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HIGH-RESOLUTION CONSERVATIVE ALGORITHMS FOR ADVECTION IN
INCOMPRESSIBLE FLOW*

RANDALL J. LEVEQUEt

Abstract. A class of high-resolution algorithms is developed for advection of a scalar quantity in a given
incompressible flow field in one, two, or three space dimensions. Multidimensional transport is modeled using a

wave-propagation approach in which the flux at each cell interface is built up on the basis of information propagating
in the direction of this interface from neighboring cells. A high-resolution second-order method using slope limiters
is quite easy to implement. For constant flow, a minor modification gives a third-order accurate method. These
methods are stable for Courant numbers up to 1. Fortran implementations are available by anonymous ftp.
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1. Introduction. We consider the advection of a scalar concentration or density function
q(, t) in a specified velocity field ff (Y’, t) in one, two, or three space dimensions. The evolution
of q is governed by the conservation law

(1.1) qt + V. (tq) O.

We assume that the flow is incompressible, so that

(1.2) V. (:, t) 0

everywhere. Then the equation (1.1) can be written equivalently as a variable coefficient
advection equation

(1.3) qt + t Vq O.

The goal of this paper is to present a very simple framework for developing a hierarchy of
methods for the numerical solution of this equation in several space dimensions, starting with
the most basic upwind method for (1.3) and adding in a sequence of simple correction terms to
achieve better accuracy and stability properties. Differencing based onthe advective form (1.3)
is often more successful than conservative differencing for this problem (see 4), although this
can often cause nonconservative behavior and a change in the total mass that is unacceptable
in some problems. The algorithms developed here are in a sense hybrid algorithms in which
the first-order upwind method is in advective form but all of the corrections, while based on
advective differences, are written in a flux-differencing form. The result is an algorithm that
does not suffer the usual difficulties associated with conservative differencing and yet is fully
conservative provided that a natural discrete form of the incompressibility constraint (1.2) is
satisfied (given by (4.2)).

In particular, a high-resolution method is developed that is second-order accurate when fi
and q are smooth and that also computes sharply resolved solutions when q is discontinuous
or has steep gradients. Although not strictly sign preserving or total variation diminishing,
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the algorithm produces virtually no oscillations or undershoots on a variety of difficult test
problems. The method is stable provided

k
max I1( t)lloo < 1,

h ,t

where k is the time step, h is the grid spacing. (For simplicity, the mesh spacing is assumed
to be uniform and equal in all directions. This is not necessary and the algorithms generalize
in the obvious way to nonuniform grid spacings.)

Additional correction terms are also discussed that give a third-order accurate method in
the special case where is constant in space and time. These terms can give some improvement
in the more general case as well, although there are still some unresolved issues regarding
appropriate limiters.

Countless advection algorithms have been developed in recent years by researchers work-
ing in various application areas. Some of these contributions are briefly described in 5 and
are compared to the present approach. The advection algorithms developed here are adapted
from the multidimensional methods for nonlinear systems of conservation laws developed in
previous work by the author [29] (see also [26, 27]) and are based on a wave-propagation
viewpoint that gives a natural geometrical interpretation to the various high-order correction
terms introduced. It also leads to a method that is very simple to implement in spite of
multidimensional upwinding of a nature that could be quite difficult to implement otherwise.

This paper is organized as follows. In 2 the one-dimensional algorithm is presented
which is essentially a standard flux-limiter method but interpreted in the wave-propagation
form that will be valuable later. In 3 the constant coefficient problem in two dimensions
is discussed, and the algorithm is then extended to arbitrary incompressible flow in 4. A
brief survey of other methods is given in 5. A truncation error analysis is given in 6 that
demonstrates second-order accuracy and motivates the third-order correction terms presented
in 7. Stability is discussed in 8 and stability regions are shown for various methods. A
variety of numerical results are presented in 9 that confirm the theoretical predictions of
accuracy and illustrate the power of the method. Boundary conditions are discussed in 10
and extension to three space dimensions is presented in 11.

2. One space dimension. We start by reviewing the form of a high-resolution method
for the advection equation in one space dimension. The ideas presented here will be extended
directly to two dimensions in the next section. See [28] for more details on one-dimensional
algorithms of this form.

In one dimension the incompressibility constraint (1.2) requires Ux 0 and so u const
and we simply have the constant coefficient advection equation

qt q- Uqx O.

Since u is constant, this can be written equivalently in conservation form as

(2.1) qt + (Uq)x 0 or qt + f(q)x 0,

where f(q) uq is the flux function giving the rate of flux of q per unit time. We use a finite
volume method in which q’ represents an approximation to the cell average of q over the th
cell Ci [xi-1/2, Xi+l/2]"

q(X, tn) dx.q -
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Integrating the conservation law (2.1) over Ci x [tn, tn+l] gives

lfc lfc kill f(q(xi+l/2, t))dt
h

q(x, tn+l) dx - q(x, tn) dx - - at,

k ,t,
f(q(xi-1/2, t)) dt

A finite volume method in conservation form takes the form

(2.2) q+ k
q’/- -[F(qn;i + 1) F(qn; i)],

ftn+lwhere F(qn; i) is some approximation to the average tlux at, f(q(xi-1/2, t)) dt based on
the data qn at time tn. For brevity the superscript n will often be left off and it is understood
that all data is at time t, unless otherwise stated.

2.1. Flux-limiter methods. Two standard methods are the first-order upwind method in
which

(2.3) FUp(q; i) { uqi-1, ifu > 0,
uqi, if u < 0,

and the second-order Lax-Wendroffmethod in which

1 k u2(2.4) FLrv (q; i) u(qi-x -b qi) (qi qi-1).

The upwind methodhas excessive numerical dissipation and typically exhibits strong smearing
of solutions and low accuracy and resolution. The Lax-Wendroff method can work well on
very smooth data but has difficulties if q has steep gradients or discontinuities since it is very
dispersive and tends to generate oscillations, also destroying the accuracy. Much better results
can be obtained by using a hybrid method that uses the second-order tlux in smooth regions but
involves some sort of limiting based on the gradient of the solution so that near discontinuities
it reduces to the monotone upwind method. Note that the Lax-Wendroff flux (2.4) can be
decomposed into the upwind flux plus a correction term:

F

This suggests the following tlux-limiter method:

(2.5) F(q; i)

where q is the limiter that depends on the nature of the solution locally. Note that if 0
then we have the upwind method while if 1 we have Lax-Wendroff. The limiters we
will use here have the form

q -q-, 4(0, 0

where

i-1, ifu>0,
I=

i+1, if u <0.
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We see that Oi is the ratio of the slope at the neighboring interface in the upwind direction to
the slope at the current interface. Some standard limiters are

minmod: q (0) max(0, min(1, 0)),
superbee: (0) max(0, min(1, 20), min(2, 0)),

van Leer:4(O)= 1+10[
monotonized centered (MC):4 (0) max(O, rain((1 + O)/2, 2, 20)).

Note in particular that for minmod, (qi qi-1)dP(Oi) is simply equal to either qi qi-1 or
qI qI-x, whichever is smaller in magnitude, unless they have opposite signs (i.e., Oi < 0) in
which case b 0.

The van Leer limiter was introduced in [59] and the MC limiter was also introduced by van
Leer in a later paper in this series [60]. This latter limiter produces the centered approximation

1
(qi qi-1)qb(Oi) - ((qi qi-1) + (qI qI-1))

unless this is larger than 2(qi qi-1) or 2(ql ql-1), in which case it is appropriately limited.
(And again q 0 if 0 < 0.) The MC limiter seems to be quite a good choice in general.
The superbee limiter [41] tends to be "overcompressive", meaning that it tends to steepen up
smooth profiles into discontinuities. For this reason it is useful for problems where q should
have a sharp discontinuity that we wish to maintain, but may be inappropriate for problems
with smooth q. Some examples will be seen in 9.

The theory of flux-limiters is discussed more fully in Sweby [57] (see also [28]). More
recent discussions of limiters that include some potentially valuable extensions include [21]
and [47]. Some different approaches to multidimensional limiting are mentioned in 5.

2.2. Slope-limiter methods. The flux-limiter method described above can be viewed in
a more geometric way that facilitates the extension to two space dimensions. A quite general
class of methods can be derived by the following sequence of steps:

1. From the given cell averages qi at time tn construct a function (x, t).
2. Solve the advection equation exactly with this data over a time step of length k, giving

(x, tn+l) (X uk, tn).
3. Average this shifted function over the grid cells to obtain the new cell averages:

q?+ _1 fc (x, tn+ dx.
h

This will be referred to as the "shift-and-average" algorithm. The particular method
obtained depends on the form of the function 4 chosen in step 1. If 4 is piecewise constant
with value qi in cell Ci, we obtain the upwind algorithm. If 4 is piecewise linear with mean
value qi and some slope tri in cell Ci, then it is easy to verify that the resulting method is
conservative for any choice of tri and can be written in the form (2.2) with the flux

(2.6)

where

1 (k)F(q; i) Fup(q; i) + lul 1 lul hffj,

i-1, if u>0,J=
i, ifu <0.
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In particular, the choice crj (qi -qi-1)/h gives the Lax-Wendroffmethod. The flux-limiter
method (2.5) is easily interpreted as a slope-limiter method with slope crj (qi-qi-1)ti"h

The slope-limiter viewpoint makes it relatively easy to interpret the effect of the limiter in
terms of the requirement that the algorithm maintain monotonicity and not increase the total
variation of q in any time step. This approach was used by van Leer in his development of the
MUSCL scheme for conservation laws, e.g., [60].

