
compute u(x;,t) at some grid point x; at time ¢. If « lies between grid points then uy = ug,
since the source term vanishes at z;. We can usually approximate u,, to second order by the
second difference

1
Dgu(xi,t) = ﬁ(u(xﬂ_l,t) — 2u(m;, t) + u(ziz1,t)).

This is second order accurate provided « does not lie between z;_; and x;41. If it does, then
the nonsmoothness of u(z,t) at a destroys the accuracy of this approximation. The solution
to (9) is continuous and so is ug,, but the first derivative u, has a discontinuity at z = « of
magnitude —c(t). We can use this information to obtain a good approximation to uz; at grid
points near a.

Suppose, for example, that z; < @ < ;41 and we wish to approximate uz,(z;,t). Expand-
ing in Taylor series about « shows that

1
u(zj,t) = ula,t)+ (z; — a)ug (o, t) + E(acj — a)Qwa(a, t) + O(h3)
1
u(ejent) = wlet) + (e — 0 (@,0) + (@51 — ) tgg(e,t) + O(AY).
We use the notation

ug (a,t) = mgrg_ ug(z,t), ul (o, t) = zl_1)r013+ ug(z,t)

for the limits as  approaches a from the left and right. (Note that continuity of us, allows
us to simply write uz,(a,t).)
We also have
uz (1) = ua(zj,t) + (& = 2;)tae(w;, 1) + O(h?)
ui’(a,t) = ug(z),t) + (@ — Tj)uge(z), t) + [ug] + O(hQ)
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where [u;] = u}(a,t) — u; (a,t) is the jump in u, at @. Combining these expressions gives
W@y, t) = ey, t) + hug (1) + %h%m(xj, 1) + (2541 — @)[ug] + O(KY).
Combining this with the standard Taylor series expansion of u(z;_1,t) about u(z;,1),
(w1, 1) = e, t) — hug(z5,1) + %h%u(a:j, 1) + O(h?)
shows that

e (73,2) = Du(a;,1) = 5 (3511 — 0)[ua] + O(h).

Since we know that

[uz] = —c(t),

this gives an approximation to uzq(z;,t):

ga(,1) = %(u(xﬂl, £) — 2u(j, £) + ulzj_1, 1) + %(xﬂl — a)el(t) + O(h).

Similarly, at ;1 we find that

1
Ugg (Tj41,1) = Diu(.’L‘j+1,t) + ﬁ(a —zj)c(t) + O(h).

At all other grid points z; we can use D2u(x;,t) alone to obtain a second order accurate
approximation.

It is interesting to note that these formulas can be combined in the following general formula
valid for all ¢, including j and 5 + 1:

O(h) if i=j, j+1

O(h?)  otherwise (13)

gy (24,1) = D2u(zi, t) + c(t)dp (z; — @) + {
where dp(z) is the hat function (6) Note that this is a discrete delta function, so using the
approximation (13) in a Crank-Nicolson method for (9) gives precisely the method (10) with
the particular choice (6) for the discrete delta function. (See [8], [44] for more details.)

It turns out that we only need an O(h) local truncation error at these grid points in order
to obtain O(h?) global errors, since there are only two grid points involved independent of h.
It is this type of analysis that was used in [8] to show that the immersed boundary method is
second order accurate in some cases for the 1D model problem.

In two dimensions consider the Poisson problem (11). It can be shown that the solution u
will be continuous across I' while the normal derivative of w will have a jump discontinuity of
magnitude F'(s). To devise a finite difference scheme, we need to approximate us; + uy, to at
least O(h) at each grid point (z;,y;) near the interface. The standard 5-point approximation
D%uij + Dguij can be used provided that the interface I' does not come between any of the
points in this stencil. If it does, then we must add correction terms arising from jumps in
derivatives across I', just as in the 1D expression (13). This correction can be derived by
expanding u at each grid point in the stencil about some common nearby point on I, e.g., the



closest point on I to (z;,7;). The resulting formula for approximating ., + 4, will have the
form

Ugy + Uyy = Diuij + Djuij + Cz'j + O(h)
where the correction term Cj; is zero away from I' and near I' will have magnitude O(1/h)

and depend on the source strength F'(s). For details see [44]. If this approximation is used to
discretize

Ugz + Uyy = 0
then we will obtain the system
chuij + Djuij = —C;;

which can be viewed as a discretization of the original equation (11). But in this case, unlike
the 1D model problem, it is not possible to derive the correct C;; simply by using the formula
(7) with an appropriate choice of dj. The expression for C;; can be obtained from the more
general case considered in [44]. The resulting formula involves not only the jump in normal
derivative of u along the interface but also the tangential derivative of this jump and the
curvature of the interface. These can all be obtained from the original problem.

