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Finite-volume methods for non-linear elasticity
in heterogeneous media
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SUMMARY

An approximate Riemann solver is developed for the equations of non-linear elasticity in a heterogeneous
medium, where each grid cell has an associated density and stress–strain relation. The non-linear �ux
function is spatially varying and a wave decomposition of the �ux di�erence across a cell interface is
used to approximate the wave structure of the Riemann solution. This solver is used in conjunction
with a high-resolution �nite-volume method using the CLAWPACK software. As a test problem, elastic
waves in a periodic layered medium are studied. Dispersive e�ects from the heterogeneity, combined
with the non-linearity, lead to solitary wave solutions that are well captured by the numerical method.
Copyright ? 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

High-resolution �nite-volume methods were originally developed for capturing shock waves
in solutions to non-linear systems of conservation laws, such as the Euler equations of gas
dynamics. However, they are also well suited to solving both linear and non-linear wave prop-
agation problems in heterogeneous media containing many sharp interfaces where coe�cients
in the equation have discontinuities. Recently the wave-propagation algorithms described in
Reference [1] and implemented in the CLAWPACK software package [2] have been applied to
several problems of acoustic or elastic wave propagation in heterogeneous media, e.g. [3; 4].
In this paper these methods are applied to one-dimensional non-linear elastic waves in

a heterogenous medium where each grid cell can have a distinct value of the density �i
and its own stress–strain relation �i(�). An approximate Riemann solver for these equations is
derived and then applied to a simple but interesting test problem, a periodic medium consisting
of alternating thin layers of two di�erent materials. The �ne-scale structure gives a dispersive
e�ect that leads to the breakdown of shock waves into oscillations that, in some cases, separate
into a train of solitary waves, similar to what is observed for the small-dispersion limit of the
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Korteweg–DeVreis (KdV) equation. Grid re�nement studies show that the method maintains
good accuracy on this problem, yielding a useful tool for exploring non-linear phenomena.
The approximate Riemann solver is derived using a technique that is more generally appli-

cable to conservation laws of the form

qt + f(q; x)x=0 (1)

with a spatially varying �ux function f(q; x). The Riemann problem between cells i − 1 and
i is based on two �ux functions fi−1(q) and fi(q) along with data Qi−1 and Qi. In the case
considered here, there are always two propagating wave in the Riemann solution, one wave
W1 propagating to the left with some speed s1¡0 and the other wave W2 with positive speed
s2. These are taken to be of the form W1= �1r1 and W2= �2r2, where the vectors r1 and r2

are some presumed ‘wave forms’ and �1 and �2 are scalar coe�cients. In the linear constant-
coe�cient case r1 and r2 are just the eigenvectors of the coe�cient matrix. Approximate
Riemann solvers such as Roe’s solver for non-linear problems are based on using eigenvectors
of some linearized problem. We take a similar approach here for the spatially varying �ux,
but with one essential di�erence. Rather than determining �1 and �2 by solving the linear
system Qi−Qi−1 = �1r1 + �2r2, we instead solve the system fi(Qi)−fi−1(Qi−1)=�1r1 +�2r2
and then de�ne �p=�p=sp for p=1; 2. This is natural because the �ux must be continuous at
the interface, whereas q will typically have a jump there, corresponding to stationary waves
that are not included in the wave decomposition.
This same approach has proved useful for other problems with spatially-varying �uxes,

and is discussed in more detail in Reference [5]. In particular, it has been used to deal with
spatial variation that arises when a conservation-law is solved on a general manifold [6], such
as those arising in general relativity [7]. This approach can also be related to the relaxation
scheme of Jin and Xin [11] and this connection is explored in Reference [8].

2. ELASTICITY EQUATIONS

We consider the one-dimensional elastic wave equation for compressional waves, which have
the form

�t(x; t)− ux(x; t) = 0
(�(x)u(x; t))t − �(�(x; t); x)x =0

(2)

where �(x; t) is the strain, u(x; t) the velocity, �(x) the density and �(�; x) the stress. We also
use m=�u to denote the momentum. We allow the stress–strain relationship (along with �) to
vary in a speci�ed manner with x to represent a heterogeneous medium. This is a non-linear
conservation law of form (1) where

q(x; t)=
[
�
�u

]
=
[
�
m

]
; f(q; x)=

[−m=�(x)
−�(�; x)

]
(3)

For su�ciently small deformations we can assume a linear stress–strain relation of the form

�(�; x)=K(x)�
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where K(x) is the bulk modulus of compressibility. In this case the linear hyperbolic system
has the coe�cient matrix

