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THE IMMERSED INTERFACE METHOD FOR ELLIPTIC
EQUATIONS WITH DISCONTINUOUS COEFFICIENTS AND

SINGULAR SOURCES*

RANDALL J. LEVEQUE AND ZHILIN LI:

Abstract. The authors develop finite difference methods for elliptic equations of the form

V. ((x)Vu(x)) + (x)u(x) f(x)

in a region in one or two space dimensions. It is assumed that gt is a simple region (e.g., a rectangle)
and that a uniform rectangular grid is used. The situation is studied in which there is an irregular
surface F of codimension contained in fl across which , a, and f may be discontinuous, and along
which the source f may have a delta function singularity. As a result, derivatives of the solution
u may be discontinuous across F. The specification of a jump discontinuity in u itself across F is
allowed. It is shown that it is possible to modify the standard centered difference approximation to
maintain second order accuracy on the uniform grid even when F is not aligned with the grid. This
approach is also compared with a discrete delta function approach to handling singular sources, as

used in Peskin’s immersed boundary method.

Key words, elliptic equation, finite difference methods, irregular domain, interface, discontin-
uous coefficients, singular source term, delta functions
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1. Introduction. Consider the elliptic equation

V. (Vu) + gu- f

in a domain in one, two, or three space dimensions. Within the region , suppose
there is an irregular surface of codimension 1 (hereafter called an interface) across
which the function u or some of its derivatives are known to be discontinuous. For
simplicity we assume that f is a simple domain, such as a square in two dimensions,
and that we wish to solve the equation using a finite difference method on a regular
grid, e.g., a uniform Cartesian grid. The interface is typically not aligned with the
grid but rather cuts between grid points so that for grid points near the interface the
stencil of a standard finite difference method will contain points from both sides of the
interface. Because of the nonsmoothness of u, differencing u across the interface using
standard difference formulas will not produce accurate approximations to derivatives
of u, and hence a naive discretization will produce results with low accuracy.

For discontinuities to arise in the solution or its derivatives, there must be dis-
continuities or singularities present in the coefficients of the equation. Suppose, for
example, that the function is discontinuous across the interface, while n and f
are continuous. Then u and Ou/On will be continuous while the normal derivative

Ou/On will be discontinuous. Such problems arise frequently, for example, at the in-
terface between two materials with different diffusion parameters in steady state heat
diffusion or electrostatic problems. A Poisson problem with discontinuous coefficients
also arises in multicomponent flow problems, e.g., the porous media equations used
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to model the interface between oil and an injected fluid in simulations of secondary
recovery in oil reservoirs [2], [5], [25].

Tikhonov and Samarskii [26] discuss the one-dimensional problem and the deriva-
tion of second-order methods on uniform grids using the jump conditions at a point of
discontinuity in the coefficients. In two dimensions, Mayo [20] has considered similar
problems and has shown how standard difference formulas can be modified to obtain
second-order accuracy in the context of solving Poisson or biharmonic equations on
irregular regions. The region is embedded in a regular region where a fast solver can
be used on a uniform grid and the right-hand side is appropriately modified near the
original boundary. Mayo and Greenbaum [22] consider an interface problem in mag-
netostatics of the form (1.1) with a piecewise constant coefficient . The possibility
of extension to variable is mentioned in [21].

MacKinnon and Carey [18] also use a similar approach in one dimension and
make some extensions to two-dimensional problems in which the interface lies along
a coordinate direction. Fornberg and Meyer-Spasche [17] have considered elliptic
equations with free boundaries that are solved on a uniform grid by adding correction
terms near the interface to improve the accuracy.

Here we use a similar approach to derive modified difference equations for a quite
general problem of the form (1.1), which produce second-order accurate results on a
uniform grid in one or two dimensions. We derive appropriate coefficients at the grid
points on a stencil that contains (in two dimensions) at most six points: the points of
the standard five-point stencil plus a sixth point if we are near the interface, which is
chosen from the set of diagonally adjacent grid points. The coefficients at these points
can be determined by solving a system of six linear equations. The same approach
should work in three dimensions as well and details will be presented elsewhere.

Instead of discontinuities in/, another possibility is that is continuous but that
the source term.f has a delta function singularity along the interface F, e.g., in two
dimensions

(1.2) f(x, y) Jfr
where (X(s),Y(s)) is the arc-length parameterization of r and C(s) is the source
strength. By this we mean that f(x, y) is a distribution with the property that

f(x, y)(x, y)dxdy Jr C(s)(X(s), Y(s))ds

for any smooth test function (x, y). Again the solution u will be continuous but the
normal derivative will have a discontinuity of magnitude C(s). As a model problem,
consider the heat conduction problem in which a heat source is applied only along
F. The temperature u will be highest along F, falling off to either side, resulting in
a jump discontinuity in the normal derivative. In this case the standard five-point
stencil can be used, but we must derive an appropriate term on the right-hand side to
model the singular source. A dipole source may also occur, in which f contains the
derivative of the delta function, and as a result the solution u itself is discontinuous
across F. Again we can derive the appropriate right-hand side fij at each grid point
so that the solution to the finite difference equations is second-order accurate in spite
of the discontinuities.

More generally, we can handle discontinuities in , , and f simultaneously with
delta function or dipole sources. A general procedure for deriving the coefficients
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in the stencil and the right-hand side is presented below. All that is required is
a priori knowledge about the jumps in derivatives of u across F. For the above
examples, sufficient information can be derived from the equation itself, without a
priori knowledge of the solution.

Although this procedure is presented in the context of the elliptic equation (1.1),
the same approach could be used for other problems where discontinuities in the solu-
tion or its derivatives are expected across immersed interfaces. A possible application
would be to wave propagation through nonhomogeneous media with discontinuities
in the propagation speed. This is currently being investigated.