2.3. Wave-propagation form. These algorithms can be viewed in yet another way that
will also prove useful. In the case where is piecewise constant (the upwind method), we can
view the discontinuity in at the cell interface Xi_l/2 as giving rise to a wave that propagates
into cell Ci (resp., Ci-1) if u > 0 (resp., u < 0) and modifies the value of q in this cell by the
jump (qi qi-1) as it passes through. After time k it has propagated a distance uk and so the
cell average is modified by (qi qi-1). This gives

kqT+l q1 -u(qi qi-1),

where

I= / i, ifu > 0,
/ i-l, ifu < 0.

This agrees with the upwind method defined before.
To introduce slopes, we can think of replacing the piecewise constant wave shown in

Figure 2.1 (a) by a piecewise linear function as shown in Figure 2.1 (b). For concreteness we
assume u > 0 and so the wave originating from the interface xi-1/2 affects the cell average qi

which is updated by the shaded area in Figure 2.1 (b) divided by the cell length h. If the slope
in cell Ci-1 is O"i_ then the area of the shaded trapezoid is

1 h (qi-l( ku tri_- )1-kuI(qi-l-[--ffi-l-qi) W ) qi

-ku [(qi qi-1)

The value qi is also affected by the wave originating in cell Ci that moves to the right. If the
slope cr is nonzero then this wave changes the cell average qi by 1/h times

1(k)-ku 1--u hffi.

The total update to qi comes from combining these two terms and gives

n k
qi

+1 q -u(qi qi-1)- -U 1- -U h(ri -o’i-1).

This is the same formula as obtained by using the flux (2.6).
This can also be viewed as a two-step procedure in whichwe first modify qi by propagating

the piecewise constant wave of Figure 2.1 (a) (called the increment wave) and then propagate
a correction wave of the form shown in Figure 2.1 (c) that has slope tri_ but mean value zero.

This decomposition will be useful in two dimensions where these two waves are best
viewed as separate entities which may even propagate in different directions.
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FG. 2.1. (a) Propagation ofa piecewise constant wave into the ith cell (the increment wave). (b) Propagation
ofa piecewise linear wave. (c) The correction wave. The wave shown in (b) can be decomposed into the increment
wave and the correction wave.

Gi,j+ll2

b)

Area

c)

FIG. 3.1. (a) Wave-propagation interpretation of the upwind method with fluxes (3.2). (b) Wave propagation
for the modified upwind method withfluxes corrected by (3.3) and (3.4). (c) The new cell value can equivalently be
computed as the weighted average offour cell values overlapped by the shaded region.

3. Two-dimensional constant flow. We now extend the above method to two space
dimensions in the case where u and v are constant. We assume a uniform grid with equal
spacing h in both directions. Let Cij be the (i, j) grid cell [xi-1/9., xi+1/9] x [yj-1/2, yj+l/2]
and let q.n. represent an approximation to the cell average,

qij q (x, y, tn dx dy.
ij

For concreteness in describing the algorithm we will assume that u and v are positive through-
out this section. The general algorithm is presented in 4.

A conservative finite volume method in flux-differencing form now takes the form

(3.1)
k

ij qij -[Fi+l/2,j Fi-1/2,j + Gi,j+l/2 Gi,j-1/2],

where Fi_l/2,j represents the flux at the left edge of cell Cij and Gi,j-1/2 is the flux at the
bottom. The simplest upwind method (the "donor-cell" method) would use

Fi-1/2,j uqi-l,j,(3.2)
Gi,j-1/2 vqi,j-1.

Note that as a wave-propagation method this has the interpretation shown in Figure 3.1(a).
Waves carrying the jumps (qij qi-l,j) and (qij qi,j-1) propagate independently into the
cell in the x- and y-directions at speeds given by the velocities u and v in the directions normal
to each interface.

Clearly a superior method should be obtained by propagating each of these waves at
the proper speed (u, v) oblique to the grid, as shown in Figure 3.1(b). This can be most
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easily implemented as a two-step procedure in which the wave is first propagated normal to
the interface, giving a provisional value for the flux at the interface as above, and then the
triangular piece of the wave that moves into an adjacent cell is used to update the flux between
the two cells affected by this transverse motion. Note that the area of this triangle is 2k uv

kso that the cell average is modified by ruvAq, where Aq is the jump across the wave. One
cell average is increased by this amount while the other is decreased by this same amount, and

uvAq (The otherso this transfer can be accomplished by modifying the flux Gi,j+l/2 by
factor ofkh appears in the flux-differencing expression (3.1).)

Because the wave from each interface now affects two different fluxes, this is most easily
implemented by initializing all F-1/2, and Gi,-l/Z to zero and then looping over the cell
interfaces, updating the appropriate fluxes as needed while dealing with each interface in
turn. The wave propagating from the interface between cells Ci-,j and Cij affects the fluxes
Fi-1/2, and Gi,j+l/2 (recall u, v > 0) by

(3.3) Fi_l/2, j :-- Fi_l/2,j -4- uqi-l,j,
lk

Gi,j+l/2 :-" Gi,j+l/2 --ul)(qij qi-l,j).

Similarly, the wave from the interface between Ci,j-1 and Cij leads to the updates

(3.4) Gi,j-1/2 := Gi,j-1/2 "" vqi,j-1,

lk
F/+l/2,j := F/+l/2,j- -uv(qij- qi, j-1).

This modified version of the upwind method is both more accurate and also more stable than
the original version (3.2). The original method requires

k
(3.5) 7(lul + Ivl) 1,

whereas the modified method only requires

k
(3.6) max(lul, Ivl) 1.

For advection at 45 degrees to the grid this allows a doubling of the time step. These well-
known bounds are derived in 8 and the stability regions are shown in Figure 8.1. This
improved first-order accurate method is called the comer transport upwind (CTU) method by
Colella [8].

An easy computation shows that this method can also be interpreted as a shift-and-average
method, extended in the obvious way to two dimensions, in the case where the function
(X, y, tn) is chosen to be piecewise constant with value qij in cell Cij. The resulting value

qj+l is an average of qinj over four neighboring cells as indicated in Figure 3.1(c), but is
implemented in quite a different way that simplifies both implementation and also extension
to higher accuracy.

3.1. Second-order accuracy. To achieve second-order accuracy we need to model
second-derivative terms. Following the Lax-Wendroff approach to developing second-order
methods, we expand q(x, y, tn+l) in a Taylor series in time:

1
q(x, y, tn+l) q(x, y, tn) -+" kqt(x, y, tn) "+- "k2qtt(x, y, tn) + O(k3).
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In the constant coefficient problem,

qt -Uqx Vqy

and

qtt U2qxx -k 2UVqxy -k V2qyy.
The idea is now to approximate the spatial derivatives by finite differences. The standard Lax-
Wendroffmethod is obtained by using centered approximations to each ofthe derivatives. The
basic upwind method approximates only the kqt term using first-order upwind approximations
to kuqx and kvqy. The CTU method with transverse propagation of the waves introduces
an approximation to the cross-derivative term k2uvqxy. Note, for example, that the G-flux
modification in (3.3) involves an approximation to qx. When the G’s are differenced in the
y-direction in (3.1), this gives the qxy term. Similarly, the modification to F in (3.4), when
differenced in the x-direction, gives an approximation to qyx which also contributes to the
cross-derivative term.

To obtain second-order accuracy, we need to replace the upwind approximations to kuqx
and kvqy by centered approximations and also to introduce approximations to k2u2qxx and
1-k2v2qyy. These are both accomplished by using the same flux corrections used in the one-2
dimensional method. In considering the interface between Ci-1,j and Cij, in addition to the
flux modification (3.3), we also perform

(3.7) Fi-1/2,j :-’- Fi-1/2,j ’1- lul 1- lul (qg:- qi-l,j),

regardless of the sign of u. If a limiter is needed to avoid oscillations, we replace (qij qi-l,j)
in this step by a limited version as described in 2. Note that this limiter should be applied
only in this term, not in the modification to Gi,j+l/2 in (3.3). It is not needed in (3.3) because
that term only introduces transverse propagation of the piecewise constant wave to give the
CTU method, a monotone method that does not suffer from oscillations.

An analogous modification is made following (3.4):

(3.8) Gi,j-1/2 :’- Gi,j-1/2 -4:- lvl 1 lvl (qij -qi,j-1),

perhaps with a limiter. In the absence of limiters, the method just described is second-order
accurate onsmooth data. This is verified by a more careful error analysis in6andby numerical
results in 9.

These second-order corrections are exactly the same as the corresponding terms in the
standard Lax-Wendroff method [19, 56] for the constant coefficient problem (except for the
limiter). Note, however, that the cross-derivative terms are modeled in a different way. The
approximations used here are one-sided approximations based on the direction (u, v) while
the standard method uses centered approximations. The standard Lax-Wen&off method is
obtained if the modification -1/2 uv(qij qi-l,j) from (3.3) is split evenly between the four

nlfluxes Gi_l,j_l/2, Gi-l,j+l/2, Gi,j_l/2, and Gi,j+l/2 (modifyingeachby " uv(qij--qi-l,j))rather than being applied only in the upwind direction to Gi,j+ 1/2. The other terms are modeled
identically in the two versions, but this upwind modification of the cross-derivative terms is
enough to increase the stability bound so that time steps k satisfying (3.6) are allowed, just as
with the first-order version. By contrast, the standard Lax-Wendroff method has a time-step
restriction even more stringent than (3.5). The stability region is shown in Figure 8.1. The
version presented here allows larger time steps in addition to allowing the easy introduction
of limiters to give high-resolution results for nonsmooth data.
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Normal propagation: Transverse propagation"

FIG. 3.2. Propagation ofthe correction wave in theflow direction. The vertical dashed lines are contour lines
ofthe correction wave.

