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1 Introduction

Uniform Cartesian grids are well suited for solving problems in rectangular
domains. Mapped grids and domain embedding techniques are often used to
apply rectangular grids to more general domains. In particular, the use of
the logically rectangular polar grid is widely used for problems in circular
or spherical domains. Other grids of this type include the standard latitude-
longitude grid used for the sphere, and the spherical grid used for the ball.

However, these three standard grids — the polar grid, the spherical grid,
and the latitude-longitude grid — all suffer from the problem that the ratio of
the largest cells to the smallest grows as the grid is refined. As a result, when
using explicit time stepping schemes with these grids, one is forced to take a
time step that is much smaller than desirable, in order to respect the CFL
stability limits imposed by the smallest cells. A second but related problem
with these grids is that the grid resolution is poorly distributed. The polar
grid, for example, has cells with very large aspect ratios near the outer edge
and tiny cells near the center. For many problems of practical interest, this
distribution of large and small cells does not match the physical requirements
of the problem.

Because of the limitations imposed by these standard grids, several re-
searchers have proposed grid mappings which fix the problem of cell size
distribution. One popular approach is to map multiple grids in patchwork
fashion to the disk, the sphere or the ball. One example of such a grid is
the gnomic projection grid (sometimes called the “cubed-sphere” grid), first
described by [6]. Using this approach, one patches together six logically Carte-
sian grids to cover the sphere. In a related approach, one maps five grids to the
disk, or seven cubes to the ball. This approach can lead to good results when
used with appropriate solvers (e.g. see [5]). However, the chief disadvantage
of these mappings is that they require that one manage a multi-block struc-
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ture with non-trivial communication between bordering cells of the patches.
Furthermore, modifying a standard adaptive mesh refinement code for use in
a multi-block setting presents many technical challenges.

In the work presented here, we focus our attention on describing a grid
mapping for the sphere that attempts to fix the cell size distribution problem.
Unlike the multi-block grid for the sphere described above, our mapping cov-
ers the entire sphere with a single logically Cartesian grid. Furthermore, the
resulting mesh has the desirable property that the area of the largest to small-
est cell is about 2, and it is easily adapted for use with an existing adaptive
mesh refinement code. We show that this works well in practice when used
with explicit finite-volume schemes for hyperbolic problems.

2 The mappings

In this section, we describe a grid mapping for the unit disk and the unit
sphere. Our mapping for the sphere (e.g. the surface of the solid ball) is based
on the mapping for the unit disk, and so we start with a description of that
mapping. In Section 2.2, we extend this mapping to the sphere.

2.1 Mapping the square to the unit disk

In this section, we describe a mapping which maps the computational domain
[-1,1] x [-1,1] to the unit disk. To describe the mapping, we focus our at-
tention on the region of the square in which computational coordinates (&, 7)
satisfy |£| < n. This region corresponds to the upper triangular region between
the two diagonals of the square. We refer to this region as the north sector
of the computational domain. The mapping in this sector is based on the
idea that we can map a horizontal line segment between points (—d,d) and
(d,d) to a circular arc of radius R(d), passing through points (—D(d), D(d))
and (D(d), D(d)). The center of the circle on which this arc lies is given by
(z0,90) = (0,D(d) — v/ R(d)? — D(d)?). Using this idea, a general point (£,7)
in the north sector is mapped to the unit disk by the mappings X,,(£,7n) and
Y (€,m) given by

¢
Xn(&m) =Dn)=
(&m =Dy, €l <n. ()

Ya(€,m) = D(n) = VR(n)? = D(n) + R(n)? — Xa(€,n)?,

The mapping to other sectors is easily obtained by negating and/or swapping
the arguments (£,n) or functions (X,,Y,). For example, the mapping in the
west sector is given by X, (&,17) = Y,(n, =€) and Y, (&,7) = —X,(n,=&).
MATLAB scripts for this and other mappings are given in [2].

There are many choices for R(d) and D(d) that lead to reasonable grids.
For example, one choice that is well suited for the unit disk is
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D(d) = d/V2 @
R(d) =1

This choice leads to the grid on the left in Figure 1. One key advantage of this
grid for explicit computations is that the ratio of the largest to the smallest
grid cells is about 2, and so there is no need to take artificially small times steps
because of the presence of a few small cells. In [2], we use this grid to simulate
a blast wave in a circular domain and observed no artifacts attributable to
the non-smoothness of the grid.