Another potential application is to time-dependent parabolic equations where
the elliptic part of the equation has the form (1.1). In this case F might be fixed
(e.g., heat conduction in a nonhomogeneous material) or a moving free boundary
governed by other equations coupled to the parabolic equation. The latter case arises
in solidification problems, where F represents the interface between two phases of
a substance, e.g., ice and water. In this case there is a discontinuity in the heat
conduction coefficient across F and also a singular source at F due to latent heat
release [11], [14]. Of course, this is a substantially more complicated problem, but
an implicit method would require solving a Poisson problem of the above form in
each time step. Mayo [19] disusses similar methods for the heat equation in irregular
domains.

Another more complicated problem with similar characteristics arises in using the
"immersed boundary method" to solve the incompressible Navier-Stokes equations in
a region with complicated geometry. This method was originally developed by Peskin
[23], [24] to model blood flow in the heart and has since been used for many other
problems, particularly in biophysics [6], [12], [13], [15], [16]. The idea is to solve
the Navier-Stokes equation on a uniform grid in a rectangular region in spite of the
complicated time-varying geometry, e.g., the heart wall. This boundary is viewed as
being immersed in the fluid and moves with the local fluid velocity. The boundary
exerts force on the fluid, which is concentrated at the boundary, and hence gives a

forcing term of the form (1.2) (although in this case u is a vector of velocities and
C(s) is a vector of force strengths in each coordinate direction). As a result the
normal derivative of the tangential velocity will typically have a jump discontinuity
at the interface and so will the pressure. The eventual development of second-order
accurate methods for this problem was our original motivation in studying (1.1). We
have called our general approach the immersed interface method since it is in the
same spirit as Peskin’s immersed boundary method but allows more general interface
conditions.

Peskin’s approach for the Navier-Stokes equations can be applied to problems of
the form (1.1) as well, but only in the case of a delta function forcing term, not to
problems with discontinuous coefficients. The main idea is to discretize the immersed
boundary by a set of Lagrangian points (X(sk), Y(sk)), k 1,2,... ,m and replace
the integral in (1.2) by a discrete sum, also replacing the delta function by some
discrete approximation dh(x) with support related to the mesh width h. Simple
examples are the hat function

I (h-lxl)/h iflxl<h,
(1.3) dh(x)

0 if Ixl > h

and Peskin’s discrete delta function
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/ + if Ixl <
0 if Ixl >_ 2h.

In applying a finite difference method to (1.1) on a uniform grid we need values
fij at (xi, yj). The value used is

fiJ E C(sk) dh(xi Xk) dh(Yj Yk)As.
k=l

In one space dimension this approach is easy to analyze. In this case the interface
reduces to a single point x c E (0, 1). For example, for the equation

(1.6) u"(x) C 5(x a), u(O) u(1) O,

the solution is piecewise linear with a jump in the slope of magnitude C at x c.
The finite difference method

(1.7) (uj+l 2uj + Uj_l)/h2 C dh(xj c)

with dh given by (1.3) turns out to be very accurate; in fact it produces the exact
solution u u(xj) at all grid points in spite of the nonsmoothness of u (see [7]).

Beyer and LeVeque [7] have also analyzed time-dependent versions of the problem
and show that second-order accuracy can still be obtained with an appropriate choice
of the discrete delta function.

In two space dimensions, however, it does not appear to be possible to achieve
second-order accuracy at all grid points using a right-hand side of the form (1.5).
On the other hand, it turns out that the theoretical analysis used in [7] to analyze
(1.7) can be extended to define numerical methods in two or three directions that are
second order accurate, and this is the basis of the approach described below.

Work is currently underway to extend this approach to deal with time-varying
boundaries, as, for example, in solidification problems or the incompressible Navier-
Stokes equations. The focus here is on the elliptic equation (1.1). We note, however,
that this will be required as a component of an eventual Navier-Stokes solver, since
many methods for the incompressible Navier-Stokes equations require solving a Pois-
son problem for the pressure as a projection operation [4], [10]. The required jump
in pressure across the interface can be imposed on the solution using our approach as
described in 4.

1.1. Other approaches. At this point we should justify our interest in the use
of uniform grids for problems of this nature. Using a grid that conforms to the
interface is an obvious alternative, for example, a structured grid that is deformed
in the neighborhood of the interface (e.g., [8]) or an unstructured triangulation. The
finite element method on such a grid would be a natural choice for this elliptic equation
and can be used very successfully (e.g., [3]). However, in many contexts the use of a
uniform grid may be preferable.

In particular, if is constant then we will see that the modified difference equation
uses the standard five-point difference operator and only the right-hand side of the
linear system is modified. This means that fast Poisson solvers can still be used to
solve the system on a uniform grid, an advantage that would be lost on an irregular
grid. Even if/ is discontinuous so that the coefficients in the linear system must be
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modified, the system maintains the same block structure as in the continuous case.
We can then use available software designed to accept a user-specified stencil on a
uniform rectangular grid.

More importantly, we are interested primarily in time-dependent problems, where
a problem of the form (1.1) must be solved in each time step. In this case, the interface
F is typically moving. Although it is possible to develop moving mesh methods
that conform to F in each time step, this is generally much more complicated than
simply allowing F to move relative to a fixed underlying uniform grid. For example,
the immersed boundary method has been very successful in modeling flow in very
complicated time-dependent geometries such as the beating heart with valves opening
and closing. This would be difficult if not impossible to do with grids that conform
to the boundary.

For problems with discontinuous coefficients, another approach to deriving the
proper coefficients on a uniform grid stencil is the method of harmonic averaging.
The one-dimensional expression (u), for example, can be approximated by

1- [+/.(+ ) _/.(u- _)].

If is smooth then we can take +1/2 (xi+1/2) (where xi+l/ x + h/2)
and achieve second-order accuracy. If B is discontinuous in [Xi-l,Xi+l], then the
coefficients can be chosen as harmonic averages of (x), e.g.,

-(x) dx

This can be justified by homogenization theory for problems where (x) varies rapidly
on the scale of the grid cells, and to some extent also for the case where is sim-
ply discontinuous as we are considering, but the fact that this yields second-order
accurate results seems to be primarily the result of fortuitous cancellation. In two
space dimensions harmonic averaging is also commonly used to deal with discontinu-
ous coefficients [5], [25], now integrating over squares to obtain the harmonic average
of (x, y). In this case, however, the method does not appear to give second-order
accurate results and we find that our approach is greatly superior.