By computing the correct values Cj;, we are able to obtain a second order accurate method
that is in the spirit of the immersed boundary method, but in a case where the immersed
boundary method itself fails to deliver this accuracy. All that is required for this approach is
a priori knowledge of the jumps in certain derivatives across I'. This can often be determined
from the PDE, as in the above examples.

Returning to the incompressible Navier-Stokes equations, we find that this is also true. In
this case the force density F'(s,t) is a vector. By decomposing this into components normal and
tangential to I, it is possible to determine jumps in the pressure p and in derivatives of p and
the velocities. It should be possible to use this information to derive appropriate correction
terms for a second order Navier-Stokes solver on a uniform grid.

5.1 Stokes flow
So far this has been completely carried out only for the Stokes equations,

pe = phu+ [0
py = phv+fO (14)
Ug+vy = 0

where f = (f O (2)) has the form (12). This problem can be reduced to a set of Poisson
problems (Ap = 0 and then ypAu = p; and pAv = p,) with known jumps in the functions and
derivatives across I'.

Development of methods for this problem with a moving interface are developed in [45].
The method is compared with the immersed boundary method for a test problem studied
by Tu and Peskin [67] consisting of a two-dimensional “balloon” relaxing to a circular shape
in a highly viscous fluid. It is shown that the new approach yields second order accuracy
in both pressure and velocity while an immersed boundary approach with the discrete delta
function (6) gives only first order accuracy in velocities and O(1) errors in pressure near the
discontinuity. Two-dimensional bubbles are also considered in [45], in which the singular force
at the interface arises from surface tension rather than from an elastic membrane.



5.2 Stiffness and implicit methods

As in Peskin’s immersed boundary method, the moving interface tracked in [45] is modeled by
a set of marker points which move with the local fluid velocity as interpolated from the uniform
grid on which velocity is computed. An explicit method might be written symbolically as

Xl = X 4 AU (X™), (15)

where X" represents a vector of marker positions at time #,. The nonlinear function ¢/ (X) is
the mapping from marker locations at some time to the resulting velocities at the same points.
Evaluating U (X ) typically requires evaluating forces at the points X , computing the resulting
source terms F;; on the uniform grid, solving the fluid equations, and interpolating velocities
back to the marker points X. Often this problem is very stiff and the time step At in the
explicit method (15) must be taken very small in order to avoid instabilities in which small
oscillations in the interface grow exponentially. Often a semi-implicit approach is used with
the immersed boundary method to improve stability, see for example [67], [52], [54], [63].

For the Stokes flow problem in [45] a fully implicit method has been used, based on the
trapezoidal method

" | e X
Xn+1 = X"+ §At(U(Xn) +Z,{(X”+1)). (16)

The potential difficulty with this approach is that U ()? ) is expensive to evaluate and it is
impossible to explicitly compute the Jacobian of this mapping as would be required for a
Newton-type method.

In [45], a quasi-Newton method has been used with good results. With this approach an
approximation to the Jacobian is built up in the process of iterating to solve the nonlinear
system (16), using rank 1 or rank 2 updates of the previous approximation. In the first time
step the procedure takes quite a few iterations to converge, but in future time steps a good
initial approximation to the Jacobian is available from the previous time step. For the bulk
of the computation only 2 or 3 iterations per time step are required. This approach has
also been successfully used for Hele-Shaw flow [35] and for Stefan problems with moving phase
boundaries. It could probably be used for many other problems of this type, also in conjunction
with the immersed boundary method or other methods for computing the mapping U (X )

Another device used in [45] to reduce the expense of the implicit method is to represent the
interface by relatively few marker points, with the distance between them much larger than the
mesh spacing of the Cartesian grid. Cubic splines are then used to interpolate and compute
jump conditions as needed at various points on the interface in implementing the immersed
interface method.