If one wants increased refinement near the boundary, either to model a
boundary layer or, as we will see, to construct the sphere mapping, it may
be useful to define D(d) so that azimuthal grid lines are compressed near the
outer edge. An example of a function D(d) which does this is

D(d) =d(2—d)/V2 (3)

The plot at the right in Figure 1 shows a grid generated using this D(d), along
with R(d) = 1.

Fig. 1. Grids for circular domains. The grid on the left can be used for calculations
in the disk. The grid on the right is useful for constructing the sphere grid described
in Section 2.2.

2.2 A mapping for the unit sphere

The above mapping for the unit disk can be used directly to create a grid for
the unit sphere. In general, if we are given a mapping X (£,7n) and Y (¢, ) from
the square [—1,1] x [—1, 1] to the unit circle, we can define mapping functions
Xs(&,m), Ys(&,n) and Zs(&,n) from the rectangular region [—3,1], x[—1,1] to
the sphere as
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X(- 2), if 2<1
Xs(m):{ (=(£+2),m) € +2|

X(&m) if ¢l <1
Yy(&m) =Y (& n) W
Z,(6,n) = {_\/1_ (X(=(E+2),n)2+Y(En)?) if [E+2/<1

VI=XEn?+Y(En)?) <1

Using functions X (¢,7) and Y (&,7) based on D(d) as defined in (2) leads to a
mapping with extremely elongated cells near the equator. Using (3) leads to
a sphere mesh with cells which are more equi-distributed in size. The results
are shown in Figure 2.

Fig. 2. Finite-volume sphere grid based on a single logically Cartesian grid.

3 Numerical results

In this section, we present the results obtained using our mappings to solve
hyperbolic problems. The algorithms we use are the wave propagation al-
gorithms described in [4]. These algorithms are finite volume Godunov-type
methods based on solving Riemann problems at the mapped cell interfaces.
One reason for choosing these algorithms is that it is easy to take advantage
of the rotational invariance that is often present in the equations of practical
and physical interest. In particular, we can re-use existing one-dimensional
Riemann solvers to solve Riemann problems at mapped cell interfaces aligned
along any direction. Moreover, our approach does not require that we provide
metric terms analytically, but only that we approximate these terms using
corners of mapped mesh cells. We do not present the details of these solvers
here, but rather refer the interested reader to [2] and [4].
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3.1 Advection on the sphere

Here we illustrate the use of the unit sphere mesh described in Section 2.2 for
the approximation of advective transport problems. We discretize the equation

¢ +u-Vg=0, (5)

where u is a divergence free velocity field on the sphere and ¢(x, t) is a concen-
tration that depends on space and time. A particularly simple flow situation
is solid body rotation. In this case the exact solution after N rotations is
equal to the initial conditions and it is therefore easy to perform convergence
studies.

We use the wave propagation algorithm for quadrilateral grids on a sphere
as described in [2]. This requires appropriately scaled flow speeds normal to
each grid cell interface. In general, we can obtain a divergence-free velocity
field at the centers of cell interfaces by differencing a streamfunction 1 at cell
vertices adjacent to the cell interface. For solid body rotation, the streamfunc-
tion we use is

Y(x) =27 (X - arot), (6)

where x € R? is a position vector (e.g. point) on the surface of the sphere
and a,o; € R? is a normalized vector in the direction of the specified axis of
rotation.

In order to perform a convergence study we initialize the concentration
field ¢ with a smooth function given by

q(x,0) =2 exp(—10d2),

where d = arccos(x - xg) is the geodesic distance (i.e. distance along the
surface of the sphere) between the points x and x¢. For this example, we
choose zg = (1,0, 0).

We compare the final results after one rotation with our initial conditions.
Table 1 shows the error in the L;-norm and the experimental order of con-
vergence (EOC) for rotation about the y-axis (a,; = (0,1,0)) and rotation
about the z-axis (a,; = (0,0, 1)). For this smooth solution we obtain second
order convergence rates for rotation about both these axes.

