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Summary. We describe the extension of high resolution finite volume methods
and adaptive refinement for the shallow water equations in the context of tsunami
modeling. Godunov-type methods have been used extensively for modeling the shal-
low water equations in many contexts, however, tsunami modeling presents some
unique challenges that must be overcome. We describe some of the specific difficul-
ties associated with tsunami modeling, and summarize some numerical approaches
that we have used to overcome these challenges. For instance, we have developed a
well-balanced Riemann solver that is appropriate in the deep ocean regime as well
as robust in near-shore and dry regions. Additionally, we have extended adaptive
refinement algorithms to this application. We briefly describe some of the modifica-
tions necessary for using these adaptive methods for tsunami modeling.

1 Introduction

The shallow water equations are a commonly accepted governing approximation for
tsunami propagation in the deep ocean as well as in near-shore regions—including
inundation. Because of difficulties in the deep ocean associated with preserving the
delicate steady state, the physically relevant form of the shallow water equations—a
hyperbolic system for depth and momentum—can be problematic for transoceanic
or global-scale tsunami modeling. Because of this, tsunami modelers have often
used alternative forms of the shallow water equations which are valid for smooth
solutions. However, these systems, and the numerical methods used to solve them,
are rarely suited for modeling tsunami inundation since this regime can include steep
gradients and shocks. We describe some numerical methods that are promising for
modeling the physically relevant conservative form of the shallow water equations
in all regimes of tsunami flow as well as adaptive algorithms that allow bridging the
diverse scales at which the different regimes of tsunami flow occur.

The amplitude of tsunamis in the deep ocean is on the order of centimeters,
meaning that tsunamis are a tiny perturbation to the steady state—a motionless
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body of water several kilometers deep. The steady state exists due to a nontrivial bal-
ance of momentum flux and a source term due to nonconstant bottom bathymetry.
Modeling tsunami propagation accurately, therefore, demands resolving this pertur-
bation against the background steady state. This requires well-balanced Riemann
solvers (e.g. [7, 10, 13]) if Godunov methods are to be used for the conservative
form of the equations. As tsunamis approach the shore, energy compression leads to
more violent flow characteristics including shocks or turbulent bores in the inunda-
tion regime. Numerical schemes must be able to capture or track these shocks and
additionally must be robust and accurate given the appearance of dry states in the
near-shore regime. A novel approximate Riemann solver that we have developed to
handle these different challenges is briefly described in Section 3.

The diverse regimes of tsunami flow also occur at diverse spatial scales. In the
deep ocean, tsunami wavelength is several hundred kilometers. Modeling transoceanic
propagation obviously requires a large computing domain, yet, as tsunamis approach
the shore the wavelength is compressed to several hundred meters in the shallow
coastal waters. In order to accurately model coastal inundation, a much finer com-
putational grid is required than can feasibly be used at the global scale. Grid cells of
several hundred meters or significantly less are necessary if near shore bathymetry
features vary on a small scale. Additionally, because bathymetry focuses tsunami en-
ergy unpredictably, areas needing the most refinement cannot be easily determined
a priori. Furthermore, tsunami waves, like those in other hyperbolic systems, are
often highly localized at a given time but move throughout the computational do-
main. For these reasons we believe that adaptive refinement is warranted for efficient
global-scale tsunami calculations. We will briefly describe the extension of adaptive
refinement algorithms, developed more generally for hyperbolic problems by Berger,
Colella, Oliger and LeVeque [4, 6, 5], to the specificities of tsunami modeling.

The methods and results described in this paper are implemented in TsunamiClaw—
an extension of the clawpack [11] software. We will describe the one-dimensional
equations and algorithms for simplicity.