Although second-order accuracy has already been achieved, one might suspect that even
better results would be obtained by also including transverse propagation of the correction
waves, just as better first-order results are obtained by including tangential propagation of
the increment waves. This turns out to be true and is also quite easy to implement. The
correction wave affects two cells (recall Figure 2.1(c)) and so the transverse motion of this
wave will affect two fluxes in the transverse direction. Figure 3.2 shows the correction wave
from the interface between Ci-l,j and Cij moving distance (ku, kv). It modifies the tlux
F/-1/2, according to (3.7) but now also modifies Gi-l,j+l/2 and Gi,j+l/2 by (assuming again
u, v > 0 for concreteness)

(3.9) ai-l,j+l/2 ai-l,j+l/2 --UV 1- -U (qij qi-l,j),

Gi,j+l/2 :-- Gi,j+l/2 -[- --UV 1 -u (qij --qi-l,j).

Note that the modification to each G is just +kv! h times the modification to the F made in
(3.7), making it quite trivial to compute and reflecting the fact that this wave is moving upward
at speed kv and hence moving through the fraction kv/h of the neighboring cell.

Similarly, following (3.8) we can perform

(3.10) F/+l/2,j-1 Fi+l/2,j-1- uv 1 v (qij -qi,j-1),

Fi+l/2,j Fi+l/2,j--[- Ul) 1- 1) (qij- qi,j-1).

These modifications do not affect the formal order of accuracy of the method but can
reduce the error, particularly on problems with steep gradients or discontinuities in q where it
can help to minimize the mild oscillations that may arise in two dimensions even when limiters
are used. (An example is given in 9.) If limiters are used, then limited values of the jumps
in q are used in (3.9) and (3.10), just as in (3.7) and (3.8).

The above formulas assume that u, v > 0. The general case can be handled with only
minor changes to the formulas and some logic to determine which fluxes are affected based
on the direction of propagation. The general algorithm is presented as Algorithm 4.1 in 4
after introducing the modifications needed to deal with variables u and v.
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li,j-l/2

FIG. 4.1. The interface velocity values.

4. Two-dimensional nonconstant flow. We now consider a more general specified ve-
locity field (u(x, y, t), v(x, y, t)) which is assumed to be incompressible:

(4.1) Ux (x, y, t) + Vy(X, y, t) 0 for all x, y, t.

The method presented above can be generalized quite easily by simply replacing u and v in
most of the formulas by the values of u and v at the midpoint of the interface giving rise to
the wave being propagated. We thus need values of u and v at the points (Xi4-1/2, yj, tn+l/2)
and (xi, yj+/-x/2, tn+x/2). These are also evaluated at the midpoint in time tn+l/2 tn -t- k/2 to
preserve second-order accuracy in the case where the flow is time dependent. For the method
described below to be conservative, we require that these discrete values satisfy

(4.2) n+1/2 un+l/2 n+1/2 .n+1/2
Ui+l/2,j i-1/2,j) -t- (Ui,j+l/2 vi,j_l/2) O.

This involves the u and v velocities at the points shown in Figure 4.1 and dividing by h shows
that (4.2) is a natural discrete version of (4.1) over cell Cij.

If the velocity field is calculated by an incompressible Navier-Stokes solver that operates
on a staggered grid of the form shown in Figure 4.1 (such as the MAC method 15] or the
method of Bell, Colella, and Glaz 1]) then this condition may be automatically satisfied by
the computed values, at least at the full time steps. Values satisfying (4.2) at the half time
steps could be obtained by averaging these values in time. Other algorithms, such as Chorin’s
original projection method [7] do not use a staggered grid but rather produce cell-centered
values (uinj, 13inj) that satisfy

uin+ U
n n

l)(Pi,j+l ,,j-l) O.1,j i-l,j) "
In this case we can define

1n+1/2 1 n n un+li-1/2,j "(Ui-l,j -t- Uij + i-l,j -t- Uj+l),

Uin,+l/2 1
(1)7 + .._. n+l

j--l/2 - ,j--1 Uij Ui,j-1 "- U;1)

and obtain interface values that satisfy (4.2).
Finally, if we are given u(x, y, t) and v(x, y, t) as functions that are divergence-free in

the sense of (4.1), then evaluating these functions at the cell interfaces gives discrete velocities
that may not satisfy the discrete condition (4.2). However, we couldapply a projection to this
velocity field to make it divergence-free in the discrete sense with only an O(h2) modification
to the values (see, e.g., [2]).
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The advection equation can be written in either the conservative form

(4.3)

or in the advective form

qt + (qU)x + (qV)y 0

(4.4) qt + Uqx + Vqy O.

Mathematically the two are equivalent if (4.1) is satisfied, but numerical algorithms may
behave quite differently depending on which form is modeled. (See, e.g., [10, 13, 44] for
some discussions of this issue.) While it is generally desirable to maintain conservation and
so (4.3) might seem preferable, advective-form algorithms often give better accuracy.

One difficulty with the conservative form is easy to appreciate if we consider a problem in
which q is constant, say q 1, but u and v are varying. Of course q should remain constant
but since the flux ftmctions qu and q v are not constant, this will only be true numerically if
the tlux differences in (3.1) across each cell happen to cancel out. While they should cancel
out in theory because of (4.1), when the fluxes are computed with a high-resolution method
involving limiter functions, this may not be the case and constant flow might not be preserved.
This intolerable behavior indicates severe difficulties with such methods.

The method presented in the previous section, when properly generalized to nonconstant
flows, appears to combine the advantages of both types of algorithm. The method is still
written in the flux-differencing form (3.1), and hence is conservative. However, the fluxes
are calculated in a form that is essentially advective, in that the formulas involve velocities u
or v multiplying q-differences, rather than differences of the quantifies qu or q v. Of course
for the constant coefficient problem there is no difference since the constant velocities can be
factored in or out of the differencing at will.

In the case ofnonconstant flow, the basic donor-cell upwind method can be written in two
different forms. The natural generalization based on fluxes would be to set (again assuming
u, v > 0 everywhere)

n+l/2Fi-1/2,j Ui_l/2, j qi-l,j,

.n+l/2ai,j-1/2 vi,j_l/2 qi,j-1.

Doing so gives the upwind method

(4.5) n+l k n+l/2 n+l/2 .n+l/2 .n+l/2
qij qij -l,Ui+l/2,j qij Ui_l/2,j qi--l,j "}- ui,j+l/2 qij ui,j_l/2 qi,j-1).

This is clearly an approximation to the conservative form (4.3).
Another possibility would be to use the advective form directly, setting

k
(4.6) _n+l

qij qij - Aij,

where

(4.7) n+1/2 n+1/2Aij Ui_l/2,j(qij qi-l,j) -- 13i,j_l/21,qij qi,j-1).

This form appears preferable in the situation described above, since if qij constant then
Aij =-- O. On the other hand, it is not clear that it is conservative, since it is not written in
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_n+l in the case offlux-differencing form. In fact, the two forms give precisely the same ttij
incompressible flow. We can rewrite Aij as

run+l/2 n+l/2 n+l/2 un+l/2Aij i+l/2,jqij .Ui+l/2,j Ui-1/2,j)qij] i-1/2,jqi-l,j

n+l/2 (l)n+l/2 n+l/2 n+l/2+ IVi,j+l/2qiJ i,j+l/2 l)i,j-1/2)qiJ] Di,j-1/2qi,j-1

n+l/2 n+1/2 n+l/2 .n+l/2
Ui+l/2,jqij Ui_l/2,jqi_l,j -]" l)i,j+l/2qij l)i,j_l/2qi,j_

n+l/2 n+l/2 .n+l/2 n+l/2
.Ui+l/2,j Ui_l/2, j + ui,j+l/2 Vi,j_l/2)qij.

Using the constraint (4.2), the last term drops out and we see that this gives the same update
as the flux-differencing formula (4.5).

The flux updates required to introduce transverse propagation and second-order accuracy
are identical to the formulas already presented, with the constants u and v replaced by u and
v evaluated at the midpoint of the interface from which the wave propagates. Algorithm 4.1
gives the complete set of formulas, including the logic needed to generalize from u, v > 0 to
the general case where the sign of u and v at each interface is used to determine the direction
of propagation of the waves. These formulas follow almost directly from the formulas (4.6),
(3.3), and (3.7). For clarity and ease of comparison of different methods, it is indicated in this
algorithm where to break out of the loop in order to implement each of four different methods.
Continuing on simply adds additional correction terms. The four methods are listed below.

Method 1. The upwind method (4.6).
Method 2. The upwind method with transverse propagation using (3.3).
Method 3. The second-order method with correction waves propagating

normal to the interfaces using (3.7).
Method 4. The improved second-order method with transverse propagation

of the correction waves using (3.9).
A Fortran implementation of these algorithms is also available by anonymous ftp (see

12). This gives complete implementation details and also includes test data for the numerical
examples presemed in 9.