For rotation about the z-axis, we also show the L;-error and the EQC for
calculations on a latitude-longitude grid with the same number of grid cells.
On this latitude-longitude grid, the grid cells near the equator are larger than
the grid cells on our new grid, and in fact, our new grid requires about twice
as many times steps as the lat-long grid. The reduced resolution near the
equator for the smooth lat-long grid may explain why this grid does not give
better results than our new grid for flow around the equator, a flow field for
which the lat-long grid is ideally suited. For rotation about the y-axis (e.g.
over the poles) the situation is reversed, and the CFL restriction places severe
time step restrictions on the lat-long grid.
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Table 1. Convergence study for smooth advection test, CFL = 0.9, no limiters.

axis of rotation : y-axis

axis of rotation :

z-axis

new grid new grid lat-long grid
grid size Li-error EOC Li-error EOC Li-error EOC
100 x 50 0.231495 0.098360 0.100258
200 x 100  0.063987 1.85 0.025643 1.94 0.027075 1.89
400 x 200  0.015991 2.00 0.006438 1.99 0.006833 1.99
800 x 400  0.004004 2.00 0.001607 2.00 0.001693 2.01

Next we illustrate the performance of the method for advective transport

of a discontinuous profile defined as

q(x,0) = {

sin(36) >
otherwise.

0

Figure 3 shows plots of the solution after one rotation along the equator.

S

Fig. 3. Adaptive mesh refinement calculation for rotation of a discontinuous profile.
The left plot shows the solution on the sphere after one rotation, and the right plot
shows the solution in the computational domain used for the AMRCLAW calculation.

Adaptive mesh refinement on the sphere grid

One advantage of having the sphere grid represented by a single logically rect-
angular grid (as opposed to the multi-block structures required, for example,
by [6]) is that we can easily use adaptive mesh refinement on our grid. To sim-
plify the communication between boundaries, we double the size of the compu-
tational grid in the n-direction, creating a second copy of the sphere reflected
across 7 = —1. Then the boundary conditions are simply periodic in both &
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and 7, a case that is already handled in AMRCLAW [1]. This could be avoided
with some rewriting of the refinement routines to implement the appropriate
boundary conditions on the original rectangular domain, which are periodic
in € but along 7 = —1 and 5 = +1 are given by ¢(§,£1) = ¢(—2 — &, £1) for
—3 < ¢ < 1. For this example, we use the AMRCLAW algorithm with two levels
of refinement. On the coarse grid the sphere is discretized with 100 x 50 grid
cells. On the fine mesh a refinement factor of 4 is used in each direction.

3.2 Shallow water equations on the sphere

The numerical solution to the shallow water equations on the sphere is of
great interest to the global atmospheric and oceanic communities. Here, we
solve the shallow water equations with no bottom topography on non-rotating
sphere. The equations we solve are given by

oiq+V-£f(q) =s(x,q) (M)

where q = (h, hu, hv, hw) is a vector of conserved quantities, and the flux
function f(q) is given by

hu hv hw
| ut+1igh? huwo huw
f(a) = huw hv? + L gh? hvw (8)
huw hvw  hw? + gh?

The source term s(x,q) which acts only on the momentum equations has the

form ) 0
.9 = ( (90 ) ©

where x is the position vector on the sphere. The flux vector f € R3 consists
of the second through fourth components of the flux vector f(q). The source
term is included to ensure that the fluid velocity remains on the surface of
the sphere. This approach was also taken by [3].

The height field is initialized on the sphere using the smooth function

h(x) = 1+ 2exp(—40(1 — (x - x0))?). (10)

This initial condition corresponds to a smooth, circular hump of fluid cen-
tered at the point xg on the sphere. To solve the shallow water equations,
we again use the algorithm described in [2]. As described there, we maintain
conservation by subtracting out non-conservative terms after each time step.

In Figure 4, we show the results at time ¢ = 0.9, on an adaptively refined
mesh with three levels of refinement used. From these results, we see that the
solution appears to remain symmetric with respect to the axis of symmetry,
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Fig. 4. Two views of the height field solution to the shallow water wave equation
on the sphere at time ¢t = 0.9. In the left plot, the mesh for the level 2 grid (out of
3 AMR grids) is shown.
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