5.3 Discontinuous coefficients

Besides providing the possibility of a more accurate version of the immersed boundary method,
the immersed interface approach has the advantage that it can be applied to a wide class of
interface problems where discontinuities in the solution or its derivatives across I' arise from
factors in the equations other than a singular source term along I'. For example, the Poisson
problem

V- (BVu) = f
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with variable coefficients B(z,y) which are discontinuous across an interface I has a solution
u which is continuous but has a discontinuous normal derivative across I'. This arises from
the physical jump condition that the flux ﬁ% must be continuous, which gives the jump
condition required to implement the immersed interface method. Problems of this form with
discontinuous coeflicients arise in many applications, e.g., electrostatic or steady state heat
distribution problems in nonhomogeneous media, and also in the Stokes flow problem described
above if the fluids inside and outside the balloon or bubble have different viscosities.

LeVeque and Li [44] showed how second-order accuracy could be obtained using the same
idea of a Taylor series expansion as described in Section 5 for this case, with the 5-point
Laplacian replaced by a 6-point stencil whose weights depend on the coefficients § and the
location and curvature of the interface. Unfortunately, choosing the appropriate six points
to use and obtaining a method with uniformly good stability properties and smooth behavior
as the interface moves turns out to be difficult for some problems. The problems with this
approach have been the subject of more recent research, and several improvements and alter-
natives have been proposed which give more robust results. See for example [9], [25], [47], [49],
[72], [74]. Wiegmann and Bube [73] have also extended this approach to a nonlinear equation
with discontinuous coefficients and singular sources.

6 Advection-diffusion equations

We now turn to some problems where the finite-volume formulation of Figure 1(d) is quite
natural to use. Suppose we wish to model the advection and diffusion of some substance in a
given velocity field (e.g., the transport of oxygen or other substances in the blood or tissue, the
dispersal of a pheromone). In this section we assume the velocity field is known, and in the next
section we will illustrate how this technique can be applied together with immersed interface
ideas to compute time-varying velocities in incompressible flow using a streamfunction-vorticity
formulation.

The finite-volume framework is natural if we want to insure exact conservation. Also, for
the advection portion of the algorithm we can use high-resolution “shock-capturing” finite-
volume methods which can deal with steep gradients or even discontinuities in the concentra-
tion without introducing spurious numerical oscillations or excessive numerical diffusion. The
CLAWPACK software [39], [43], which applies to more general nonlinear hyperbolic systems of
equations, is used as the basis for the Cartesian grid method we have developed.

Cartesian grid finite-volume methods for fluid dynamics with embedded boundaries have
been the subject of much work recently, see for example [2], [4], [5], [18], [19], [30], [32], [37],
[40], [41], [58], [60], [61]. Here we briefly review the method developed in [10]. We solve the
advection-diffusion equation

Kqt + uqy + vgy = (DQz)w + (DQy)y (17)

in two space dimensions, where g(z,y,t) is a density or concentration, (u(z,y,t),v(z,y,t)) is
the specified velocity field, D(z,y) is the diffusion coefficient, and x(z, y) is a capacity function.
This function could represent, for example, heat capacity if ¢ is the temperature, or porosity in
a porous medium if ¢ is the concentration of a transported solute. A fundamental feature of the
numerical method we have developed is the use of a discrete version of x which also incorporates
information about the fraction of a computational grid cell which lies in the physical domain.

11



This is used to obtain a method which is conservative and as well as accurate and stable on
the cut cells.

The advection-diffusion equation (17) is solved using a fractional step approach in which
we alternate between solving the advection equation

Kqr + uqy + vgy = 0 (18)
and the diffusion equation

kgt = (Dqz)z + (Dgy)y- (19)

This allows a high-resolution explicit method to be used for the advection equation while an
implicit method is used for the diffusion equation.

6.1 Advection

We assume the incompressible velocity field is specified via a streamfunction ¥ (x,y) with

u = d)ya v = _'szc

We assume that 1 is known at all grid points in the rectangular computational domain,
with 1 identically constant in any “solid body” region where there is no fluid. The points
where we need ¢ are the corners of the finite-volume grid cells, e.g., 1; 1/2; 1/2 is the value
at the lower left corner of the (4,7) cell. Then differencing ) between any two corners gives
the integral of the normal velocity along the edge in between, so we easily obtain average edge
velocities

