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1 Introduction

Extracorporeal Shock Wave Therapy (ESWT) is a noninvasive technique for
the treatment of a variety of musculoskeletal conditions such as delayed union
of bone fractures, plantar fasciitis and calcified tendonitis of the shoulder.
Shock waves were first used medically in the lithotripsy procedure (ESWL) to
pulverize hardened calcified deposits such as kidney stones. This technique was
then extended to musculoskeletal conditions as a treatment for calcifications
in the shoulder, as these deposits are similar to renal calculi [1]. Later ESWT
was shown to improve bone regeneration in the treatment of non-unions, which
are bone fractures that fail to heal over time. In electrohydraulic lithotripsy,
a shock wave is generated in a liquid bath, focused through the use of an
ellipsoid reflector, and then propagates into the body where it ideally strikes
the area of interest. Clinicians have indicated that this is not always the case
and treatments will sometimes cause unforseen damage in parts of the body.
Current numerical models are limited to simplified situations because the
structure of the wave is highly nonlinear and therefore difficult to model with
traditional finite difference and finite element techniques. We utilize high-
resolution finite volume methods to capture the discontinuous pressure wave
and model the wave propagation in bone and tissue. This approach has been
successfully applied to many problems in acoustic or elastic wave propagation
in heterogeneous media [2].

We are currently modeling shock wave propagation and reflection with
linear elasticity equations, using finite volume methods in which each grid
cell has material parameters associated to that cell. We use a Godunov-type
method, which utilizes Riemann solvers in the wave propagation algorithm
to solve the system of partial differential equations. Results were obtained in
two- and three- dimensions using the CLAWPACK [3] and CHOMBOCLAW
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[4] software packages. To provide validation of these results, our modeling
effort is compared to experiments.

2 Background

2.1 Extracorporeal Shock Wave Therapy

The basic physics of the shock wave generation and propagation are well un-
derstood. A shock wave is a rapidly traveling pressure disturbance and is char-
acterized by a sudden rise from ambient pressure to the maximum pressure
in the system. As pressure increases, the velocity of the sound wave increases
and therefore wave components at higher pressure move faster than those at
lower pressure. Since the velocity of the wave components is dependent upon
the pressure, the wave deforms and steepens into a shock.

Electrohydraulic lithotripters have a spark plug source that generates a
spherical shock wave pulse in water, which can be modeled as an underwater
explosion. The shock wave reflects off an ellipsoidal reflector, and propagates
through the fluid into the body. Attenuation is limited through the use of a
coupling gel between the membrane and skin. When the shock wave enters the
body it will be reflected and dissipated depending upon the material param-
eters of the tissues that are in its path. Eventually the wave will collide with
the intended target centered at the second focus of the ellipse, as is illustrated
in Figure 1(b). An essential property of ESWL and ESWT is that, due to
shock wave focusing, maximal energy should be deposited in the treatment
area centered at the second focus of the ellipsoid.

A typical shock wave has a high peak pressure of approximately 50-80 MPa
with a short life cycle of approximately 10 nanoseconds, followed by a negative
pressure wave that lasts for a few microseconds[1]. The diagram in Figure 1(a)
illustrates a typical wave form and its physical parameters as it would appear
at the second focus. The tensile region is of particular interest, as it generates
cavitation bubbles . This effect is one of the primary sources of energy leading
to stone fragmentation in ESWL and is thought to contribute to the angiogenic
response observed during ESWT treatments [5],[6]. Cavitation is not currently
accounted for in our model. However, we have demonstrated with our results
in section 3, that it is possible to numerically calculate regions of maximal
tension, which correspond to areas of cavitation in the laboratory experiments.

2.2 Mathematical Model

There are generally two types of waves that can propagate in an elastic solid,
namely P-waves (pressure or primary waves) and S-waves (shear or secondary
waves). In one dimensional problems, these waves can be modeled by disjoint
systems of equations. In higher dimensional problems, there is a coupling
between P-waves and S-waves, so the situation is more complex. We aim to
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Fig. 1. Basic components of lithotripsy treatment. (a) The standard pressure wave
profile at the second focus in lithotripsy and illustration of high pressure pulse
followed by negative pressure or tensile region. (b) The basic setup for an electro-
hydraulic lithotripter. There is an ellipsoid reflector made of brass and a spark plug
shock wave source at the F1 focus. [1]

model the behavior of these waves when propagating through soft tissue and
bone in the body.

For the preliminary results presented here, we have used the 3D linear
elasticity equations. We assume the soft tissue and bone are each isotropic
materials and hence the equations have the form
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Here σij represents the components of the stress tensor, u = [u, v, w] are
the components of velocity and λ and µ are the Lame parameters. We use
this nonconservative form of the elasticiy equations to determine an analytical
solution to the Riemann problem, which is the basis for the Reconstruct Evolve
Average (REA) algorithm used in CLAWPACK [3].

The numerical tests presented here are compared to laboratory experi-
ments where acrylic or acrylonitrile butadiene styrene (ABS) objects are im-
mersed in water. We use the following values for the parameters:

water : ρ = 1000 kg/m3, λ = 2190.4 MPa, µ = 0,
acrylic : ρ = 1850 kg/m3, λ = 9305 MPa, µ = 3126.5 MPa,
ABS : ρ = 1210 kg/m3, λ = 3264 MPa, µ = 1032 MPa.
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Each grid cell is assigned values of ρ, λ, and µ depending on which material
it is in, or to averaged values of these parameters if an interface cuts through
the cell.

This isotropic linear model is only a starting point. Modeling the shock
wave formation and propagation more accurately requires using a nonlinear
formulation of the elasticity equations, and ideally one would also incorporate
anisotropic effects for soft tissue and bone. We are currently working on ex-
tending the model, but even this linear model gives results that capture some
of the main features of experiments, as illustrated in the next section.