5. Other approaches and related methods. The advection problem has been exten-
sively studied, both because of its own importance and as a model problem for other fluid
dynamical equations. The recem survey by Rood [44], which is mainly for one-dimensional
algorithms, mentions that over 100 algorithms were found and contains an extensive bibli-
ography. Leonard [21] and Zalesak [63] also give comparisons of many methods applied to
one-dimensional advection problems. It is clearly impossible to give a complete survey here,
but it may be useful to briefly describe a few other approaches and how they relate to the
methods derived here. (See also [6, 22, 50, 61].)

Methods with at least second-order accuracy were initially obtained by using either the
approach ofLax and Wendroff, by using cemered approximations to derivatives (e.g., 19, 34])
or by applying dimensional splitting to one-dimensional algorithms (e.g., [20, 10]). Crow-
ley 10] developed fourth-order accurate algorithms and also studied the difference between
conservative and advective forms of the equations and noted the superiority of the advective
form.

The use of centered approximations for the second- and cross-derivative terms leads to
oscillations, of course, and the earliest attempts to eliminate these oscillations relied on the ad-
dition of"artificial viscosity". This was suggested already by Lax and Wendroff 18]. Dukow-
icz and Ramshaw 12] developed the tensor viscosity method as an approach to handling the
cross-derivative terms in a more physical manner to reduce these oscillations. Smolarkiewicz
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# Initialize increments and fluxes:

for each i, j do

Fi-1/2,j :-- O, Gi,j-1/2 :-- 0

# Update increments and fluxes based on interfaces in x-direction:

for each i, j do

# consider interface between cells Ci-l,j and Cij:
n+l/2U := Ui_l/2,j
n+l/2V :-- Vi_l/2,j

R :-- qij qi-l,j

ifU>0thenI:=i-lelseI:=i

Fi-1/2,j :-- Fi-1/2,j W Uqi,

# if method then end loop here

if U > 0then I := else I :=

ifV >0thenJ:=j+lelseJ:=j
lk

GI,J-1/2 := GI,J-1/2- --UVR
# if method 2 then end loop here

R := limited version of R

Fi-/.,j := Fi-/,j + S

# if method 3 then end loop here
k

Gi,J-1/2 :----- Gi,J-1/2 + - VSkGi-I,J-1/2 :: Gi-I,J-1/2- -VS
# if method 4 then end loop here

# Update increments and fluxes based on interfaces in y-direction:

# Similar to the above but with the roles of and j,

# u and v, and F and G switched

# Update q:

for each i, j do
k

qTj+1 qij n’Z’- [/+l/2’J Fi-1/2,j + Gi,j+l/2 Gi,j-1/2]

ALGORITHM 4.1. One time step ofthe algorithmfor general two-dimensionalflow.

[52] developed MPDATA (multidimensional positive-definite advective transport algorithm)
based on iteratively applying the donor-cell upwind method to modified equations determined
by the truncation error of the previous iteration. Smolarkiewicz and Clark [53] showed how to
include the cross-derivative terms in the multidimensional version of this approach and later
work [49, 54] has directly incorporated limiters as well. Harten 16] took a similar approach
to developing TVD schemes, applying a monotone method to a modified conservation law to
achieve second-order accuracy.
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The idea of limiters arose in many contexts. Boris and Book [5] developed the flux
corrected transport (FCT) method based on correcting a first-order flux by the addition of
a limited portion of a second-order correction. Harten and Zwas [17] considered similar
hybrid methods and van Leer [59, 60] developed slope-limiter MUSCL methods (monotonic
upstream-centered scheme for conservation laws) based on piecewise linear functions. This
was later extended to piecewise quadratics in the piecewise parabolic method (PPM) of Colella
and Woodward [9]. These methods were developed for more general nonlinear conservation
laws in one space dimension and were typically extended to more dimensions by dimensional
splitting.

Colella’s multidimensional method for conservation laws [8] involves upwinding and
limiting of cross-derivative terms in a manner similar to that proposed here. The basic idea
in his approach is to extrapolate from the cell averages, viewed as pointwise values at the
center of each cell at time tn, to cell interface values at time tn+l/2, using Taylor series expan-
sions. Replacing the time derivative by spatial derivatives brings in the transverse derivative
term and limiters are introduced in approximating the spatial derivatives. Different inter-
face values are obtained from each side and these two values are then resolved by solving
a Riemann problem, which for the advection equation simply amounts to using the upwind
value. For the constant coefficient problem, the first-order CTU algorithm of [8] agrees
with Method 2 here while the second-order algorithm agrees with Method 3, though the
implementations are viewed quite differently. For variable coefficients the methods are dis-
tinct.

A three-dimensional extension is given by Saltzman [46] (see also [58]). The advection
version of this algorithm has also been employed by Bell, Colella, and Glaz 1] in their second-
order projection method for the incompressible Navier-Stokes equations (see also [2, 4]) and
by Pilliod and Puckett [37] for advection algorithms in the context of volume-of-fluid interface
tr.acking. Bell, Dawson, and Shubin [3] developed an algorithm for porous media flow based
on Colella’s approach and also employ multidimensional limiters as discussed below.

The development of the wave-propagation framework used here was based on work by
Roe (e.g., [40, 39, 41]), who introduced the idea of defining fluxes by shifting "fluctuations".
This has more recently been used to develop multidimensional fluctuation-splitting methods
for hyperbolic systems and associated upwind advection algorithms (e.g., [42]). Radvogin
[38] has introduced a multidimensional algorithm for both advection and hyperbolic systems
that also uses similar ideas.

The shift-and-average form ofthe algorithm from 3 can be interpreted as reconstructing a
function from given grid data, moving this function forward in time by the advection equation,
and then averaging to obtain new grid values. Alternatively, one could define new grid values
by starting at a grid point and tracing backwards in time via the advection algorithm to find
the departure point of the particle now at this grid point and then interpolating between grid
values at the previous time level to obtain the value of q at the departure point.

In the case where (3.6) is satisfied and bilinear interpolation is used between the four
grid points surrounding the departure point exactly parallels Method 2 (the CTU method). A
more general advantage of this approach is that time steps much larger than those allowed
by (3.6) can often be used. Numerous advection algorithms have been developed along these
lines, such as semi-Lagrangian methods (see the recent review [55]), the modified method
of characteristics (e.g., 11]), and the characteristic Galerkin method (e.g., [31, 32, 35, 36]).
These methods are also quite successful for advection-diffusion problems where the advective
terms dominate. Note that qij is now viewed as the value of q at a grid point rather than a
cell average, and conservation may be harder to maintain. Scroggs and Semazzi [48] have
recently addressed this problem.
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Leonard, MacVean, andLock [23] also use this interpolation viewpoint to develop second-
and third-order multidimensional methods for constant velocity problems, which in the absense
of limiters agree with Method 3 from 3 and Method 5 (introduced in 7), resp. (See also [21,
22].) They also develop multidimensional limiters that take into account the total contribution
to each cell value from fluxes at all sides of the cell. This is a more sophisticated limiter than
that used in the present algorithm (which limits each flux based only on information about the
solution in that coordinate direction).

Multidimensional limiting has the advantage that it is possible to eliminate oscillations
and undershoots entirely; this is particularly important in applications where the method must
be positivity preserving, for example. Other forms of multidimensional limiting have also
been developed, starting with the fundamental work of Zalesak [62] who extended the FCT
method to a multidimensional version that does not rely on dimensional splitting. The version
ofMPDATA developed by Smolarkiewicz and Grabowski [49] (based on the FCT limiter) also
has this property. Saltzman [45] has proposed a similar multidimensional limiter based on van
Leer’s MUSCL scheme. Roe and Sidilkover [43] also discuss multidimensional upwinding
from the standpoint of maintaining positivity.

The second-order algorithms developed in this paper use one-dimensional flux-limiters
applied to the second-order correction term. This is done for simplicity and leads to algorithms
that are quite easy to implement and efficient to run. They may exhibit slight oscillations and
lack of positivity, but these effects (with Method 4) are typically very slight and for many
applications the relative ease and sharp resolution may be more important. If desired, the
methodology developed here could presumably be combined with some of the multidimen-
sional limiting techniques mentioned above. This could be particularly valuable for the third-
order method developed in 7, for which good one-dimensional limiters have not yet been
developed.

In spite of the plethora of advection algorithms already in the literature, the method
proposed here seems to have some unique features. It uses a multidimensional approach,
rather than splitting, in a manner that is quite simple to implement. Dimensional splitting
is still widely used in practice because of its simplicity, but in many applications it would
be desirable to use a multidimensional approach. The simple form of flux limiting was
chosen to keep the implementation quite simple and should be sufficient in many applications.
The method is conservative and yet has the advantages of advection-form algorithms. The
geometric interpretation of wave propagation lends itself to generalizing these ideas to more
interesting situations, e.g., algorithms on curvilinear or even unstructured grids, or to more
complicated equations with advective behavior. The basic ideas generalize quite naturally
to nonlinear systems of conservation laws and were actually developed there first [26, 29],
whereas many specialized advection algorithms do not generalize well.

The next three sections contain truncation error analysis, generalization to third-order
accuracy, and stability analysis. The casual reader may wish to advance to 9 at this point.