1
Ui—1/2,5 = A—y(¢i—1/2,j+1/2 —bi_1/2,j-1/2) (20)

1
Vij—1/2 = —A—$(¢i+1/2,j—1/2 —Yi_1/2,5-1/2)-

If we have accurate pointwise values of 1 then the average velocities computed by (20) will be
accurate even if the boundary cuts through an edge of the cell. In this case the velocity does
not approximate the fluid velocity but rather the average over the edge taking into account
the fact that the normal velocity is zero over part of the edge. See [10] for more discussion and
the relation to “Darcy velocities” in porous media flow. These velocities are exactly what are
needed in computing fluxes across the edge in the high-resolution methods for the advection
equation. Moreover, these velocities are divergence free on the discrete grid in the sense that

1 1
A—x(Ui—}—l/Z,j —Ui_1/2,5) + A—y(Vi,an —Vij-1/2) =0, (21)

as is easily verified.

How 1 is determined depends on the problem. It might be specified analytically for steady-
state flow in a simple geometry. Or we might compute it numerically based on some model of
the fluid dynamics. In [10] we consider flow in a porous medium with embedded objects, in
which case 1 is obtained using Darcy’s law by solving a Poisson problem. Accurate pointwise
values of 1 on the Cartesian grid can be obtained using a variant of the immersed interface
method.
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In Section 7 we discuss extensions of this approach to solving the streamfunction-vorticity
formulation of the time-dependent incompressible Navier-Stokes equations. In this case the
streamfunction must be recomputed in each time step based on the vorticity distribution.
Figures 3 through 5 show examples discussed later in which this solution is coupled with an
advection equation for a tracer in the fluid. Streamlines of the flow at one instant are shown as
contour lines of v, and the concentration of the advected tracer at this instant are also shown
in these figures. The gray tracer is injected at the left boundary starting at time ¢ = 0. In
these examples there is no diffusion, D = 0 in (17), and the sharp front in the concentration
is well captured.

6.2 Diffusion

We also solve the diffusion equation in a finite volume setting, using the capacity function to
handle the irregular geometry. The diffusion step of the fractional step scheme is given by

kg =V - (D(z,y) Vq) (22)

subject to Neumann boundary conditions on the boundary of embedded objects. This equation
is discretized by using numerical fluxes at cell edges to update the average value of ¢ in each
cell. These fluxes are the approximation at cell edges to the quantity —Ddq/dn, where dq/0n
is the derivative normal to the cell edge. At the edges of regular cells, these fluxes are computed
numerically by simply differencing the values of ¢ in cells adjacent to the edge. At the edges of
irregular cells, we use bilinear interpolation to approximate the normal derivatives at partial
cell edges. The details of these approximations can be found in [10].

Using these numerical fluxes, we discretize (22) using the second order, implicit Crank-
Nicolson scheme. Non-zero fluxes at the boundary of the embedded objects are incorporated
into the discretization as known source terms. This discretization leads to a linear system of
equations which is not symmetric, because of the presence of the irregular cells, and so cannot
be solved using standard fast solvers. We use instead a linear iterative method designed for
non-symmetric systems. In particular, we have found that the stabilized bi-conjugate gradient
method (BicGSTAB) of Van der Vorst [20] works quite well.

Because we only use bilinear interpolation to compute fluxes at irregular cell edges, our
method is formally only first order at these edges. However, numerical results show that the
method achieves global second order accuracy. Another method developed by Johansen and
Collela [37] is formally second order and could be considered as an alternative to our approach.

7 Streamfunction-vorticity equations

In the previous section, we described a numerical method for solving advection-diffusion equa-
tion in complex geometries. However, we only considered transport in a steady state velocity
field 4(z,y) = (u(z,y),v(z,y)) = (Yy(z,y), —9z(z,y)). We now want to consider methods for
computing a time dependent velocity field. Also, since fluid viscosity and friction at boundaries
plays an important role in many biological fluid dynamics problems, we also want to include
the affects of fluid viscosity and impose a no-slip boundary condition on the velocity field at
solid boundaries.
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We begin by considering the three-dimensional Navier-Stokes equations, given by

i@y + (- V)i + Vp =vV?i 03

V -4 =0, (23)
where i(z,y, 2,t) = (u(z,y,2,t),v(z,y, 2,t), w(x,y, z,t)) is the velocity, p(z,y, z,t) is the pres-
sure field, and v the kinematic viscosity. We have assumed that the density of the fluid is
constant and equal to 1. This is sometimes called the primitive variable formulation since
desired quantities such as velocity and pressure are solved for directly. This formulation serves
as the basis for the projection method, a computational method developed by Chorin [13] and
in common use in the biological fluid dynamics community [21],[23].