2. One-dimensional problems. We begin by considering the one-dimensional
problem

(2.1) (Zu) + u f + Cb(x )

on the interval [0, 1] with specified boundary conditions on u at x 0 and x 1. The
function (x) is allowed to be discontinuous at x a. For simplicity we will assume
that (x) and f(x) are smooth functions, although discontinuities in these functions
could also be handled with a minor modification of what follows.

We also allow an additional constraint to be imposed on the solution, namely,
that the function u should have a jump discontinuity at x a of specified strength

(e.e) [] + - 5.
This could be incorporated into (2.1) by including a dipole source term proportional
to the derivative of the delta function, changing (2.1) to

+(.) (Z) + I + Cb(x ) + (Z- + )55’(x ).
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For simplicity, however, we leave this as an external constraint.
By integrating (2.1) across the discontinuity, we find that /ux has a jump of

magnitude C,

(2.4) [Ux] +u+ -u- C.

An alternative way to state the problem is to require that u satisfy the equation

(2.5) (ux)x + gu- f

in each of the intervals (0, c) and (a, 1), together with the two boundary conditions
(2.2) and (2.4)at x a.

We now wish to approximate the solution u(x) on a uniform grid in the interval
[0, 1], with

xi ih, 1,2,...,n,

where h 1In. The point c will typically fall between grid points, say xj <_ o < xj+l.
Our goal is to develop finite difference equations of the form

that can be used together with the boundary data u0 and un to obtain a second-order
accurate approximation to u(x) at the uniform grid points.

For j, j + 1 the solution u is smooth in the interval [xi-1, xi+l] and we can
use the standard approximation

(2.7)
1

(i+1/2(ti+1 ti) i-1/2(ti- ti-1)) + Ii ti fi,h-
where

In this case we can take

n(x,), fi f(xi).

"i,1 3-/2/h2, ’7i,2 -(/3i_/2 + 3i,+i/2)/h2,

"i,3 i+1/2/h2, and C 0.

This gives a local truncation error that is O(h2):

(2.9) Ti i,lt(xi-1) - "fi,2?(xi) - "i,3t(Xi+l) + tit(xi) fi O(h2)

We wish to determine formulas of the form (2.6) for j and j + 1 so that
second-order global accuracy is obtained. Since only two grid points are involved
(independent of h), it is sufficient to have an O(h) local truncation error at those
points.

To compute the local truncation error at the point xj, we expand uj_, uj, and
Uj+l in Taylor series about the point x a. Since we expect the 7 coefficients to be
O(1/h2) we must expand out through O(h3) to ensure an O(h) truncation error. We
use the notation

u-= lim u(x), u+= lim u(x),
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and expand to obtain

(2.10)
(2.11)
(2.12)

Note that if xj a, then u(xj) is defined as the limit of the u(x) approaching from
the left. The corresponding uj then is the approximation to this specific limit. We
also use

(2.13) aju(x.) a(a)u-(a) + O(h) and fy f(a) + O(h).

The expression for u(xj+) involves u+, ux+, and u+x at a+. However, using the known
jump relations we can replace these by values at a-. This will allow us to use the
partial differential equation (PDE) (2.1) to determine the 3’ coefficients. From (2.2)
and (2.4) we have

u+ u- +67,
+x (--2 + c)/+.

From (2.5) we also see that (3ux) + au is continuous at x a, since f is, and so

+ + 3+ 3u-2 + 3-u- +3x U + U+x + au+

and hence

1( ((2.14) U+x + -u- + -2

Using these expressions in (2.12) gives

ZZ (x2t(Xj+l) t -I- (Xj+l o) -- /+ (/+)2

(2.15)

+ ) /
2 ] Ux-- (xj+ )2/--

2Z+ u- +

C (Xj+l-o)2 (/xq- d)--(Xj+I O)
/+ 2 --C -- gIn computing the local truncation error we also use the PDE (2.1), which, in ap-

proaching c from the left, gives

(2.16) u- +-u + a(a)u- f(a).

We use this to replace the f(a) term in the local truncation error, obtaining

(2.17)
,,(x_) + ,,.(x) + ,,(x+) + ,()-
-[u- +/-u- + au-] Cj + O(h).

Replacing u(xj_l), u(xj) and lt(Xj+l) by the expressions (2.10)-(2.12) and collecting
terms then gives
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(2.18)

We can ensure that Tj O(h) by requiring that each coefficient of u-, u-, ux- van-

ish, as well as the constant term. This gives four equations for the four unknowns
"/j,l,"/j,2,yj,a, and Cj. The first three equations give a linear system for the 7’s"

(2.19) /x +l--

(Z+)2 2 z,3 Z-,

(x+ _.)2Z-
2+ 7j,3 3-.

Once these 7’s have been computed, we then set

(.o) c , & + (+ ) (+ ) (+) +

In a similar way, we can compute the coefficients in the equation at xj+ from the
system

(2.21)

(Xj 0/)2 -4- (Xj+l O)2 (XjA-2 0)2

--"fj+l " 7j+1,2 -4- ’j+1,3
2 2 2

and then

(. C+l=/l, -d+(-) _- (-/ ,
In the particular case when 2 0 and + 0 (in particular if is piecewise

constant), we can easily get explicit expressions for the ’s. Setting

D h2 + [](xj_ a)(xj a)/2fl-,
h2Dj+ [fll(xj+2 a)(xj+l a)/2fl+
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these can be written as

-yj, (/3- -[/](xj -o)/h)/D., 3’j+l,1

(-2/3- + [3](x_ -a)/h)/D, 7+1, (-2/3+ + [3](x+2 -a)/h)/Dy+,

/j+l,3 (+ -[/](Xj+l a)/h)/Dj+l,

provided that Dj, Dj+I O. In practical problems often represents a physical
quantity such as conductivity, permeability, or density and so > 0 everywhere. In
this case it is easy to show that each of the determinants Dj and Dj+I is also positive.