6. Truncation error analysis. The truncation error of the method presented in Algo-
rithm 4.1 is easy to compute in principle but complicated by the algorithmic form. For
concreteness we will assume that u and v are positive in the neighborhood of the point (i, j)
under consideration, i.e., at all nearby interfaces. The analysis is similar if u or v is nega-
tive, but the formulas then involve different grid points because of the upwind nature of the
algorithm. Even with this assumption, which fixes the stencil, it is still not easy to write out
the difference scheme in the classical form. Algorithm 4.1 looks deceptively simple but the
method in finite difference form is quite complicated. Rather than writing this out in full and
then expanding each grid value in Taylor series to compute the local truncation error, we will
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consider each step of the algorithm and compute its contribution to the local error. This not
only helps to organize the computation but also leads to a clear understanding of the effect
of each step on the error. We will consider the full method (Method 4) in the absence of
limiters, although our analysis will show that second-order accuracy is also achieved by using
Method 3. We begin by assuming that u and v are time independent, although they may vary
spatially. We will then see that second-order accuracy is maintained in the time-dependent
case by evaluating the velocities at the half time step.

We will compute in detail only the contributions to the error that come from differencing
the F fluxes and from the portion of Aij that corresponds to wave propagation in the x-
direction. The contributions from differencing the G fluxes and the upwind method in the
y-direction will then follow easily by symmetry. We will determine how qij is updated in one
time step in computing qij-n+l and compare this with the correct update given by

(6.1)
1 2 1 3q.+l q + kq + -k q d- -k q +’".

To demonstrate second-order accuracy we need to show that the qt and qtt terms are matched
correctly. We will also keep track of the O(k3) terms since we will see that for the special case
of constant coefficients a simple modification ofthe method gives third-order accuracy. In this
case the modifications used in Method 4 are essential since they provide the cross-derivative
terms appearing in qttt. This is discussed in the next section.

Note that

(6.2) qt -(uqx + Vqy)

and

(6.3)
qtt --(Uqtx + Vqty)

u(Uqx + Vqy)x -I- v(uqx + l)qy)y
(U2qx "Jr UVqy)x -I" (VUqx "q- V2qy)y,

where we have used the fact that Ux + Vy O.
The basic first-order flux in the x-direction (see (4.6)) modifies qij by

k
---Ui-1/2,j(qij qi-l,j).

Expanding this in a Taylor series about (xi, yj) shows that this is equal to

(6.4) kuqx + kh(uqx)x -kh2(3(Uqx)xx + Uqxxx) + O(k4),

where all functions are evaluated at (Xi, yj) and we assume k h is fixed so that h O(k).
The modification (3.4) corresponding to transverse propagation of the increment waves

updates qij by (after computing -(Fi+l/2,j Fi-1/2,j))

(6.5)

k[lk- "-ui,j-1/2vi,j-1/2(qij qi,j-1)

--Ui-l,j-1/2Vi-l,j-1/2(qi-l,j qi-l,j-1)

k2(uvqy)x k2h[(uvqy)xx + (uvqy)xy] W O(k4).



CONSERVATIVE ALGORITHMS FOR ADVECTION 643

The slope modification (3.7) updates qij by--- "Ui+l/2,j 1 -Ui+l/2,j (qi+l,j qij)

Finally, propagating e slope modifications from (3.8) in the travee direction gives mod-
ificatio m the F fluxes analogous to (3.9). There are four such modifications that combine
to affect qij, giving a total contribution to qij of

+ 1-

(6.7) + vi-,+/u_,+/ 1 vi-,+/ (qi-,+ -q-,)

vi_,-/ui_,_/ 1 vi-l,j-1/2 (qi-l,j qi-l,j-1)

k2h(uvqy)yx k3(uv2qy)yx+ O(k4).

Note that this final upte is O(k3) and does not affect the second-order accuracy of the
method, as claimed in 3.

Adding up the updates (6.4), (6.5), and (6.6) gives

1 2 ((U2qx)x + (UVqy)x) + O(k3)-kuqx + k
and adding in the coesponding te from the G-differencing and the y-component of the
upwind method gives the total update of qij:

(6.8) q+i qij k(uqx + Vqy)

+ k2 ((U2qx)x + (UVqy)x + (Vuqx)y + (V2qy)y) + O(k3).

Comparingis with (6.1) using (6.2) and (6.3) shows that the method is second-order accate.
Now suppose that the velocities are time dependent and we use the algorit developed in

4 with u and v evaluated at time tn+l/2. Then we still obtain (6.8) but with u and v evaluated
at the half time step and so using a Taylor series in time to expand u and v in (6.8) about
(xi, yj, t) gives

ij qij k((u + kut/2)qx + (v + kvt/2)qy)

l k2 ((U2qx)x + (UVqy)x + (Vuqx)y + (V2qy)y) + O(k3)

(6.9) qij k(uqx + Vqy) + k2 ((U2qx)x + (UVqy)x

+ (VUqx)y + (V2qy)y (Utqx + Vtqy)) + O(k3).
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This shows that we again have second-order accuracy since in the time-dependent case qt is
still given by (6.2) while (6.3) is replaced by

qtt -(Uqtx q- Vqty) (utqx -+- Vtqy)
(U2qx + UVqy)x "+" (VUqx + V2qy)y (utqx + Vtqy).

7. Third-order accuracy for constant coefficients. For the general variable coefficient
problem it seems difficult to determine what additional correction terms must be added to
obtain third-order accuracy. For the special case of constant coefficients, however, this term is
quite simple. Combining the O(k3) terms from (6.4)-(6.7) and the corresponding terms from
G-differencing gives

(7.1)

lkh2uqxxx k2h(uvqxxy k- UVqxyy) -I" k2huvqxyy

1
k3Ul)2qxyy --[- similar terms from G-differencing

2

1
h

1 3 (ul)2qxyy ..[_ u21)qxxy)--k 2(llqxxx -I" Vqyyy)- -k
To achieve third-order accuracy we need to match the O(k3) term in (6.1), which is

(U3qxxx -]-- 3u2Vqxxy --}- 3uV2qxyy --[- l)3qyyy)1
(7.2) k3qttt -k3Comparing (7.1) with (7.2) shows that we need to make an additional update to qij of the form

-(6 k2 ) ( k2 )lkh2 1- -’-U
2

Uqxxx + -khl 2 1- -’-V
2

Vqyyy.

This can be easily accomplished by modifying the F flux by a term modeling

1 k2-- (kh2 (1- -u2) Uqxx)
and making a similar modification to the G flux. For example, we could use

(7.3) Fi_l/2, j ": Fi_l/2,j u 1 (qi+l,j 2qzj + qi-l,j)

in the x-sweeps, and

(7.4) ai,j-1/2 :-- ai,j-1/2 1 -V
2 (qi, J+l 2qiJ + qi, J-1)

in the y-sweeps, where

i={ i, if u <0,
and J={ j’ if v <0,

i-l, if u >0, j-l, if v >0,

are chosen so that the third-order corrections are properly upwinded. Note that these correction
terms involve only pure x- and y-derivatives. All of the cross-derivative terms have already
been correctly modeled by the transverse propagation of the lower-order terms.
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In developing the second-order accurate method we found that it was advantageous to
also propagate the correction waves in the transverse direction even though this is not strictly
necessary for second-order accuracy. Also here it turns out to be advantageous to propagate
these third-order corrections in the transverse direction by using the additional updates (again
assuming u, v > O)

(7.5) Gi-l,j+l/2 Gi-l,j+l/2 - u 1 ((qi+x,j 2qzj + qi-l,j))

Gi,j+l/2 :-- Gi,j+l/2 + T u 1 -u2 (qi, J+l 2qi.z + qi, J-1)

following (7.3) and similar updates to the F fluxes following (7.4). We will refer to the
algorithm in which only the modifications (7.3) and (7.4) are made as Method 5 and the
improved version with transverse propagation (7.5) (and similar modifications to F) as Method
6. The latter method appears to have a smaller error constant when solving the constant
coefficient problem. In this case including the transverse derivatives also enlarges the stability
region. Method 6 is stable provided (3.6) is satisfied whereas Method 5 has a stability region
closer to that specified by (3.5). These stability regions are shown in Figure 8.1.

Note that Algorithm 4.1 requires only a trivial modification to convert it from Method 4
to Method 6. Simply replace the line

by

1 ( k tS :-- lUI 1- lUI R

IUII(k)IUI UI( k2 )S 1- R- 1- -U2 (ql+l,j 2qlj + ql-l,j).

This modification to the algorithm can be used even when 5 is not constant. In this case
the method is no longer third-order accurate, but numerical tests presented below indicate that
including these terms can improve the error constant substantially.

These methods give quite good accuracy on problems where q is smooth. With steep
gradients or discontinuities one would expect that some form of limiter will be needed for the
third-order correction terms analogous to what is used for the second-order correction terms.
Preliminary attempts to introduce such limiters have not been completely successful and more
work is needed in this direction. One possibility is to use multidimensional limiters as in
[23, 45, 621.

It is interesting to note, however, that surprisingly good results are obtained by using
Method 6 with no limiter on any of the correction terms (see Example 9.4). Presumably this
is due to the fact that the dominant term in the third-order method is a dissipative term rather
than a dispersive term.

Method 6 may be particularly useful for solving advection-diffusion equations where
there is some physical diffusion to insure that the solution is smooth.