One potential drawback to solving the primitive variable equations directly is that we
are not given any explicit boundary conditions on pressure. To eliminate the pressure from
equations (23), we can take the curl of the momentum equation and obtain an equation for
the vorticity & =V x :

G+ (@-V)3— (3-V) i@ =vVw (24)

This equation is most tractable in two space dimensions, where & = (0,0, w) and the vorticity
transport equation (24) reduces to

wi + (- V)w = vViw (25)

where now, @ = (u,v) and w = v; — uy is the scalar vorticity. Because the velocity field is
continuous and divergence free, we can introduce a function v (z,y,t) for which

u = 1y, v = —1, (26)

Using the definition of the vorticity, we have that v satisfies the elliptic equation V%) = —w.
The function 1 (z,y,t) has the property that

(@- V) =0 (27)

so that level curves of ¢ trace out instantaneous particle paths or streamlines of the flow. For
this reason, 1 is called a streamfunction.
The streamfunction-vorticity equations for incompressible flow are then given by

wi + (- V)w =vV3w
Vi = —w (28)
U= 'L/)ya v = _'L/)Jt

subject to boundary conditions which we discuss momentarily. For a more detailed discussion
of these equations, one can consult any one of a number of elementary fluid dynamics texts,
including [1] and [15].

The streamfunction-vorticity equations have certain computational and modeling advan-
tages over the primitive-variable formulation. First, these equations are naturally decoupled
into an advection-diffusion equation for the vorticity and an elliptic equation for the stream-
function. Second, in two space dimensions, the vorticity is a conserved quantity and so we can
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take advantage of high resolution finite volume advection algorithms to solve the advection-
diffusion equation for vorticity. Finally, the numerically computed velocity field obtained by
differencing the streamfunction as in (20) satisfies the discrete divergence free condition (21)
exactly. From a modeling point of view, one may actually prefer to compute vorticity and
streamlines directly, rather than velocity or pressure. For example, in [70], Wang uses this
formulation to compute vortex shedding behind flapping insect wings. In [12] and [11], Cheer
and Koehl compute the mass flux between filtering appendages, which they represent as solid
objects embedded in a flow field. Such a computation can be done quite easily if the stream-
function for the flow is known. Finally, quantities of aerodynamic interest, such as lift and
drag forces are easily computed from a given vorticity field.

Boundary conditions appropriate for the above equations are derived from desired boundary
conditions on the primitive variables. A no-flow condition @ - 77 = 0, where 7 is the vector
normal to a boundary, is imposed by requiring that the tangential derivative of v, 9v/0r,
along the boundary be zero, or that 1 be constant along solid boundaries. Mathematically,
this corresponds to imposing a Dirichlet condition on % at the solid boundaries. To impose
the no-slip condition, we must require that @ - ¥ = 0, or that di¢/0n = 0. This corresponds
to a Neumann condition on 1. If our domain is multiply-connected, we must also impose a
circulation condition on each object to insure the uniqueness of the streamfunction solution.
The fact that we must satisfy both 1) = constant and 9¢/9n = 0 on ¢ appears to overdetermine
the elliptic problem for the streamfunction. However, when we consider the elliptic problem
coupled with the vorticity transport equation, we see that we have exactly the right number
of boundary conditions. This is seen most easily by eliminating w from the equations and
considering the resulting biharmonic equation for ).

When considering how to solve the coupled system of equations numerically, however,
we are faced with the problem that we do not have any explicit boundary conditions on
w, and seemingly too many for 1. Mathematically, a shear gradient in the boundary layer
at a solid boundary is coincident with the presence of non-zero vorticity there. Although
physically the mechanism by which vorticity appears near solid boundaries is not so clear, it is
nonetheless common to appeal to the notion of “vorticity generation” near solid boundaries and
to consider numerical methods which introduce vorticity into the domain at these boundaries
in an amount that exactly cancels the slip velocity, thereby satisfying the boundary condition
1, = 0. Considerable research has gone into deriving schemes for introducing vorticity into the
domain or coming up with conditions on the vorticity that insure that the no-slip boundary
condition will be satisfied. See for example [65], [36], [14], [59], [3], [71]. Our approach is in the
spirit of vorticity generation, in that we derive a flux condition on the vorticity that introduces
vorticity into the domain and cancels the slip velocity at the boundary.