More generally, if +- > 0, then it can be shown that the systems (2.19) and
(2.21) have unique solutions at least for all h sufficiently small, since the coefficients
look essentially constant in a neighborhood of the point c on a fine enough grid.

If +- < 0 then the systems may be singular, although generically they are still
nonsingular. Note that in this case it would be possible to multiply the equation by
-1 on one side of c, yielding a problem with/-+ > 0 at the possible expense of
introducing discontinuities in a and f. These discontinuities can easily be handled as
described below. In this case we must be careful with the jump conditions; the jump
conditions for the original equation must be imposed and not the jump conditions for
the modified/.

Note also the following properties and special cases of the y coefficients that result
from solving these systems.

The / coefficients depend only on the function (x) and the position of c
relative to the grid, and not on C or (.
If is constant, then solving the systems (2.19) and (2.21) we recover the
standard coefficients 7i i3 /h2 and 7i2 -2/h2 for j, j + 1.
If/3 is continuous, then the standard coefficients (2.8) satisfy the system (2.19)
to O(h).
In the case when/3 is piecewise constant, the harmonic averaging coefficients
satisfy the first two equations of (2.19) but not the third, indicating that the
truncation error of this method at xj and x+ is O(1). But we can prove
that due to cancellation of errors this method is still second-order accurate.
If C ( 0, then Cj Cj+I 0 and the inhomogeneous term in the
difference equation is simply fi. In this case a discontinuity in/ affects only
the coefficients and not the right-hand side.
If is constant and 0, then

1
(2.23) Cj -- (Xj+I o)C q- d Cdh (xy a) + d/3d (xy a),

where dh is the hat function (1.3). In this case we can view the difference
scheme as a direct discretization of the equation

u"(x) f (x) + CS(x c) + /35’ (x o).

2.1. The general one-dimensional problem. Now we suppose that f and a
may also have discontinuities at c. We only need a slight change in the linear systems
for the jk’s and j+,k’s and the corrections Cj and Cj+ to get the correct difference
schemes at the grid points xj, xj+.
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At the grid point xj, the first equation of the linear system (2.19) becomes

(2.24) j,l--/j,2 + (1 (xj+I-O)2 )2Z+
0

and the correction term now is

(2.25) Cj j,3 -- (Xj+l 0) (+)2 -- t++At the grid Xy+l, the first equation of the linear system (2.21) becomes

(2.26) 1 + 2-
[;] j+l, -t- ")’j+,2 + ’)’j+l,a 0

and the correction term is

(2.27) Cj_t_ j+l,1 - - (o xj)_ 2 (_)2
t- t_

3. A simple two-dimensional problem. To introduce the ideas used in two
dimensions in a simple framework, we begin by considering the equation

(3.1) (/ux )x + uy )y + a(x, y) u f(x, y), (x, y) e a
in the case where is piecewise constant and has a jump discontinuity across some
curve F in t, while a and f are assumed to be smooth. Formulas for the more general
case, in which t and f may be discontinuous, f may contain singular forces, and we
may also require a discontinuity in the solution u, will be presented in 4.

The interface F can be an arbitrary piecewise smooth curve lying in Ft. We need
not assume that F is closed or even connected. It may consist of several segments.

We assume the domain is a square, say [a, b] [a, b]. We take a uniform grid
with

xi a + ih, yj a + jh, i,j=0,1,...,n,

where h (b-a)/n. Figure 1 gives an example of the uniform grid and the immersed
interface.

Our goal is to develop a finite difference equation of the form

(3.2) E /k Ui+ik,y+jk + aijuij fij + Cij
k

for use at the point (xi, yj). The sum over k involves a finite numbers of points
neighboring (x, yy) (at most six in the formula we derive). So each ik,jk will take
values in the set {-1,0,1}. The coefficients k and indices ik,jk will depend on

(i, j), so these should really be labeled ija, etc., but for simplicity of notation we will
concentrate on a single point (i, j) and drop these indices.

We say (i, j) is a regular point if the interface does not come between any points in
the standard five-point stencil centered at (i, j). At these points we obtain an O(h2)
truncation error using the standard 5-point (k 5) formula- +1/2,j h h

(+ i,j+I/2
(u,j+ u,j)

,j-1/2 + Iijuij fij,
h h
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-0.5 ) 0.5

FIG. 1. A circular interface F in a 26 x 26 uniform grid. This geometry is used for the test
problems presented in 5.

F
j+l

j-1

5 6

i-1 / i+1

FIG. 2. The geometry at an irregular grid point (i, j). The coefficients /1 through "6 will be
determined for the stencil points labelled 1-6. The circled point on F is the point (x, y ).

with

(3.4) Cij O.

We wish to determine formulasof the form (3.2) for the irregular points also.
Since these points are adjacent to the curve F and form a lower-dimensional set, it
turns out to be sufficient to require an O(h) truncation error at these points, just as
in one dimension. We follow the same approach as in one dimension and expand all
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the UiWik,jWjk about some point (x, y) on the interface F. In one dimension there
was only one such point, c. In two dimensions we have flexibility in choosing (x, y).
We might take, for example, the point closest to (xi, yj) as illustrated in Fig. 2. We
then expand each Ui+ik,j+jk about (x, y), being careful to use the limiting values of
derivatives of u from the correct side of the interface. We use the superscripts or +
to denote the limiting values of a function from one side or the other. As an example,
in the configuration shown in Fig. 2, we would expand