8. Stability. In this section the stability region of each method is displayed for the case
of constant coefficients, periodic boundary conditions, and no limiters, so that von Neumann
analysis can be performed (see, e.g., Strikwerda [56] for a general discussion ofthis approach).
With u and v constant we define the Courant numbers/z and v by

lz uk/ h and v vk/ h.
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Von Neumann analysis is performed by considering modes of the form

qIJ ei(I+J),

where here and the frequencies and r range between -7r and r. Applying any of
the above methods then results in an expression of the form

n
IJ g(, O; tz, v)qlj,

where the amplification factor g depends only on the frequencies and 0 and the Courant
numbers/z and v. We also define

gmax(/Z, P) max Ig(, O; t*, v)l.
-rr <,0_<rr

The method is stable for a given set of Courant numbers (tz, v) if gmax(/Z, v) < 1. Note that
with all of the methods g(0, 0; tz, v) 1, so that gmax(/Z, v) > 1 everywhere and so the
stability region is the set of points in the (/z, v) plane where gmax(/Z, v) 1. We will assume
u, v > 0, and determine the portion of the stability region in the first quadrant. The rest of
the region follows by reflection across the axes.

For the first-order methods it is possible to explicitly calculate the stability region. With
Method 1 we have

g(,r/; /x,v)= 1-/z(1-e-i) v (1- e-in)

and Igl is bounded by 1 for all and 0 if and only if/z + v < 1.
For Method 2 the introduction of transverse derivatives gives an additional term, and

g(,r/; /z,v)= 1-/z(1-e-i) v (1- e-i) + lzv (1- e-i) (1- e-in

(1 -/z (1 e-i))(1 v (1 e-eft)).

Now g is the product oftwo factors, each of which is bounded by 1 provided/z < I and v < 1,
so the stability bound is max(/x, v) < 1.

For the second- and third-order methods, formulas for g are easy to derive but it is not so
easy to determine the stability regions analytically. Instead the region has been determined
numerically by computing gmax (/z, v) on a 60 x 60 grid of values in the first quadrant of the
(/z, v) plane and plotting contour lines. Each value of gmax(/z, v) is determined by calculating
g(, 0; /z, v) on a 60 x 60 grid of (, 0) values and finding the maximum.

The results are shown in Figure 8.1, along with the stability region for the Lax-Wendroff
method for comparison. Contour lines are shown at gmax(/Z, V) 1.001, 1.1, 1.2, 1.3
The area between the origin and the first contour line is the stability region. These results show
that Methods 3, 4, and 6 are stable for all Courant numbers up to 1, i.e., for max(/,, v) < 1.
Method 5 appears to be stable in roughly the same region as Method 1, though the instability
is milder over the remainder of the unit square. In fact the amplification factor increases and
then decreases back to the value 1 at the comer (1,1), which is an isolated stable point due
to the fact that the algorithm happens to be exact in this special case. This was also noted by
Leonard, MacVean, and Lock [23], who propose Method 5 as a third-order accurate method
for advection with constant flow.

1Note added in proof. Richard Liska [33] has recently proved the stability ofMethods 3 and 4 for max(/z, v) <
using the computer algebra system REDUCE and the package QEPCAD built on the symbolic manipulation library
SACLIB.
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Method

Method 3

Method 5

0.0 0. 0.6 0.| !.0

Lax-Wendrofi

e.o 2 o. 0.8

Method 2

Melhod 4

0.8 0,8

Method 6

1.0 t

FIG. 8.1. Stability regions for each method in the (tz, v) plane. Contours of the amplification factor are
shown and the blank region between the origin and the first contour line is the stability region. Contours are at
Igl--1.001, 1.1, 1.2
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o.8 o.8 0.84 o.8

Order of accuracy
Method max-norm 1-norm

2 0.82 0.86
3 1.99 2.05
4 2.02 2.06
5 1.97 2.87
6 2.98 3.02

FIG. 9.1. Log-log plot of the 1-norm error vs. h for Methods 2-6 on the constant coefficient problem of
Example 9.1, with u and v 2.

9. Numerical results. Numerous tests have been performed to investigate the behavior
of the methods developed in the previous sections. Some of these results are presented here.
All of the flow fields used in these computations have the property that simply evaluating
the velocity at the cell interfaces gives discrete values satisfying the discrete diveregence-free
condition (4.2).

Example 9.1. We first compare the errors and observed order of accuracy for a variety of
methods and limiters on test problems with smooth initial data. Figure 9.1 shows the errors
obtained on a problem with constant coefficients

(9.1) u(x, y,t) 1, v(x, y,t) 2

and the initial data

(9.2) q(x, y, O) sin(2zrx)sin(2zry).

In this case periodic boundary conditions are used and we compute up to time I at which
point the initial data should be recovered. The time step k 0.4h (Courant number 0.8) is
used in all the computations. (Note that Method 1, the donor-cell upwind method, is unstable
with this time step.) The figure shows a log-log plot of error vs. h for a sequence of grids
with h 0.05, 0.025, 0.0125. Methods 5 and 6 refer to the methods introduced in 7. These
methods should be third-order accurate on constant coefficient problems.

The table in Figure 9.1 shows the observed order of accuracy of each method in both the
1-norm and the max-norm, as computed by comparing the errors on the finest two grids,

order log2(E(h)/E(h/2)),

where E(h) is the norm of the error with grid spacing h, relative to the true solution. We see
the expected rate of convergence in all cases. Moreover we see that the correction terms (3.9)
and (3.10) corresponding to transverse propagation of the slopes improve the accuracy (going
from Method 3 to Method 4) even though the order of accuracy is unchanged. The same effect
is seen in going from Method 5 to Method 6, which introduces transverse propagation of the
third-order correction terms.
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Order of accuracy
Method max’norm 1-norm

2 ’0.95 0.94
3 1.78 1.82
4 1.64 1.86
5 1.84 2.21
6 1.76 2.21

FIG. 9.2. Log-log plot ofthe 1-norm error vs. h for Methods 2-6 on the rotatingflow problem ofExample 9.2.

Example 9.2. Next we consider a problem where the flow is not constant. We consider
solid body rotation with

(9.3) u -(y 1/2), v (x 1/2).

As initial data we take a smooth hump of the form

(9.4) q(x, y, 0) -1,(1 + cos(zrr(x, y))),

where

r(x, y)= min (V/(x --Xo)2-} (y- yo)2, /"0)//"0.
This computation was done on the domain [0, 1] x [0.5, 1.5] with x0 0.5, y0 1.25,
and r0 0.2. The strange location of the domain was motivated by later tests of boundary
conditions using the same rotating hump (presented in the next section, where Figure 10.2(a)
shows the hump rotating up to time zr). Here we compute only up to time 0.25 so the
hump stays within the computational domain.

Figure 9.2 shows a log-log plot ofthe errors for this case and a table ofthe computed order
of accuracy from these results. In this case we see that including transverse propagation gives
only a slight improvement (going from Method 3 to Method 4 and from Method 5 to Method
6). Moreover, Methods 5 and 6 are now only second-order accurate rather than third-order
accurate, as expected, although the error constant is smaller than with Methods 3 and 4.

In the above computations no limiter was used. Figure 9.3 shows a plot of the errors in
the rotating flow case with various limiters. On this particular initial data the use of a limiter
generally improves the accuracy, although the order of accuracy is diminished slightly with
minmod and substantially with the superbee limiter. The van Leer limiter gives results on this
problem that are slightly worse than MC, but on other examples appears to do better.

Example 9.3. Solid body rotation is frequently used as a test case for advection algorithms.
Zalesak [62] uses this with a density function that has the shape ofa slotted disk. Smolarkiewicz
[49], [51] and others have used a rotating cone. To allow comparison of the method proposed
here with other results in the literature we use the initial data shown in Figure 9.4, which
includes both a slotted disk and a cone as well as a smooth hump of the form (9.4) with
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Order of accuracy
Limiter
0 (none)
(minmod)

2 (superbee)
3 (van Leer)
4 (MC)

max-norm -norm
1.63 1.86
1.24 1.60
0.60 1.11
1.40 1.93
1.52 2.04

FIG. 9.3. Log-log plot ofthe 1-norm error vs. h for Method 4 with various limiters on the rotatingflowproblem
ofExample 9.2.

FIG. 9.4. Initial datafor solid body rotation tests.

x0 0.25, Y0 0.5, and r0 0.15. The cone and disk also have radius 0.15 and are centered
at (0.5, 0.25) and (0.5, 0.75), resp.

Figure 9.5 shows the computed results after one revolution (628 time steps) on a 100 x 100
grid with k 0.01 and hence a Courant number of 1. Method 4 is used along with the superbee
limiter. Figure 9.6 shows results after six full revolutions (3768 time steps).

Several other limiters have been tested on this problem. Superbee gives the sharpest
results since it is overcompressive, although this has the disadvantage that smooth gradi-
ents also tend to be sharpened, as is clearly seen in the evolution of the smooth hump in this
test problem. It is also interesting to note that the maximum value ofq increases above 1 in the
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o

q t y 0.25 qat y 0.75

0 20 40 60 80 oo

q t x 0.25

o 20 40 60

q t x 0.5

lOO

0 20 40 60 80 100 0 20 40 60 80 100

FIG. 9.5. Numerical results for Example 9.3 after one revolution (628 time steps) using Method 4 and the
superbee limiter. Four different cross sections ofthe solution are shown along with the perspective plot. The solid
lines are the true solution.
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q at y 0.25 q t y 0.75

20 40 60 80 100

q at z 0.215

o 20 40 60

q at x 0.5

lOO

0 20 40 60 80 O0 0 20 40 60 80 O0

Y Y

FIc. 9.6. Numerical results for Example 9.3 after six revolutions (3768 time steps) using Method 4 and the
superbee limiter. Four different cross sections of the solution are shown along with the perspective plot. The solid
lines are the true solution.
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slotted disk. This does not happen with most other limiters, which instead allow increased
smearing.