2 The Shallow Water Equations

The shallow water equations are a commonly used approximation for modeling
tsunamis in all regimes—from the deep ocean to the inundation regime. We solve
the physically relevant hyperbolic system

ht + (hu)x = 0, (1)

(hu)t +

�
hu2 +

1

2
gh2

�
x

= −ghbx, (2)

where h(x, t) is the fluid depth, u(x, t) the horizontal fluid velocity and b(x) the
variable bottom bathymetry. We will use η to denote the fluid surface elevation

η(x, t) = h(x, t) + b(x). (3)

The physically relevant steady state, against which tsunamis propagate in the deep
ocean, comes from the nontrivial balance of the pressure flux and the source term
due to bathymetry
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It is well known (e.g. [10, 13]) that fractional step methods fail at preserving such
steady states precisely. Therefore, considerable research has gone into developing
well-balanced methods (e.g. [2, 3, 8, 10]) which preserve important discrete steady-
states, such as the “ocean at rest” steady state, where ηx ≡ 0 and u ≡ 0. When using
adaptive refinement, it is equally important to maintain these steady states upon
interpolating from coarse grids to fine grids, and averaging fine grids onto coarse
grids.

3 Approximate Riemann Solvers for Wave Propagation
Algorithms

The numerical method we use for this problem is based on the wave propagation
algorithms described in [12]. These algorithms belong to the class of high-resolution
Godunov-type finite volume methods that make use of Riemann problems at grid
cell interfaces in order to solve hyperbolic systems of the form

qt + f(q)x = 0, (5)

q ∈ lRm, f(q) ∈ lRm. A crucial component of the wave propagation algorithm is the
determination of updating waves by a decomposition of the Riemann initial data
into some set of appropriately chosen vectors

Qn
i −Qn

i−1 =

MwX
p=1

αp
i−1/2r

p
i−1/2, (6)

where Qn
i ∈ lRm is the numerical solution in the ith grid cell at time tn, Mw is the

number of vectors used to approximate the Riemann solution and rp ∈ lRm, p =
1, . . . , Mw, are vectors chosen for the decomposition. Once the “waves” αp

i−1/2r
p
i−1/2

are determined, each wave propagates at a chosen speed sp
i−1/2. Of course, one

usually chooses Mw = m, in order to have a unique solution for the scalars αp
i−1/2,

p = 1, . . . , Mw. Typically {rp
i−1/2, s

p
i−1/2} is some approximation to the pth eigenpair

of some locally linearized Jacobian: Ā(Qn
i−1, Q

n
i ) ≈ f ′(Qn

i−1) ≈ f ′(Qn
i ).

A consistent and alternative method to (6) for determining waves of an approx-
imate Riemann solution is to decompose the flux into a set of propagating vectors

f(Qn
i )− f(Qn

i−1) =

MwX
p=1

βp
i−1/2r

p
i−1/2, (7)

where again {rp
i−1/2, s

p
i−1/2} is some approximation to the the pth eigenpair of some

linearized Jacobian. In this case βp
i−1/2 has the same dimension as sp

i−1/2α
p
i−1/2. This

method, described more fully in [3], has the advantageous property of producing
conservative Riemann solutions regardless of the form of the vectors rp

i−1/2. If the

eigenpairs of a Roe averaged Jacobian are used to define rp
i−1/2 and sp

i−1/2 in (6)

and (7), the two methods are the same.
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For nonhomogeneous hyperbolic systems

qt + f(q)x = ψ(q, x), (8)

it is consistent to include the effect of a source term directly into updating waves
by performing the decomposition

f(Qn
i )− f(Qn

i−1)− Ψi−1/2∆x =

MwX
p=1

βp
i−1/2r

p
i−1/2, (9)

where Ψi−1/2 is some consistent approximation to the source term ψ(q, x) at xi−1/2,
and ∆x = xi − xi−1. See [3] for more details.