,)2+ + +
+-uyyl (yj y)2 + u-y (xi x)(yj y) + O(h3)

and

t(Xi+ Yj + ,)2t+ +tx+ (Xi+I --X "n
t- t+y (yj g) nt- -txx (Xi+I --X

+ ,)2 ?.t+xy(Xi_t_l Xi+ +

If we do this expansion at each point used in the difference equation (3.2) then the
local truncation error Tij can be expressed as a linear combination of the values
u+/- u:+/-, Uy+/-, Ux:,+/- Uy, Uyy.+/- Following the one-dimensional derivation in 2, we now wish
to eliminate all values on one side of the interface, say the values u+ uz+ Uy+ uz+x u+xy,
U+yy, in terms of the values on the other side, u-, u-, Uy, u:,, U-y, Uy.. We must do
this using the jump conditions across F,

(3.7) u- u+

and

Ou- + Ou +
(3.s)

where O/On represents differentiation in the normal direction. From (3.7) we have that
tangential derivatives are continuous, while (3.8) gives information about the jump
in the normal direction. Differentiating these and manipulating the results allows us
to perform the desired elimination, as detailed below. To do this, it turns out to be
very convenient to first perform a local coordinate transformation into directions ,
normal to F, and , tangential to F.

Once Tij is expressed as a linear combination of the values u-, u-, uy, uxx "tt-y,
and uy, we must require that the coefficient of each of these terms vanishes to achieve
an O(h) truncation error. This gives a linear system of six equations to determine
the coefficients 7k. To obtain a solvable system we require six points in the stencil.
We use the standard five-point stencil together with one additional point.

To summarize, to determine the difference scheme at an irregular grid point we
need to take the following steps.

Select a point (x, y) E F near (xi, yj).
Apply a local coordinate transformation in directions normal and tangential
to F at (x, y).
Derive the jump conditions relating + and values at (x, y) in the local
coordinates.
Choose an additional point to form a six-point stencil.
Set up and solve a linear system of six equations for the coefficients 7k. The
value Cij is also obtained.
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Below we give a detailed analysis of each step.
For each irregular grid point (x,yj) we need to find a point (x,y) on the

interface. We usually take this point as the projection of (x, yj) on the interface if
the interface is smooth at this point. Otherwise we can take any smooth point on the
interface in the neighborhood of (x, Yd)" In some contexts it may be more convenient
to choose a nearby point that lies on a coordinate line between (x, yj) and one of its
neighbors.

After choosing (x, y) we are ready to apply a local coordinate transformation
(shift + rotation) near this grid point. Let 0 be the angle between the x-axis and the
normal direction, pointing in the direction of the + side. The transformation is as
follows:

(.9) (x- x;)cos0 + (- ;)s,
(3.10) r/= -(x x)sin0 + (y y)cos0.

Note that under this local coordinate transformation the PDE (3.1) remains un-
changed. In fact, this is true more generally when/3, , and f depend on x and y, as
is shown in 4. We should have new notation for u(x, y), (x, y), f(x, y) in the local
coordinates, say, (, r/) u(x, y), (, r/) (x, y), and f(, r) f(x, y). For sim-
plicity we drop the bars and use the same notation in the local coordinates as in the
old ones. With these local coordinates we are able to derive the interface conditions
as we did in 2.

3.1. The interface relations in the local coordinates for two-dimensional
problems. We consider a fixed point (x, y) and define a new C-r/coordinate system
based on the directions normal and tangential to F at this point using the formulas
(3.9) and (3.10). In a neighborhood of this point, the interface lies roughly in the
r/-direction, so we can parameterize F locally by x(r/), r r/. Note that X(0) 0
and, provided the boundary is smooth at (x, y), X’(0) 0 as well.

The continuity condition (3.7) holds at each point on F. In our local coordinates,
we can write this as

(3.11) u- (x(r/), r/) u+(x(r), r/)

for all in a neighborhood of r/= 0. Differentiating this with respect to r/gives

(3.12) q + q q +

or, in compact form,

(a.la) []x’ + [u,] 0.

Differentiating again with respect to r gives

(3.4) []x’ + 2[,]x’ + []x" + [,,1 0.

Evaluating (3.13) and (3.14) at r 0, where X’ 0, gives two of the desired jump
conditions"

(3.15)
(3.)

[uv] 0, i.e., u u+ uv,
[] x" + [,,] 0.
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We also have the jump condition (3.8) at each point on F. At a point (X(), r/) E F
we can express the normal derivative in terms of - and 7- derivatives as

Ou 1

V--1 + X’2
(u uvx’0--

so that we can write (3.8) as

(3.17) /- (u- u-x’) +(u- u+ x’).

Differentiating this with respect to gives

(3.18) X
2 X’

Evaluating (3.17) and (3.18) at r/= 0 gives more jump conditions:

(3.19) 0,

(a.e0) [Z 0.

We can use the relations (3.17)-(3.20) to derive the following expressions for values
on the + side of F in terms of values in the side. Setting

we can write these relations as

To obtain an expression for u, we note that the PDE (3.1) gives

so that

(3.22) u- pu + (p- 1)u-n + (P- 1)u-

Now we have expressed all the quantities with (+) superscripts in terms of the
quantities with (-) superscripts for the case x’(O) 0. In this simple case they are
homogeneous. The next thing to do is to choose an additional point from (i- 1, j
1), (i 1, j + 1), (i + 1, j 1), (i + 1, j + 1) in addition to the standard five-point stencil.
It seems that the best choice is the point that has the shortest distance from (x*, y*).
The additional point can be written as (xi+io, Yj+jo), where i0 and j0 are each -1 or
1 depending on the position of the additional point.
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3.2. The derivation of the difference scheme for an irregular point. We
are now ready to derive the difference schemes at irregular grid points. Denote the
(-7 coordinates of the six points in the difference stencil,

as

(1,71), (2, 72), (3, 73), (4, 74), (5, 75), (6,76),
respectively. The local truncation error Tij of the difference scheme (3.2) at (xi,
is then

Tij 71t(l, 71) -- 72t(2, 72) -- "3lt(3, 73) + ")’4lt(4, 7"]4)
(3.23)

+(,v) +(,) +(,) c.
We now expand all the terms about (0, 0) in the local coordinates from each side of
the interface, as we did in (3.5) and (3.6), obtaining

2

where the + or sign is chosen depending on whether (k, k) lies on the + or side
ofF.