A=
[
0 −1=�

−K 0

]
(4)

with eigenvalues �1 =−c and �2 = c, where c=
√
K=� is the sound speed. The corresponding

eigenvectors are

r1=
[
1
Z

]
; r2 =

[
1
−Z

]
(5)

where Z =�c is the impedance. In the linear case it is also possible to rewrite the equations
by eliminating � and using p=−� to obtain

pt + K(x)ux =0

�(x)ut + px =0
(6)

These are the equations of one-dimensional linear acoustics in a heterogeneous medium, as
used in References [1; 4] for example. For non-linear problems it is better to use the conser-
vative form (2).
Our goal is to apply the high-resolution wave-propagation algorithms described in Refer-

ence [1] to this system, and more speci�cally the CLAWPACK software package [2]. To do so
we need to only provide a Riemann solver for the system (2). We assume each �nite-volume
grid cell has associated with it a density �i and a stress–strain relation �i(�). The Riemann
problem at xi−1=2 between cells i − 1 and i then consists of Equations (2) with

�(x)=

{
�i−1 if x¡xi−1=2

�i if x¿xi−1=2
; �(�; x)=

{
�i−1(�) if x¡xi−1=2

�i(�) if x¿xi−1=2
(7)

and arbitrary data Qi−1 and Qi. The solution to this Riemann problem consists in general
of two waves (shock or rarefaction waves if the �(�) are non-linear functions), one moving
to the left into cell i−1 and one moving to the right into cell i. Each wave is con�ned
entirely to one material and hence is a standard shock or rarefaction wave relative to that
material. This follows from the fact that these equations are expressed in a Lagrangian frame
(the spatial variable x represents location relative to a �xed reference con�guration) and so
the characteristic speeds never cross zero. In particular, there can be no transonic rarefaction
waves for these equations. This is convenient since one can then develop an approximate
Riemann solver based entirely on shock waves (or approximations to these shocks) and rely
on numerical viscosity to give the correct entropy-satisfying solution, without the need for an
‘entropy �x’.
Figure 1 indicates the structure of the all-shock Riemann solution for this problem. The

left-going shock, indicated by W1, propagates at a speed s1 and connects Qi−1 to a state Q∗
i−1.

The jumps across the wave must satisfy the Rankine–Hugoniot conditions

s1(�∗i−1 − �i−1) =−(u∗i−1 − ui−1)
s1(�i−1u∗i−1 − �i−1ui−1) =−(�i−1(�∗i−1)− �i−1(�i−1))

(8)
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Figure 1. Structure of the Riemann solution.

Similarly, across the two-wave W2 we have

s2(�i − �∗i−1) =−(ui − u∗i )
s2(�iui − �iu∗i ) =−(�i(�i)− �i−1(�∗i ))

(9)

In addition, across the interface at xi−1=2 the �ux f(q; x) must be continuous for t¿0, which
requires that

u∗i−1 = u
∗
i

�i−1(�∗i−1) =�i(�
∗
i )

(10)

This makes sense physically since the velocity and stress must be constant across the material
interface. If the initial data Qi−1 and Qi have this property then W1 and W2 will have zero
strength. Otherwise, the elastic waves generated are precisely those required to equilibrate the
stress and velocity at the interface.
Note that the Riemann solution will generally have a jump in � and m across the interface.

In a sense the Riemann solution consists of four waves: the two propagating elastic waves
and two stationary waves at the interface, one having a jump in � and the other a jump in
m. For the wave-propagation algorithms implemented in CLAWPACK, we only need the waves
with non-zero speed. Alternatively, for a method implemented in terms of interface �uxes
Fi−1=2, we see that the interface �ux is uniquely de�ned by (10) in spite of the fact that q has
a jump at the interface.
To �nd the exact all-shock Riemann solution, we must determine intermediate states and

shock speeds so that the Rankine–Hugoniot conditions (8) and (9) are both satis�ed, along
with constraints (10). This can be reduced to a non-linear system of two equations for �∗i−1 and
�∗i since all other quantities can be determined in terms of these. The system is simply (10)
after expressing u∗i−1 and u

∗
i in terms of �

∗
i−1 and �

∗
i . Combining the two equations from (8)
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we can eliminate u∗i−1 − ui−1 to obtain

s1(�∗i−1)=

√
1
�i−1

(
�i−1(�∗i−1)− �i−1(�i−1)