For the remainder of this section, we discuss our approach to solving equations (28) on
a Cartesian grid in the presence of embedded complex geometry. A typical example of the
geometry we have considered so far is the multiply-connected exterior region shown in Figure 2.
Although our methods are applicable to very general geometries, we focus here on the exterior
flow problem for a couple of reasons. First, the problem of flow around isolated objects arises
in a number of problems in bio-fluid mechanics, including flow around swimming organisms
[22], filtering appendages [12], [11], [38], through tissue past capillaries [66] and flapping wings
[70]. Second, we wanted to be able to compare our results to standard benchmark problems,
of which the classic problem is flow past a cylinder. Finally, we wish to discuss the additional
constraints that one must impose on the streamfunction in a multiply-connected domains.
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Figure 2: A typical grid on which the streamfunction vorticity equations are solved. The
flow domain is the region exterior to the embedded objects. The objects are assumed to be
stationery and rigid.

We assume that the embedded objects shown in Figure 2, labeled €2, 5 = 1,... Mpyygies are
stationary and rigid, and so we must satisfy both a no-normal flow and a no-slip boundary
condition on each object. On the boundary of the computational domain, we impose inflow
conditions at the left edge, outflow conditions at the right edge, and free stream conditions on
the top and bottom edges. The top and bottom act like free-slip boundaries parallel to the
direction of the mean flow.

To solve the advection-diffusion equation in (28) for the vorticity, we use the fractional
step approach described in Section 6. First, a given vorticity field is advected using a velocity
field computed from the current streamfunction. The irregular geometry is handled using
the capacity function, as described in Section 6. In this step, we impose no-flux boundary
conditions on the embedded objects. The advection step is followed by the diffusion step
described in Section 6.2. In this diffusion step, we impose a non-zero flux condition dw/dn = ¢
at the solid boundaries. This flux g is determined by solving an auxiliary Stokes flow problem,
described below. In the process of solving this Stokes flow problem, we also determine a
streamfunction ¥ which we use to update our velocity field, and, because it satisfies the Stokes
flow problem, satisfies ¥, = 0.

The auxiliary Stokes flow problem is given in terms of a node-based quantity @, obtained
as a result of averaging the cell-averaged quantity w onto grid nodes. The Stokes flow problem
is

o =vVie,  dwjon=g, (z,y)€ 0
v2'¢ = —(2), @b = Q:bja ('T’y) € 8Qj
Yo=0, (z,y) € 0Q (29)
— ds =0. jzla---Mbodies
where the flux g of vorticity along the boundaries of the objects is an unknown in the problem.
Physically, the vorticity distribution &(z,y,t + At) that results from applying the flux g over

a single time step At has the property that the solution to V2¢ = —& satisfies 4, = 0, in
addition to the Dirichlet condition ¢ = ;.
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The constants Ej, 7 =1,... Myygies are also unknowns in the problem and are determined
so that the circulation I';

Fj:/ w-Tds = 1pnds:/ wdA (30)
09 0Q; Q;

J

around each object {2; remains constant in time. This condition is satisfied by requiring that
the net flux of vorticity into the bodies be zero for all time, or that the last equation in (29)
hold. Note that we don’t require that the circulation around the objects be zero; the circulation
is determined initially by our choice of 1), (or, equivalently by the initial vorticity distribution
inside each object). Of course, when the bodies are stationary, then the no-slip condition is
just ¥, = 0 and inside of each body we have w = 0, so that for each body, I'; = 0 for all time.

To discretize the equations for the Stokes flow problem in (29), we use a modified version
of the Immersed Interface Method described in Section 5 of the sort developed in [9], [75] and
[72]. The IIM, as applied to these problems, gives second order accurate solutions to ¢ and
w, and 1, = 0 is satisfied to second order. Once we have discretized the equations, we can
easily solve them by recognizing that we can set up a linear system for the flux function g
evaluated at discrete locations along the solid boundaries. This linear system can either be
solved directly, by explicitly forming a matrix equation, or solved iteratively, using for example,
the Generalized Minimum Residual algorithm (GMRES). Numerical tests demonstrate that this
linear system is quite well conditioned [9].