We also use

(3.4) (,n) -- + O(h) d f f- + O(h),

where n- n(0, 0) and so forth (recall that n, u, and f are continuous). Using these
expansions in (3.23) and collecting terms gives an expression of the form

Tj a u- + a u+ + a3 u + an u + a5 u; + a6u + a7 u + as u{
(3.25) +a9 un + ao un + a un + a2 un + n-u- f- Cj + O(h).
The coefficients aj depend only on the position of the stencil relative to the interface.
They are independent of the functions u, n, and f. If we define the index sets K+
and K- by

K={k: (k,)isonthesideofF},

then the aj are given by

(3.26)
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Using the interface relations (3.21) and (3.22) in (3.25) and rearranging it we obtain

Tij (al + a2)u- + {a3 + a4 p + as (p 1) X" + al0 (1 p) X"} u-
(3.27) + {a5 + a6 + a2 (1 p) X"} u + {aT + asp- Z-} u-

+ + + (,- 1) Z-} + +
+{Z- (u + u,) + k- u- f- + Vii } + O(h),

where again p fl-/fl+. om the PDE (2.1) we know that

Z- + + f- 0

and so this term drops out of (3.27) by taking Cj 0. We can ensure that Tj O(h)
by requiring that each coefficient of u-, u, uo, u , u, and uv vanish. This gives
six equations for the six unknowns 7,’", 7a"

al -l-a2

a3 + a4 p + as (p 1) X" + al0 (1 p) X" 0,

a5 + a6 + a2 (1 p) X
t 0,

aT+asp= -,
a9 + a0 + as (p- 1) -,

all -I- a12 p 0.

As in one dimension, if fl-/+ > 0, then the linear system has a unique solution. To
prove this is not very complicated but rather tedious. We need to consider all the
possible cases for the formation of the new stencil (i.e., the position of the points rela-
tive to the interface). We omit the detailed analysis here. If -+ < 0, then it turns
out that only for some specific value of [/] is the coefficient matrix for the unknown
7j’s singular, so the algorithm is typically successful even in this case. Moreover,
by negating the equation on one side of the interface, it is possible to insure that
/-fl+ > 0 at the expense of perhaps introducing discontinuities into t and f.

Note that since the interface relations (3.21) and (3.22) are homogenous, we
have Cij 0 and there is no contribution to the right-hand side resulting from the
discontinuous coefficients. If el+ - then solving (3.28) we recover the standard
five-point coefficients

71 73 73/4 75 /3/h2, 72 --4/3/h2, and 76 0.

In general, however, the resulting 7j’s are different from those in the standard five-
point stencil. Figure 3 shows some representative stencils for a problem in which fl
has the value 1 on one side of F and 3 on the other side.

The exact nature of the coefficients depends on how large the jump in fl is. We
have not investigated these coefficients in general, but at least for reasonably mild
discontinuities we can make the following assumptions.

The contributions to the difference schemes at irregular points are mainly
from the standard five-point stencil. These coefficients are O(1/he) while the
contributions from the "additional points" are typically much smaller. The
magnitude depends on the jump in fl and the geometry of the grid.
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\

169 -676 169

FIG. 3. The /j coefficients at four grid points near the interface. The coefficient is piecewise
constant with the value/ to the left and 3 to the right. The standard five-point stencil is
used at regular grid points while special six-point stencils are used near the interface. The grid is a

section of Fig. 1, with h 1/13.

All the coefficients except occasionally 76 have the same sign (- for the
diagonal and + for the off-diagonal) as in the classic five-point difference
formula. Since the contribution from the sixth point is much smaller than
from the standard five points, we expect the classical theoretical analysis to
still be applicable for the resulting linear system with slight modifications. In
particular, the system is nearly diagonally dominant, and strictly so if "6 is
always positive.

We use an iterative method to solve the resulting linear system, which is block
tridiagonal. In most of our numerical experiments we have used a line successive
over-relaxation (LSOR) iteration. If f-/+ > 0, the relaxation parameter is chosen
as the optimal parameter for the Poisson problem on a square. The convergence
speed is almost the same as that if we use the LSOR method to solve the Poisson
problem with constant/3 on a square. This confirms the conclusions above. However,
if/3-/3+ < 0, it is difficult to determine a suitable relaxation parameter and we simply
use line Gauss-Seidel iteration. Since this case is less interesting physically, we have
not investigated other approaches.

In the future, we plan to study the use of multigrid methods to achieve faster
convergence. It is not clear how the multigrid convergence rate will be affected by
the discontinuity in the coefficients. Multigrid methods for problems like (3.1) with
discontinuous coefficients have been previously studied (e.g., [1], [9]), but mainly for
problems where the interfaces are aligned with the coordinate directions.

4. The general two-dimensional problem. In this section we present the
analysis for the more complicated two-dimensional problem
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(4.1) (/ u )x + ( u ) + (x, y)u f(x, y), (x, y) e ft.

Now , , and f may all have discontinuities along a general interface F, and so do
u, Ux, uy, Uxx, uxy, and uy. The process basically is the same as in the discussion of

3. We use the same notation and assumptions about the region ft, uniform grid, and
arbitrary interface F. Again we want to use the difference scheme (3.2). For regular
grid points, we still apply the standard five-point stencil (3.3) and (3.4), giving a local
truncation error of O(h2). We will concentrate on the derivation of the difference
scheme at a typical irregular point (xi, yj).

We first demonstrate that the PDE (4.1) remains unchanged if the coordinate
transformation is composed of a shift and rotation. In fact, taking an arbitrary
function w(x, y), under the transformations (3.9) and (3.10), we have

Wx @ cos 0 @ sin 0,

@ sin 0 + @v cos 0,

where (, r) -w(x, y) and so forth, so we have

(x)x + () + , ( +) + + N +
) (g + gvo)+ (/ cos0-/ sin0)(g cos0 vsin0)
+() sin 0 +/v cos 0)( sin 0 + to cos 0) + nu

( +,)+ + +
() +() +.