�∗i−1 − �i−1

)
(11)

and similarly from (9) we �nd

s2(�∗i )=

√
1
�i

(
�i(�∗i )− �i(�i)
�∗i − �i

)
(12)

This gives the desired relations

u∗i−1 = ui−1 − s1(�∗i−1)(�∗i−1 − �i−1)
u∗i = ui + s

2(�∗i )(�i − �∗i )
(13)

In principle system (10) can be solved using a non-linear iteration, but in practice a much
simpler approximate Riemann solver appears to work well, at least for mildly non-linear
problems. This approximate Riemann solver is de�ned by simply choosing the wave speeds
to be the sound speed in the appropriate cell

s1 =−
√
�′i−1(�i−1)
�i−1

; s2 =

√
�′i (�i)
�i

(14)

If the non-linearity is not too strong, then these are good approximations regardless of the
correct values of �∗i−1 and �

∗
i .

For the variable-coe�cient linear problem (�i(�)=Ki�), these expressions are exactly correct
and reduce to

s1=−
√
Ki−1
�i−1

; s2 =

√
Ki
�i

(15)

For the linear problem we also know that the waves W1 and W2 must be of the form

W1 = �1r1i−1=
[
1
Zi−1

]
; W2= �2r2i =

[
1

−Zi
]

(16)

where Z is the impedance. In this case we can determine �1 and �2 by requiring that (10)
holds. This is most easily done by de�ning

R=
[
1 1
Zi−1 −Zi

]
(17)

and solving �rst the linear system

R�=fi(Qi)− fi−1(Qi−1) (18)

for �=(�1; �2), thus decomposing the �ux di�erence into �1r1 + �2r2. The waves are then
de�ned by (16) where

�1=�1=s1; �2 =�2=s2 (19)
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Note that

W1+W2 �=Qi −Qi−1
because there are also other stationary waves at the interface that we have not bothered to
explicitly compute. But we do have

s1W1 + s2W2 =fi(Qi)− fi−1(Qi−1) (20)

so that the wave-propagation algorithm based on these waves is conservative. We have used
the fact that the �ux is continuous at the interface to simplify the solution procedure.
Returning to the non-linear problem, we can proceed in the same manner. After choosing

s1 and s2 by (14), we compute the impedances Zi−1 =−�i−1s1 and Zi=�is2 and then again
use the matrix R to solve the system (18). Finally we compute the �’s as in (19) and take
the waves to be (16).
Note that the Rankine–Hugoniot conditions will not generally be satis�ed across each wave

separately in the non-linear case. (The same is true with most approximate Riemann solvers.)
However, we continue to have the crucial property (20) so that the wave-propagation algorithm
is conservative.

3. NUMERICAL RESULTS

As an example, we consider a periodic medium consisting of alternating layers of two di�erent
materials. Each layer is one unit thick. For 2j¡x¡2j + 1 the material has density �A and
stress–strain relation �A(�), while if 2j+1¡x¡2j+2 the material is characterized by �B and
�B(�). For simplicity each stress–strain relation has the form

�(�)=K1�+ K2�2 (21)

We �rst show some sample results and discuss what is seen. In the next section a grid
re�nement study is performed for one particular case to verify that the method is converging,
with somewhat better than �rst-order accuracy.
We take initial data q(x; 0)≡ 0 and apply a boundary condition at x=0 of the form

u(x; 0)=
{−0:2(1 + cos(�(t − 30)=30)) if t660
0 if t¿60 (22)

This corresponds to stretching the material by pulling the left edge outward for 0¡t¡60, lead-
ing to an elastic wave propagating through the material. Figures 2–5 show the resulting wave
propagation for four di�erent cases. In each case the strain � and the stress � are shown as
function of x at three di�erent times, with t increasing as one goes upwards through the
sequence of plots.
Case I. Homogeneous linear material (see Figure 2)

�A=�B=1; �A(�)=�B(�)= �

The wall motion creates a cosine-hump acoustic wave that propagates at velocity 1.
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Figure 2. Case I: linear homogeneous medium.

Figure 3. Case II: linear heterogeneous medium.

Case II. Heterogeneous linear material (see Figure 3)

�A=1; �B=3; �A(�)=KA(�); �B(�)=KB�

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:93–104
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Figure 4. Case III: non-linear homogeneous medium.