In [14], LeVeque and Pelanti explore the idea of performing a decomposition of
the form �

Qn
i −Qn

i−1

f(Qn
i )− f(Qn

i−1)
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#
, (10)

using vectors (wp
i−1/2, φ

p
i−1/2)

T ∈ lR2m, for p = 1, . . . , 2m. Several options for wp
i−1/2

and φp
i−1/2 are explored, and connections to relaxation solvers are explored. For

instance, it is possible to choose (wp
i−1/2, φ

p
i−1/2)

T such that the methods (6), (7)

and (10) are all the same.
For the shallow water equations (1), we have developed a solver based on a

decomposition of the form24 Qn
i −Qn

i−1

ϕ(Qn
i )− ϕ(Qn

i−1)
bi − bi−1

35 =

3X
p=0

αp
i−1/2r̃

p
i−1/2, (11)

where r̃p ∈ lR4, for p = 0, . . . , 3, q = (h, hu)T , ϕ(q) = (hu2 + 1
2
gh2) and bi is

the bathymetry in the ith grid cell. The vectors r̃p
i−1/2 and corresponding propa-

gation speeds s̃p
i−1/2 are chosen to be local approximations to the eigenvectors and

eigenvalues of Ã(q̃) ∈ lR4×4, where

q̃t + Ã(q̃)q̃x = 0, (12)

is an over-determined system equivalent to the shallow water equations for smooth
solutions q̃ = (h, hu, ϕ, b)T . By choosing certain averages in the local approximations
r̃p

i−1/2, the method has certain desirable properties. For instance, since s̃0
i−1/2 = 0,

the solver preserves a large class of discrete steady state solutions as a stationary
contact discontinuity at the cell interface xi−1/2. Second, by defining the stationary
eigenvector r̃0

i−1/2 appropriately, the solver preserves depth non-negativity of the
approximate solution. Additionally, the solver can be shown to be equivalent to the
Roe solver in the case of shock solutions over constant bathymetry. The Riemann
solver is described in detail in [9].

4 Adaptive Mesh Refinement

To deal with the disparate spatial scales required to resolve a tsunami in the global
propagation regime and the local inundation regime, we have extended adaptive
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mesh refinement routines (AMR) to this application. These algorithms (e.g. [4, 6, 5])
allow nesting of multiple rectangular Cartesian subgrids of several levels with integer
refinement ratios within the computational domain. Because the subgrids evolve
spatially and temporally, grids can essentially track moving features of the solution
at various resolutions. For tsunami modeling, this allows transoceanic waves to be
tracked on grids of suitable resolution without having to resolve unaffected regions
of the ocean on fine grids. Additionally, since waves are compressed in the near shore
region, even finer subgrids appear as waves approach the shore—allowing inundation
modeling on meter-scale grids.

As mentioned, modeling tsunami propagation requires resolving a small devia-
tion from the background steady state. Since AMR must interpolate data on coarse
grids to generate finer level grids, and since fine grids must be averaged to update
underlying coarse grid cells, special care must be taken to preserve steady states dur-
ing this process. For instance, the standard approach of using a linear interpolant
within each coarse cell, based on the conserved variables in the surrounding cells,
does not in general preserve the common steady state ηx ≡ 0, hu ≡ 0 on the new
fine grid. Similarly, averaging the conserved variables in fine grid cells contained
within coarse cells does not preserve the steady state on the coarser grid. A simple
one-dimensional example of interpolation from a coarse grid with a refinement ra-
tio of 2 is shown in Figure 1. The steady-state is not maintained. Given practical
grid resolutions for computations of the deep ocean, the spurious waves generated
by such interpolation could be orders of magnitude larger than the actual tsunami
being modeled.

A simple fix to the problem shown in Figure 1 is to interpolate the surface
elevation η rather than the conserved variable h. The water depths on the fine grid
are then determined from the values of η by h = η − b. It is easy to show that this
maintains conservation of mass upon interpolating so long as all of the depths remain
positive. Since maintaining conservation of momentum requires interpolating hu
rather than u, it was necessary for us to develop a limiting strategy for determining
fine grid values of hu to prevent unbounded velocities u on the fine grid. Additional
strategies of interpolation had to be developed to prevent spurious “shore waves”
upon interpolating grids near the shoreline. These issues are described in detail in
[9].