For simplicity, we will drop the bars again. If some grid point u(xi,yj) happens to
fall on the interface, then u(x, yj) is defined as the limiting value of u(x, y) from one
side of the interface or other. The same argument applies to all other functions such
as , , f and the derivatives of u(x, y). The corresponding uij is the approximation
to this specific limit. We again use the superscripts and + to express the limiting
values from one side of the interface or the other.

The essential difference now is that the interface relations are more complicated.
Two interface conditions are needed in advance to make the problem well-posed. We
assume locally that they are defined by

(4.2) u+ u- w(r),

(4.3) /+ Ou + Ou
o #- o- ()’

where again x(r), r r is the parametric representation of the interface in
the neighborhood of the point (x, y). Here v(r) and w(r) are arbitrary (smooth)
functions that are used to impose quite general jump conditions across F. (Often
v w 0, but we may wish to impose other jumps as an external constraint. An
example occurs in the incompressible Navier-Stokes equations with the immersed
boundary method, where the known jump in pressure across the interface must be
imposed in the solution of a Poisson problem.)

Differentiating (4.2) with respect to r along the interface we obtain

(4.4) [] ’ + [] ,().
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Differentiating this again with respect to r/we obtain

(4.5) [u] X" + X’ d X’ w"[1 + [] + [] ().

Note that in the local coordinates, (4.3) can be written as

(4.6) +(u- u+ x’) fl-(u- u-x’) + vv/1 + (X’).
Differentiating this with respect to r/along the interface we have

(Z+x’ + &

(4.7)

Also from the PDE we know that

If] - u- t+ u+
(4.8)

The numerator of the last term can be rewritten as

(4.9) t- u- + u+ -[t] u- [u] +.
Using these relations, we can express quantities with (+) superscripts in terms of those
with (-) superscripts. The detailed analysis is similar to the process in 3, although
it is more complicated due to the fact that fl(x, y) is not constant in the neighborhood
of the interface and the presence of the source-like terms w(r/), v(/). To save space
here we omit the detailed analysis and simply present the results. Recall that the
parameterization x(r/) is assumed to be smooth with X’(0) 0 and that we are
considering the jumps across F at a fixed point (x, y;) corresponding to r/- 0.
In the expressions below, all functions are evaluated at this point. The jump relations
are given by

(4.10)

t+ t- + W
V

u+ u- + w’,

q, + q)x" +
G- fl,+ V

fl+"
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The local truncation error Tij at (xi, yj) is again given by (3.25) with the co-
efficients ak given by the expressions (3.26) in terms of the unknowns k. We now
replace all of the (+) values by expressions involving (-) values using (4.10). After
combining common terms and eliminating some terms due to the relation- (u- + un + -u- +-u + k-u- f- 0

(resulting from the PDE (4.1)), we obtain

where

(4.11)

j a2 w + a12 - d-- a6 +
+ ao + a4 + as X

We can ensure that Tj O(h) by requiring that each coefficient of u-, u, u
u-, u 7’ and unn vanish, as well as the term (ij -Cij). This gives seven equations
for the unknowns 1,..., % and Cj. The first six equations gives a linear system for
the ’s (recall that each aj is a linear combination of the ’s, given by (3.26), and
that p =/-//+)"

al + a2 as [t]/+ 0,

a3 + pc4 + as(- p+ []X")/+

+ ao[]X"/+ + a12(n- Pn+)/+ -,
(4.12) a5 + a6 as[fln]/fl+ + a12(1 p)X" fin-,

aT+asp= fl-,

a9 + ao + a8 (p- 1) fl-,

a + a2 p 0.

Once the ?j’s are computed, we can easily obtain Cij as

(4.13) Cij iy,
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where ij is given by (4.11).
The remarks at the end of the 3 still hold. Moreover, in the case where and

are continuous but vary with x and y, we see that the set of equations (4.12) reduces
to

al +a2 0,

a3+a4 ,
a5+a6

aT + as
a9 + alo

a11+a2 0.

This set of equations is satisfied to O(h2) by using the five-point stencil with

2 --(i-1/2,j -- i+l/2,j "- i,j-1/2 + i,j+l/2)/h2’

"3 i+ /2 ,j /h2, 9/4 i,j /2 /h2 "5 i,j+ /2 /h2 6 O.

These are the coefficients for the standard formula (3.3).
5. Numerical results. We have done many numerical tests that confirm the

expected order of accuracy for the immersed interface approach. We will present a
few examples in two dimensions. In all of these examples F is the circle x2 + y2 1

4
within the computational domain -1 _< x, y _< 1. See Fig. 1.

Example 1. In this example we compare our method with the discrete delta
function approach for a problem where there is a singular source term along F. The
differential equation is

(5.1) uxx + Uyy r2

We use the Dirichlet boundary condition which is determined from the exact solution

1 if r<_ ,
(5.2) (x,y)

l+log(2r) if r> ,
where r V/X2 + y2. From the equation we know that [Ou/On] 2 at all points on
F.

For the discrete delta function method we take m points on the interface F, where
rn n 2lAx 2lAy is the also number of uniform grid points in each direction.
In the numerical experiments we have found that beyond this point, increasing the
number of points on the interface gives little improvement in the solution. We use
Peskin’s discrete delta function (1.4). We have also tested the hat delta function
defined in (1.3) and the numerical results are almost the same.

Figure 4 shows the results of both methods. We see that our method accurately
gives the jump in the normal direction while the discrete delta function approach
smears the jump, resulting in first-order accuracy.
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FIG. 4. Comparison of two methods in Example 1. (a) The discrete delta function approach.
(b) The immersed interface method.

n

20

40

80

160

320

TABLE
Numerical results for Example 1.