7.1 Numerical results for the streamfunction-vorticity equations

Comparison of our results with those from the standard benchmark problem, flow around a
cylinder, show that algorithm yields results are in excellent agreement with other published
computational and experimental results. In [9], Calhoun compared the results of the above
algorithm with the experimental results of Coutanceau and Bouard [16] and [17] and the
computational results of Fornberg [29] and found that velocity fields and vorticity wakes were
quite well reproduced. For low Reynolds number flows (Re < 40), the flow remains steady and
symmetric and any small perturbations in the wake of the cylinder are damped. At around
Reynolds number 50, the the streamline wake begins to oscillate and by Reynolds number 100,
vorticies are shed behind the cylinder forming the well known von Karman vortex street.

In the three sets of plots in Figures 3 to 5, we show results of our numerical algorithm for
more complicated flows at Reynolds numbers varying from Re = 20 for Figure 3 to Re = 100
for Figure 5. In each case, the Reynolds number is based on the diameter of the object(s). In
each set of plots, we show the streamfunction, advection of a tracer (grey shaded material), the
horizontal velocity field and the vorticity distribution at some fixed time. For the calculation
shown in Figure 3, the flow has reached a steady state, and there is no vortex shedding in
the wake behind the bodies. From the plots of the horizontal velocities, one can see that the
boundary layers around each object is fairly thick, and from the tracer plots, significantly more
tracer is flowing around the objects than through them. In the calculation shown in Figure 4
at Re = 40, the shear gradient is steeper (and the boundary layer thinner) and more tracer
material flows between the embedded objects. The last set of plots in Figure 5 provides an
example of vortex shedding behind a complex bluff body. In this example, the boundary layers
are fairly thin, although there are large areas where the velocity is essentially zero due to the
shielding affect of the body on the flow.
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Our goal in showing these plots is to demonstrate that our algorithm produces realistic
results in some biologically relevant regimes. Our choice of examples was motivated to some
extent by the work of Cheer and Koehl [12], [11], who considered flow around fixed objects.
Wang [70] also considers flow around a fixed wing, and so in principle our scheme could be
used for these calculations as well. However, these examples, as well as most other interesting
examples in biofliud mechanics, really involve moving and deforming boundaries and more
complicated boundary conditions. For these reasons, we are now considering methods for
incorporating these features into our finite difference/finite volume methods.

Adding the more complicated boundary conditions should be a simple modification to the
code. We would like to consider problems in which the boundaries of the embedded objects are
absorbing or releasing some tracer material (with concentration ¢) into the flow. In general,
the flux rate of this tracer will depend on the amount of tracer present near the boundary, and
so this will lead to a boundary condition on the tracer that takes the form dq/on = f(q,x,1),
where f may be a linear or non-linear function of ¢g. This type of boundary condition appears,
for example, in oxygenation of tissue, where the flux of oxygen through capillary walls is
proportional to the partial pressure of oxygen in the tissue [66].

We are currently working on extending our method to moving boundaries. Successful
Cartesian-grid finite-volume methods for moving geometries have been developed for com-
pressible flow, see [31] for one example. Our goal for incompressible flow is still to solve the
streamfunction-vorticity equations for the fluid motion on a uniform grid, along with advection-
diffusion equations for any tracer concentrations. The volume of the finite-volume cells will
now be time-dependent, however, as the boundaries move through the grid. In the future we
also hope to combine this algorithm with an immersed interface method for flexible membranes
immersed in the fluid.

8 Summary

We have presented an overview of some recent work on Cartesian grid methods for solving fluid
dynamics in complex geometry. The immersed boundary and immersed interface methods are
finite-difference methods which can deal with discontinuities in the solution across boundaries
or interfaces. These methods are often used for problems with moving boundaries as well, in
cases where the motion of the boundary is coupled to the fluid dynamics.

Finite-volume methods have some advantages for problems where conservation is important,
and steep gradients in the solution can be well-resolved by high-resolution methods. The
finite-volume method described here for advection-diffusion and the streamfunction-vorticity
equations can deal with complex geometries. We have developed an approach to determine the
flux of vorticity at a no-slip wall based on the behavior of the streamfunction at the wall (as
computed by a finite-difference immersed interface method). This gives the required boundary
condition for vorticity.
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