There are essentially no oscillations visible in these computations. Conservation has
0 929.0382 initially and after six revolutionsalso been verified. In this computation, y qij

ttij-3768 929.0452. The method fails to be exactly conservative only because of flow
through the boundaries with this rotating flow.

Example 9.4. Figure 9.7 shows results when Method 6 is used with no limiter and
k 0.01. Since the velocity field is not constant, the method is not third-order accurate in
this case. In spite of the fact that no limiter is used, the oscillations produced are quite mild
and occur mainly near the discontinuity in the slotted disk. The hump and cone are captured
very well.

Example 9.5. A more severe test is obtained by using a swirling deformation flow of the
form

(9.5) u sin2(zrx) sin(27ry)g(t), v sin2 (zry) sin(2zrx)g(t).

This flow satisfies u v 0 on the boundaries of the unit square. The function g(t) is used
to introduce time dependence in the flow field and here we use

(9.6) g(t) cos(zrt/T)

on the time interval 0 < < T. The flow slows down and reverses direction in such a way
that the initial data should be recovered at time T: q (x, y, T) q (x, y, 0). This gives a very
useful test problem since we then know the true solution at time T even though the flow field
has a quite complicated structure. (This same trick can be used with any other incompressible
flow field.)

Here we use T 1.5. At time T/2 the initial data is quite deformed. Figure 9.8 shows a
contour plot ofthe computed solution at this time using the same initial data as in Example 9.3.
Figure 9.9 shows the results at time T, again using Method 4 and the superbee limiter. The
initial shapes have been recovered fairly successfully.

Example 9.6. As a final example we use the swirling flow (9.5) with g(t) 1 and initial
data

1, if(x-l)2+(y-1)2<0.8,
q (x, y, 0) 0, otherwise.

The computed results obtained at time 2.5 with Method 4 are shown in Figure 9.10. Fig-
ure 9.11(a) shows a slice through these results at x 0.5. The results are sharp and the
maxima and minima are well preserved. Over the entire domain the values of qij lie between
-0.0045 and 1.0050.

To demonstrate that the transverse propagation of correction waves (3.9) is valuable even
though they are not required to achieve second-order accuracy, Figure 9.11 (b) shows results
for the same computations but without these terms, i.e., with Method 3. Mild oscillations are
clearly visible.

10. Boundary conditions. Boundary conditions can be incorporated quite easily into
the methods described above. The computational grid is extended by one or two rows of cells
along each edge and values of q are assigned to each of these cells at the beginning of each
time step in a way that depends on the nature of the boundary conditions (as described below).
The method is then applied over the interior of the expanded grid so that fluxes at interfaces
corresponding to the original boundary are determined. For concreteness in the discussion
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q at y- 0.25
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FIG. 9.7. Numerical resultsfor Example 9.4 after one revolution (628 time steps) using Method 6 and no limiters.
Four different cross sections of the solution are shown along with the perspective plot. The solid lines are the true
solution.

below, consider the left boundary at x 0 so that the boundary flux to be determined is
Fj+l/2,0 (see Figure 10.1).

If no limiter is used then only one additional row of cells needs to be introduced. The
flux value Fj+l/2,0 depends only on the values qim for 0, 1 and m j 1, j, j + 1 and
is determined in the usual way. If limiters are used then the jump qlj qoj may be limited by
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0.2 0.4 0.6 0.8 1.0

FIG. 9.8. Contour plot of numerical results at time T/2 for the deformation flow in Example 9.5. This is the
time ofmaximum deformation.

comparing it with qoj q-l,j (if Uj+I/2,0 >" 0) and so a second row of exterior cells is needed
near an inflow boundary.

In some of the test problems presented in the previous section, periodic boundary con-
ditions were used. These are easily implemented simply by copying data from the opposite
boundary. For example, if the original grid is M M then we set

qonj qj qn 1,j qM-l,j

at the beginning of each time step and similarly at the other boundaries.
In practice we often have inflow or outflow boundary conditions, or possibly no-flow

boundary conditions at points where the normal velocity is zero, such as at an impermeable
wall. These can all be handled by again introducing extra rows of cells with appropriately
chosen values of q.

A no-flow boundary condition at x 0 would correspond to Uj+l/:Z,o 0. The correct
flux at such a point is Fj+l/Z,0 0. Of course one could simply set Fj+l/2,0 0 at such
boundaries rather than introducing the exterior cells at all, but the introduction of exterior
cells allows a variety of boundary conditions (or a mixture of different conditions at different
points) within a unified framework, simplifying implementation. The waves originating at the
interface between cells Coj and Clj (i.e., at the physical boundary) propagate with zero speed
and have no effect on any fluxes. The wave originating at the interface between cells Coj
and Co,j+x also has no effect on the fluxes in the physical domain provided that uo,j+l/2 < O.
This can easily be arranged since this is outside the physical domain. The wave originating
between cells Cxj and CI,j+I could also affect Fj+l/2,0 if Ul,j+I/2 < 0. If SO, this velocity
should be set to zero. This amounts to simply disabling transverse propagation of waves that
would cross the physical boundary. Note that this modification does not affect conservation.
With these conditions satisfied, the values of q specified in the exterior cells are completely
arbitrary and the resulting flux Fj+l/2,0 will be zero independent of the choice of q.
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q at y 0.25 q at y 0.75
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+/-jt_
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FG. 9.9. Numerical results at time Tfor the deformationflow in Example 9.5 using Method 4 and the superbee
limiter. Four different cross sections ofthe solution are shown along with the perspective plot. The solid lines are the
true solution.

Outflow boundaries are characterized by the normal velocity being in the outward direc-
tion, e.g., uj+l/2,o < 0. At such boundaries the increment wave goes outward and so in this
step the value of q0nj is again immaterial. The correction wave, however, does have an effect

on q?l and the choice of q)j affects the slope used in the correction wave. At an outflow
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Fla. 9.10. Deformationflow ofExample 9.6 computed with Method 4.

method 4 method 3

0.2 0,3 0.4 0.6 0.7 0.8 0.9 0.3 0.5

(a) (b)

Fro. 9.11. (a) Cross section along x 0.5 ofthe resultsfrom Figure 9.10 when Method 4 is used. (b) Cross
section ofa similar computation with Method 3. The solid line shows the true solution in each case.

boundary it is reasonable to use extrapolation from the interior of the domain to choose the
values q0n]. Zero-order extrapolation gives

qo qj"

Note that this results in zero slope and hence a correction wave of zero strength (i.e., we reduce
to the fully upwind first-order Method 2 at an outflow boundary).

First-order (or linear) extrapolation would suggest

qj 2qxnj q2nj.
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q12

qll

22

G2,1/2

FIG. 10.1. Portion of extended grid usedfor imposing boundary conditions. The heavy line is the physical
boundary and two additional rows ofcells are added in each direction.

Note that in this case qlj qoj q2j qlj with the result that the limiter does not limit the
slope. In practice this choice of extrapolation seems to work well and gives little error at an
outflow boundary.

At an inflow boundary the normal velocity points inward, e.g., Uj+l/2,o > 0. At such a

boundary the value q (0, y, t) must be specified as part of the problem in order to determine a
unique solution. For the finite volume method we must specify qj q (-h/2, yj, tn) and
also q-l,j q(-3h/2, yj, tn) for use in the limiter. One approach is to extrapolate from the
known boundary data (and perhaps values in the interior grid), using, e.g.,

zer-rder: qj qnl,j q (0, yj, in)

or first-order: qj 2q (0, yj, tn) qlnj,
qn x,j 4q(0, yj, tn) 3qlnj

In practice first-order extrapolation works quite well.
One advantage of the wave propagation approach used here is that simple boundary

conditions of the type proposed above are very robust and give no stability problems. This is
not always true with standard finite difference methods, particularly centered methods, where
one must be quite careful to avoid instabilities arising from the numerical boundary conditions.
The upwind nature of the wave propagation approach seems to avoid these difficulties.

Figure 10.2(b) shows the results of a computation where linear extrapolation is used at
both inflow and outflow boundaries. Method 4 is used with the monotonized central limiter.
The problem is the same as in Example 9.2, except that the computational domain is now
[-1, 0] x [0, 1] and we solve over time 0 < < zr. Then q (x, y, 0) 0 initially within the
computational domain and the hump enters through the upper fight comer, rotates through the
domain, and leaves through the lower right comer. The exact solution is used as boundary
data on the inflow portion of the boundary. In this computation h 0.025 and k h/2.

Forcomparison, Figure 10.2(a) shows the same computationover a largerdomain [- 1, 1] x
[-0.5, 0.5] so that the hump is always within the domain. In each case the figure shows a
superposition of the contours of the computed solution at six different times.

Figure 10.2(c) shows the max-norm of the error as a function of time for three different
grids with h 0.05, 0.025, 0.0125 and k h/2. Second-order convergence is observed.
Moreover we see that the error is very small for large t, after the hump has left the domain
and the true solution is again identically zero. Although the computed solution does not
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time
(c)

FIG. 10.2. (a) Rotating hump computation on a large domain with h 0.025. Contourplots at six different times
are superimposed (rotation is counterclockwise). Contour levels are at q 0.01, 0.1, 0.2, 0.3, 0.4. (b) Rotating
hump computation on the smaller domain with inflow and outflow boundary conditions. (c) Error as afunction of
time in the small grid computation. The error is shownfor three different grids, with h 0.05, 0.025, 0.0125from
top to bottom.

quite reach this pristine state, the residual error is much too small to show up on the scale of
Figure 10.2(c). The final max-norm error at time 3.125 on each of the three grids is on
the order of 10-5, 10-13, and 10-21, resp.