Discrete delta function

3.6140 x 10-1

2.6467 x 10-2

1.3204 x I0-2

6.6847 x 10-3

3.3393 x I0-3

Ratio

12.7939

2.0045

1.9753

2.0018

Immersed interface method

En Iloo Ratio T Iloo Ratio

2.3908 10-3 2.8276 10-1

8.3461 10-4 2.8646 1.6922 10-1 1.6710

2.4451 10-4 3.4134 8.3449 10-2 2.0278

6.6856 10-5 3.6573 4.1892 10-2 1.9920

1.5672 10-5 4.2658 2.3049 10-2 1:8175

Table 1 shows the results of a grid refinement study. The maximum error over all
grid points,

m.a.x u(zi, yj) uij I,

is presented, where uij is the computed approximation at the uniform grid points
(xi, yj). For our method we also display Tn I1, the infinity norm of the local
truncation error over all grid points. The local truncation errors are O(h2) except at
those points that are close to the interface, where they are O(h). We also display the
ratios of successive errors,

A ratio of 2 corresponds to first-order accuracy, while a ratio of 4 indicates second-
order accuracy. We will use the same notation for other examples in this section.

Example 2. We now consider a problem with discontinuous coefficients as well as
a singular source term. The equations are

(5.3) (/ux)x + (/Uy)y f (x, y) + C 5(:g X (s) ds

with f(x, y) 8 (x2 -t- y2) -t- 4,
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X2

_
y2 _+_ 1 if x2 + y2

_
’

b if x2 q- y2 > "
Dirichlet boundary conditions are determined from the exact solution

(5.4)
r2 if r

_
,

(1 8b -)/4 + (- + r2)/b + C log(2r)/b if r > .
It is easy to check that (5.4) satisfies (5.3). Table 2 gives numerical results for the
case b 10, C 0.1. Again the local truncation error near F is only O(h), but
the resulting global error is seen to be O(h2). Figure 5 shows the computed solution
for the case b 10, C 0.1 and b -3, C 0.1, respectively. In the first
case, /-+ > 0. As we mentioned in 3 the resulting linear system is "almost"
symmetric positive definite. We use the LSOR method with the optimal relaxation
parameter for the Poisson equation on the square. In the second case /-/+ < 0.
The computed solution has the same accuracy as in the first case. In this case we
used the Gauss-Seidel iteration.

TABLE 2
Numerical results for Example 2 with b 10, C 0.1.

n

20

40

80

160

320

En Iloo Ratio Tn Iloo Ratio

3.5195 10-3 6.3843 10-1

7.5613 10-4 4.6547 3.5988 10-1 1.7740

1.6512 10-4 4.5792 1.8999 10-1 1.8942

3.6002 10-5 4.5864 9.7499 10-2 1.9487

8.4405 10-6 4.2655 4.9374 10-2 1.9747

FIe. 5. The solutions for Example 2. () The function u for the case where b 10, C 0.1.

(b) The function -u in the case where b -3, C 0.1.

Example 3. In this example we impose a jump in the function u itself and also a
jump in the normal derivative of u as external constraints. The differential equation
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on each side of the interface is simply the Laplace equation

uxx + uyy 0.

The jumps in u and Ou/On are chosen so that the following function is the exact
solution:

excosy if r_< 5,
(.) (x, )

0 if r> .
From this we can compute the functions v and w in (4.2) and (4.3). Since/ 1, the
standard five-point stencil is used at each grid point and (4.13) is used to determine
the right-hand side Cij. Any fast Poisson solver can then be used to solve the resulting
system, with Dirichlet boundary conditions u 0 on 0.

Figure 6(a) shows the computed results on a 40 40 grid. The discontinuity in u
is captured sharply. Table 3 shows that we again obtain second-order accuracy at all
grid points, even in the neighborhood of the discontinuity.

FIG. 6. The solutions for Example 3, with jumps in u and its normal derivative specified along
F. () For the solution (5.5). (b) For the solution (5.6).

As a final test, we repeated this experiment with the exact solution

/ x2 y2 if r <_ ,
0 ifr>

shown in Fig. 6(b). In this case our method produced a computed solution with errors
in the range 10-13 10-15 at all grid points (in double precision). This is expected
since for the special case of a quadratic function the resulting truncation error should
be identically zero, and only rounding errors appear in the computed solution (as
amplified by the condition number of the matrix).

6. Summary. We have developed second-order accurate difference models for
elliptic equations in the following situations: (i) The differential equations have dis-
continuous coefficients along a general interface. (ii) The differential equations have
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TABLE 3
Numerical results for Example 3 with true solution (5.5).

20 4.37883 x 10-4

40 1.07887 x 10-4

80 2.77752 x 10-5

160 7.49907 x 10-6

320 1.74001 x 10-6

Ratio Tn I1 Ratio

4.0587 1.52546 10-2 1.9615

3.8843 7.70114 10-3 1.9808

3.7038 3.87481 10-3 1.9875

4.3098 1.939i7 10’3 i.9982

singular sources along a general interface. (iii) The differential equations have ex-
ternally imposed constraints in the jump in u or normal derivatives of u across an
interface. In all cases we are able to derive an appropriate difference stencil involving
at most six grid points and the correct right-hand side so that the global error is

O(h2) at all points on a uniform grid.
In the special case where the coefficients are continuous, the difference stencil

reduces to the standard five-point stencil (3.3) and only the correct right-hand side
must be derived to obtain second-order accuracy. In particular, if the coeificients are
constant then the standard five-point Laplacian is used and a fast Poisson solvers can
be used to solve the resulting linear system.

The ideas presented here can be used on a wide variety of other problems with
discontinuous coefficients or singular sources. All that is required is that we be able
to predict jumps in the solution and its first derivatives across F from the equation.
These jumps are used in conjunction with appropriate Taylor series expansions about
the interface to derive the difference scheme and right-hand side.

Other applications are currently being studied, including heat equations, wave
equations in nonhomogeneous media, and the incompressible Navier-Stokes equations
with flexible immersed boundaries.
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