Figure 5. Case IV: non-linear heterogeneous medium.

with KA=1 and KB=3. Again a hump in stress is observed to propagate with a shape that is
essentially unchanged. It is not smooth, however. The slope �x(x; t) is discontinuous at each
layer interface, as is the strain �(x; t) itself. Note that each material has the same sound speed
c=1 and yet the wave appears to propagate at a slower speed �c≈ 0:866. This is consistent

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:93–104
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with homogenization theory for this problem, which predicts that waves with large wavelength

relative to the scale of the heterogeneity will propagate with e�ective speed �c=
√
K̂= ��, where

K̂ =((K−1
A +K−1

B )=2)−1 is the harmonic average and ��=(�A+�B)=2 is the arithmetic average.
Because the impedance is di�erent in the two materials, there is continuous re�ection at the
material interfaces. The wave does not simply translate but rather bounces back and forth
between interfaces, accounting for the slower speed at which the energy propagates. Finite-
volume methods based on Riemann solvers are ideally suited to this problem, since solving the
Riemann problem at each interface correctly determines the re�ected and transmitted portion
of each wave.
This case has been studied by Santosa and Symes [9], who derive an e�ective equation that

also contains small dispersive terms. These terms lead to oscillations that can be observed
numerically at later times. See Reference [4] for examples and more discussion of this test
problem.
Case III. Homogeneous non-linear material (see Figure 4)

�A=�B=2; �A(�)=�B(�)=2�+ 1:2�2

The non-linearity causes the cosine-hump to steepen into a shock wave followed by a rar-
efaction wave.
Case IV. Heterogeneous non-linear material (see Figure 5)

�A=1; �B=3; �A(�)=KA�(1 + 0:3KA�); �B(�)=KB�(1 + 0:3KB�)

with KA=1 and KB=3. Again the hump in stress begins to steepen, but now oscillations
form rather than a true shock wave developing. The long-time behaviour of this solution is
particularly interesting, as illustrated further in Figures 6 and 7. The oscillations break up into
a series of solitary waves with similar shape but di�erent magnitudes and speeds. The larger
waves propagate faster and so they separate further at later times. Moreover, tests where this
wave train interacts with another similar wave train suggest that they interact as solitons. This
behaviour is consistent with an e�ective homogenized equation that has the same quadratic
non-linear form as (2), but with the addition of a small dispersion term, as might be expected
from the linear analysis of [9]. This is reminiscent of the KdV equation with small dispersion,
which exhibits similar behaviour (e.g. Reference [10]). In that case a smooth pulse breaks up
into a train of solitons with width proportional to the dispersion coe�cient.
This non-linear elasticity problem is being investigated further and here we have only shown

some preliminary numerical results. In the next section a grid re�nement study is shown to
demonstrate convergence of the method.

4. ACCURACY

To con�rm that the method is converging and estimate the order of accuracy, we solve the
problem shown in Figure 5 up to time t=240 using two di�erent grid resolutions. Figures 8
and 9 show the results. In each case the solid line shows the ‘true solution’ as computed on
a �ne grid with �x=0:01 on the domain 06x6300, so there are 100 cells in each of the
300 layers (30 000 grid cells total). Figure 8 shows the results on a grid with �x=0:25 (4
cells per layer) and Figure 9 shows the results on a grid with �x=0:125 (8 cells per layer. In
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Figure 6. Case IV: non-linear heterogeneous medium, at later times. After time t=70 the boundary
conditions were switched to periodic boundary conditions so that the wave train continues to cycle

through the �xed domain.

Figure 7. Case IV: non-linear heterogeneous medium. Zoom view of three solitary pulses from Figure 6.
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Figure 8. Case IV at time t=240, on a grid with 4 points per layer.

Figure 9. Case IV at time t=240, on a grid with 8 points per layer.

each case the high-resolution wave-propagation algorithm described in Reference [1] is used
with the MC (monotonized centered) limiter function. On smooth solutions this method is
essentially second-order accurate except near extrema where clipping typically occurs. On the
Case IV problem, testing on a sequence of grids shows that the order of accuracy is roughly
1.35 in both the max-norm and the 1-norm. This is reasonable considering that the oscillatory
nature of the true solution leads to many extrema.
The strain is computed with essentially the same accuracy as the stress, and both show the

same rates of convergence. Note in particular that there is no degradation of the accuracy
near the material interfaces where the strain is discontinuous. These discontinuities are not
being ‘captured’ by the numerical scheme in the same manner as a moving shock would
be. Knowledge of the jumps in the solution at these points is built into the method in the
process of solving the Riemann problems. This is a major advantage of Riemann-solver based
schemes for problems in heterogeneous media. The Riemann solver can take into account any
discontinuities in the solution, as well as properly modelling the re�ection and transmission
of waves at each material interface.
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