11. Three dimensions. The ideas and algorithms presented above carry over almost
directly to three space dimensions. We now let qijk be the cell average of q over grid cell Cijk.
Since k is now a grid index, we use At for the time step and also use Ax (= Ay Az) for
the grid spacing so there is no confusion with the tlux in the z-direction, which is normally
denoted by h. The numerical method takes the form

At
qijk x[Fi+l/2,j,k Fi-1/2,j,k -- Gi,j+l/2,k Gi,j-1/2,k -l-- ni,j,k+l/2 ni,j,k-1/2].
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We assume that the given velocity field ff (u, v, w) satisfies the discrete divergence-free
condition

n+l/2 n+l/2 .n+l/2 .n+l/2 n+l/2 n+l/2
Ui+l/2,j,k Ui_l/2,j,k) --[- ,vi,j+l/2,k vi,j_l/2,k) -- (Wi,j,k+l/2 Wi,j,k_l/2) O.

The first- and second-order algorithms are shown in Algorithm 11.1 in a form analogous
to Algorithm 4.1. Note that here we incorporate the factor At/Ax into the definition of V and
W, which simplifies many of the expressions. For the most part this is a direct generalization
of Algorithm 4.1. A few things require some comment. The first corrections made to the H

1UIVIWR.fluxes (for the transverse propagation of the increment wave) include a new factor g
This is necessary for the proper comer coupling between cells in three dimensions. The
increment wave propagating in the x-direction now has transverse motion in both the y- and
z-directions. In general three additional cells will be affected by this wave, and hence three
fluxes must be modified. (One could instead modify two G fluxes and one H flux to achieve
the same effect.)

The final four modifications to H values result from the transverse propagation of the
correction waves. Referring back to Figure 3.2(b), we should now think of propagating the
piecewise linear function in the third direction, normal to the plane of the figure. This is
accomplished by modifying four different H values corresponding to the four cells affected
by this wave. Recall that this correction wave is linear in x but constant in y and will also be
constant in z. So it is simply the correction S, weighted by the volume of overlap with each
cell, that is used to modify the fluxes.

For the case in which (Y, t) const, it is again possible to achieve third-order accu-
racy with an additional minor modification. A truncation error analysis again shows that the
transverse propagation already gives all the cross-derivative terms needed for third-order accu-
racy. The only missing terms are the pure third-order derivatives qxxx, qyyy, and qzzz. Exactly
the same modification as in Algorithm 4.1 gives the three-dimensional version of Method 6.
Simply replace the line

by

1 (At) 1 ((At)2 )U2S :-- IUI 1 x-xlUI R- U 1- S-X-x (ql+l,j,k- 2ql,j,k +ql-l,j.k).

Note that in implementing this method (and also the two-dimensional version) it is not
necessary to write out separate versions of this loop in the y- and z-directions. It is possible to
write a single subroutine that is called three times with different assignments of u, v, w and
F, G, H for each direction sweep. This simplifies implementation and debugging consider-
ably. More details can be seen in the program Advect3d.f, which is available by anonymous
ftp (see 12).

Example 11.1. The first numerical test is similar to Example 9.1. We use constant flow
u v w 1 with periodic boundary conditions and smooth initial data

(11.1) q(x, y, z) sin(2zrx) sin(2zry) sin(2zrz).

The time step is At 0.8Ax and we compute up to time 1, when the initial data should be
recovered. Figure 11.1 shows log-log plots of the error as the grid is refined. Three different
M M M grids are used with M 8, 16, 32. Again the order of accuracy reported is
based on the ratio of errors from the two finest grids.
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# Initialize increments and fluxes:

for each i, j, k do

Fi-1/2,j,k ".-- 0, Gi,j-1/2,k :’-- 0, ni,j,k-1/2 :-" 0

# Update increments and fluxes based on interfaces in x-direction:

for each i, j, k do

# consider interface between cells Ci-l,j,k and Cijk:
n+l/2 At .n+l/2 At. n+l/2U "--Ui_l/2,j,k, V :-" "’Vi_l/2,j,k, W :: "’Wi_l/2,j,

R :-- qijk qi- 1, j,k

ifU>OthenI:=i-lelseI :=i

Fi_l/2,j,k :"- Fi_l/2,j,k Uquk

# if method then end loop here

ifU>OthenI:-ielseI:--i-1

ifV >OthenJ:=j+lelseJ:=j

GI, J-1/2,k :-" Gl,J-1/Z,k- -UVR
if W >Othen K := k+ else K := k

HI,j,K-1/2 :-" HI,j,K-1/2- -UWR + -UIVIWR
if V > Othen ) := j + else ) j-

HI, J,K_I/2 := HI,J,K_I/z UIVIWR
# if method 2 then end loop here

R := limited version of R

S:= [gl 1- xxlUI R

Fi-1/2,j,k :’-" Fi-1/2,j,k S

# if method 3 then end loop here

Gi,J-1/2,k :’- Gi,J-1/2,k + VS

Gi-l,J-1/2,k :-" Gi-l,J-1/Z,k VS

Hi,j,K-1/2 :-" Iti,j,K-a/2 + (1 --IVI)WS

Hi,,],K_l/2 :-- I-Ii,3,K_l/2 IVIWS

I’ti-l,j,K-1/2 :’- Hi-l,j,K-1/2 (1 --IVl)ws

H/-1, f, K-1/2 :-" /-/i-1,3,K-1/2- IVIWS
# if method 4 then end loop here

# Update increments and fluxes based on interfaces in y-direction and

# z-direction, as above but with velocities and fluxes appropriately switched.

# Update q:

for each i, j, k do
At

ijk qijk- xx [F/+l/2,j,k- Fi-U2,j

q-Gi,j+l/2,k- Gi,j-1/2,k -b ni,j,k+l/2 ni,j,k-1/2]

ALGORITHM 11.1. One time step ofthe algorithmfor general three-dimensionalflow.
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0.06 0.07 0.08 0.09

h

Order of accuracy
Method max-norm 1-norm

2 0.71 1.01
3 1.81 2.10
4 2.13 2.14
5 2.96 3.19
6 2.90 3.21

FIG. 11.1. Log-log plot of the 1-norm error vs. h for Methods 2-6 on the constant coefficient problem of
Example 11.1, with u v w 1.

Example 11.2. The deformation flow of Examples 9.5 and 9.6 is extended to three di-
mensions by superimposing deformation in the x-y plane with deformation in the x-z plane.
The velocities are

(11.2)
u(x, y, z) 2 sin2(rrx) sin(2zry) sin(2rz)g(t),

v(x, y, z) sin(27rx) sin2(zry) sin(2:rz)g(t),

w(x, y, z) sin(2yrx) sin(27ry) sin2(rcz)g(t).

The time dependence g(t) is given by (9.6). Again the flow reverses at time T/2 so that the
initial data should be recovered at time T. In this test discontinuous initial data is used of the
form

1, ifx <1/2,q(x,y,z)= 0, x> 1/2.

The interface at x 1/2 deforms in a truly three-dimensional manner and should return to its
initial location at time T 1.5. In this test a 40 40 40 grid was used with At 0.5 Ax,
giving a Courant number of 1. Method 4 with the superbee limiter was used. Figure 11.2(a)
shows a contour plot of q on a typical cross section z 0.425 (k 17) at time T/2, the time
of maximum deformation. The interface appears disconnected only because we are slicing
through fingers that form from the initial flat interface.

Figure 11.2(b) shows the same cross section at time T, when the initial interface should
have been recovered. Of course the smearing introduced during the deformation will not be
eliminated as the flow reverses, so the resolution seen here seems quite good. Only mild
overshoots and undershoots are observed. The final values of q lie between -.008 and 1.008
everywhere and the integral of q is conserved.

12. Conclusions. A hierarchy of methods for advection in incompressible flowfields
have been developed, based on multidimensional wave propagation. On the basis ofnumerous
tests, the following recommendations can be made. As a general purpose algorithm, Method
4 with the van Leer or MC limiter is robust and effective. For problems with discontinuous
solutions, the superbee limiter may be preferable. Method 6 works very well on smooth data
but a better approach to applying limiters is needed for discontinuous data.
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q=0

q=l

q=l q=0

(a) (b)

FIG. 11.2. Contour plots ofcross sections at z 0.425 for the three-dimensional deformationflow ofExample
11.2 on a 40 x 40 x 40 grid. Contour lines are at q 0.05j, j 19. (a) Results at time T/2, when
the initial interface at x 0.5 is at maximum deformation. (b) The same slice at T, when the initial conditions
shouM be recovered.

Fortran implementations of all of these algorithms are available by anonymous ftp from
amath.washington.edu in the directory pub/rjl/programs/advection. These programs also in-
clude all of the flowfields and data needed to reproduce the results shown in this paper.

Note added in proof. The software package CLAWPACK (ConservationLAWsPACKage)
recently developed by the author extends this type of method to general nonlinear systems
of conservation laws [24], [30]. In particular, this package can be applied to the advection
equation and reduces to the method described here. This is easier to apply and modify than the
original advection software mentioned above. Some further description ofadvection equations
and examples can also be found in the User Notes [25], including conservative extensions to
flowfields that are not incompressible and to curvilinear grids.
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