3 Results

We have been able to make comparisons between two- and three- dimensional
laboratory and numerical experiments through an interdisciplinary collabora-
tion at the University of Washington. Some of these results will be summarized
here. Our collaborators at The Applied Physics Lab (APL) at the University
of Washington, have performed several experiments with device similar to an
HM3 Dornier lithotripsy device that we have used to verify our our numerical
model [7]. In our numerical experiments we have solved the linear elasticity
equations using high-resolution finite volume methods with adaptive mesh
refinement.

3.1 Stress Wave Experiment

Figure 2 shows the results of an experiment where the stress waves in an
acrylic cylinder are imaged using a high-speed camera and polarized filters.
Acrylic is used because it is birefringent, allowing us to observe interior stress
waves using polarizing optics[8]. The focus for the treatment is at the right
edge of the cylinder and the shock wave propagates from right to left. There is
a reflected wave resulting from interaction with the left edge of the cylinder.
The photos show a conical shaped region where the stress is maximal. The
location of the conical region agrees roughly with the fracture location of
materials similar to kidney stones.

Figure 3 shows the numerical result of a pressure wave propagating through
water and into an acrylic cylinder. We solve an axisymmetric version of the
elasticity equations to generate these results. When we compare the numerical
with the laboratory results in Figure 2, it is clear that our model has captured
both the conical region of maximal stress and the reflection of the wave off
the left edge of the cylinder. This indicates that the pressure wave in the solid
is behaving like a linear elastic wave.

3.2 Cavitation Field Experiments

The primary objective of these experiments was to investigate the behavior
of the shock wave as it interacts with a 3D representation of a talus bone.



Finite volume methods for ESWT 5

Fig. 2. Laboratory experiment where a shock wave is generated and propagates
from right to left through an acrylic cylinder. The images are numbered to show the
sequence in time. The stress waves are visualized using polarized film and images
were taken with a high-speed camera. (courtesy of B. MacConaghy)

Fig. 3. A sequence of images from a numerical experiment for comparison with the
laboratory result from Figure 2. The pressure wave propagates through the acrylic
cylinder and the conical shaped, high-stress region develops in the simulation at a
similar time and location to that of the lab experiment.
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The bone is composed of ABS and was created by a group in the Mechani-
cal Engineering Department at the University of Washington [9]. The three-
dimensional digital representation of the bone that is used in the numerical
experiments (see Figure 4), was provided by the same group. Therefore, we
can make direct comparisons of our numerical results with the laboratory
experiments.

Fig. 4. A digital 3D representation of the talus used in the laboratory and numerical
experiments [9].

The series of images in Figure 5 shows the deflection of the trail of cavi-
tation bubbles or tensile component of the shock wave, as a function of bone
placement within the field. As the location of the bone changes with respect
to the focus, the deflection angle of the cavitation field is altered by the ge-
ometry of the bone. In some cases the cavitation field continues far past the
desired treatment area and this could potentially cause tissue damage outside
the focal region. The numerical results in Figure 6 show the maximum ten-
sile component of the pressure wave along y = 0, a two-dimensional slice of
the full 3D calculation. Each image shows the deflection of the shock wave’s
tensile component with different bone locations. The dot is the location of F2
and the bone is shifted in the z-direction relative to the focus as in Figure 5.
The regions of maximum tension indicate where cavitation would occur, thus,
this is the basis for comparison.

Due to the linear nature of the equations and computational limitations
on the level of refinement, the pressure wave is more smeared out than in the
laboratory experiment. As a result, the pressure wave interacts more with the
front of the bone than the more focused laboratory shock wave. The deflection
of the wave path due to the bone geometry is different from the laboratory
result, however, the general behavior is similar in that there is an upward
deflection of the cavitation path.

4 Conclusion

ESWT is a treatment for musculoskeletal conditions with its foundation in
lithotripsy. Though clinical trials have indicated that this treatment is suc-
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Fig. 5. Laboratory experiment where a shock wave is generated in the far left and
the tensile component of the wave creates a cavitation field. The interaction of the
cavitation field is imaged with a high-speed camera. The bone height changes from
left to right where height corresponds to difference from the focus (A. -12, B. -9, C.
-6, D. -3, E. 0, F. 3, G. 6, H. 9, I. 12)(courtesy of T. Matula).

Fig. 6. Numerical simulation of laboratory experiment in Figure 5. These results
demonstrate a dependence of the deflection angle on the placement of the bone with
respect to F2. The blue dot is F2 and in each photo the bone placement is changing
in z with respect to F2 (A. -12, B. -9, C. -6, D. -3, E. 0, F. 3, G. 6, H. 9, I. 12).
Although the pressure wave is more smeared out than in the experiment, so there is
more interaction with the front of the bone than in the laboratory experiment, the
general behavior is correct.
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cessful for a variety of conditions, the biological mechanisms are not well
understood. We hope to model the propagation of the shock wave in bone
and tissue so as to better understand this treatment. Our future goals include
investigation on where energy is being deposited in the body and whether or
not reflections from complicated geometry result in refocusing of the pressure
wave.

We have used high-resolution finite volume methods and adaptive mesh
refinement routines implemented in the CLAWPACK and CHOMBOCLOAW
software packages, to solve the equations of linear elasticity in the isotropic
materials. Results have been compared to two laboratory experiments where
it is crucial to properly capture wave reflection at interfaces. Our preliminary
results show reasonable qualitative agreement. In future work we plan to make
more quantitative comparisons and to extend the model with the inclusion of
nonlinear and non-isotropic effects to more accurately capture the ESWT
pressure wave and the complex nature of bone and tissue.
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