An example TsunamiClaw simulation of the 2004 Indian Ocean Tsunami is
shown in Figure 2. The tsunami was generated dynamically at the start of the
computation by using a spatial temporal model of the fault motion provided by the
Seismolab at Caltech [1].

5 Conclusions

Tsunamis exhibit diverse flow regimes requiring a numerical method that can simul-
taneously resolve near steady state solutions for transoceanic propagation as well as
converge to shock solutions representing turbulent bores. Additionally the numerical
method must be robust to the appearance of dry states in the inundation regime.
We have developed an approximate Riemann solver that can handle these multiple
features. Additionally the regimes of tsunamis occur at diverse spatial scales, requir-
ing some form of grid refinement. We have modified adaptive refinement algorithms
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Fig. 1. Interpolating the water depth h from coarse grid cells to fine grid cells over
nonlinear variable bathymetry. (a) A level l grid in one dimension for the common
steady state problem of a motionless body of water with a flat surface η = 0. The
numerical bathymetry is an average of the true bathymetry values in each grid cell.
(b) Interpolation of h to a level (l+1) grid—refined by a factor of two—showing the
two fine grid cells in the coarse cell Cl

i = [xi−1/2, xi+1/2]. The bathymetry in the two
fine grid cells reflects the average of the true bathymetry in those cells. Interpolating
the depth h using minmod slopes, destroys the steady state.
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(a) (b)
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Fig. 2. TsunamiClaw simulation of the 2004 Indian Ocean Tsunami using adap-
tive refinement. The simulation had 4 levels of refinement with refinement ra-
tios of 8, 8 and 64. This example features inundation modeling in Eastern In-
dia. Grid lines on the highest level of each figure are omitted for clarity. (a) The
transoceanic tsunami waves are resolved on 2nd level grids. Undisturbed areas of
the Indian Ocean are maintained on the very coarse 1st level grid. (b) As the
waves approach Sri Lanka and Eastern India, 3rd level grids appear around the
impacted shores. (c) The region around Madras, India is resolved on 4th level
grids. This region is within the northernmost 3rd level grids shown in the up-
per right figure. (d) Inundation of the Madras, India area is resolved on fine-
scale 4th level grids. The commercial harbor to the south suffers greater inunda-
tion than the fishing harbor visible to the north. A color version is available at
http://www.amath.washington.edu/ rjl/pubs/hyp06tsunami.



8 David L. George and Randall J. LeVeque

for this application, so that transoceanic propagation and local inundation can be
modeled in single global-scale computations.

6 Acknowledgements

This work was supported in part by NSF grants CMS-0245206, DMS-0106511, and
DOE grant DE-FC02-01ER25474. The authors would also like to thank Marsha
Berger and Harry Yeh.

References

1. C. J. Ammon et al. Rupture process of the 2004 Sumatra-Andaman earthquake.
Science, 308:1133–1139, 2005.

2. E. Audeusse, F. Bouchut, M. O. Bristeau, R. Klein, and B. Perthame. A fast and
stable well-balanced scheme with hydrostatic reconstruction for shallow water
flows. SIAM J. Sci. Comp., 25(6):2050–2065, 2004.

3. D. Bale, R. J. LeVeque, S. Mitran, and J. A. Rossmanith. A wave-propagation
method for conservation laws and balance laws with spatially varying flux func-
tions. SIAM J. Sci. Comput., 24:955–978, 2002.

4. M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydro-
dynamics. J. Comput. Phys., 82:64–84, 1989.

5. M. J. Berger and R. J. LeVeque. Adaptive mesh refinement using wave-
propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal., 35:2298–
2316, 1998.

6. M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial
differential equations. J. Comput. Phys., 53:484–512, 1984.

7. F. Bouchut. Nonlinear Stability of Finite Volume Methods for Hyperbolic Con-
servation Laws and Well-Balanced Schemes for Sources. Birkhäuser Verlag,
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